251
|
Derisking Drug-Induced Carcinogenicity for Novel Therapeutics. Trends Cancer 2016; 2:398-408. [DOI: 10.1016/j.trecan.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
|
252
|
Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res 2016; 365:607-19. [PMID: 27474009 DOI: 10.1007/s00441-016-2467-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022]
Abstract
In solid cancers, activated fibroblasts acquire the capacity to provide fertile soil for tumor progression. Specifically, cancer-associated fibroblasts (CAFs) establish a strong relationship with cancer cells. This provides advantages to both cell types: whereas cancer cells initiate and sustain CAF activation, CAFs support cancer cell growth, motility and invasion. This results in tumor progression, metastasis and chemoresistance. Numerous studies have detailed the mechanisms involved in fibroblast activation and cancer progression, some of which are reviewed in this article. Cancer cells and CAFs are "partners in crime", and their interaction is supported by inflammation. An understanding of the enemy, the cancer cell population and its "allies" should provide novel opportunities for targeted-drug development. Graphical Abstract Molecular mechanism of fibroblast activation. a Normal fibroblasts are the most common cell type in the extracellular matrix and are responsible for the synthesis of collagens and fibrilar proteins. Under normal conditions, fibroblasts maintain tissue homeostasis and contribute to proper cell communication and function. Fibroblasts can be activated by a diverse set of factors secreted from cancer or immune cells. Not only growth factors such as TGF-β, PDGF, HGF and FGF but also interleukins, metalloproteinases and reactive oxygen species can promote activation. Likewise, transcriptional factors such as NF-κB and HSF-1 play an important role, as do the gene family of metalloproteinase inhibitors, Timp and the NF-κB subunit, p62. Interestingly, fibroblasts themselves can stimulate cancer cells to support activation further. b Once activated, fibroblasts undergo a phenotype switch and become cancer-associated fibroblasts (CAFs) expressing various markers such as α-SMA, FSP1, vimentin and periostatin. c Recently, the LIF/GP130/IL6-R pathway has been identified as a signaling cascade involved in fibroblast activation. Upon LIF stimulation, JAK is phosphorylated and further activates STAT3, a transcriptional factor that is then translocated into the nucleus where it promotes the transcription of genes responsible for cell growth, differentiation, proliferation and apoptosis. Ruxolitinib can inhibit JAK and prevent STAT3 activation. Further on, the maintenance of JAK activation is supported by epigenetical changes and post-translational modifications. Once pSTAT3 is acetylated by histon acetyltransferase, p300, it leads to the loss of expression of SHP-1, which is a negative regulator of the JAK/STAT pathway. Silencing of SHP-1 steers the constitutive activation of JAK and STAT3.
Collapse
Affiliation(s)
- Sanya-Eduarda Kuzet
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, 28 Avenue Valombrose, F-06107, Nice, France
| | - Cedric Gaggioli
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, 28 Avenue Valombrose, F-06107, Nice, France.
| |
Collapse
|
253
|
Zhu L, Ni C, Dong B, Zhang Y, Shi Y, Niu H, Li C. A novel hedgehog inhibitor iG2 suppresses tumorigenesis by impairing self-renewal in human bladder cancer. Cancer Med 2016; 5:2579-86. [PMID: 27465044 PMCID: PMC5055183 DOI: 10.1002/cam4.802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/08/2016] [Accepted: 05/22/2016] [Indexed: 01/07/2023] Open
Abstract
Tumor recurrence is still a major challenge for clinical treatment of bladder cancer. Cumulative evidences indicate cancer stem cells (CSCs) contribute to drug resistance and leave a putative source for disease relapse. Identifying novel agents targeting CSCs may represent a new paradigm in the therapy of bladder cancer. Here, we separated a novel hedgehog (Hh) inhibitor, iG2, from streptomyces roseofulvus, which dramatically blocked the activation of Gli2 in bladder cancer cells. The iG2 strongly repressed the growth of cancer cells rather than the peri‐tumor stroma cells. Attenuated proliferation and enhanced apoptosis of tumor cells were observed upon iG2 stimulation. Furthermore, iG2 reduced the self‐renewal ability of bladder CSCs as well as the tumor formation. Collectively, iG2 is potentially used as a novel therapeutic agent for bladder cancer by targeting self‐renewal through inhibiting Hh pathway.
Collapse
Affiliation(s)
- Lihong Zhu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chen Ni
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuefeng Shi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Chong Li
- Laboratory Animal Center, CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
254
|
Wörmann SM, Song L, Ai J, Diakopoulos KN, Kurkowski MU, Görgülü K, Ruess D, Campbell A, Doglioni C, Jodrell D, Neesse A, Demir IE, Karpathaki AP, Barenboim M, Hagemann T, Rose-John S, Sansom O, Schmid RM, Protti MP, Lesina M, Algül H. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival. Gastroenterology 2016; 151:180-193.e12. [PMID: 27003603 DOI: 10.1053/j.gastro.2016.03.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice. METHODS Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors resulting from expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription polymerase chain reaction (qPCR), or immunoblot assays; fluorescence-activated cell sorting was performed to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin 6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a Janus kinase 2 (JAK2) inhibitor; tumor growth was monitored by 3-dimensional ultrasound. RESULTS STAT3 was phosphorylated constitutively in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2 compared with tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. CONCLUSIONS In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278.
Collapse
Affiliation(s)
- Sonja M Wörmann
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Liang Song
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jiaoyu Ai
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kalliope N Diakopoulos
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Magdalena U Kurkowski
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kivanc Görgülü
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Dietrich Ruess
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Andrew Campbell
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Claudio Doglioni
- Pathology Unit, San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy
| | - Duncan Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Albrecht Neesse
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University, Marburg, Germany
| | - Ihsan E Demir
- Chirurgische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Maxim Barenboim
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Thorsten Hagemann
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Owen Sansom
- Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Roland M Schmid
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Maria P Protti
- Tumor Immunology Unit, San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy
| | - Marina Lesina
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Hana Algül
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
255
|
Maschinot CA, Pace JR, Hadden MK. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics. Curr Med Chem 2016; 22:4033-57. [PMID: 26310919 DOI: 10.2174/0929867322666150827093904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds.
Collapse
Affiliation(s)
| | | | - M K Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA.
| |
Collapse
|
256
|
Sun M, Zhang N, Wang X, Li Y, Qi W, Zhang H, Li Z, Yang Q. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell Biosci 2016; 6:44. [PMID: 27313840 PMCID: PMC4910241 DOI: 10.1186/s13578-016-0104-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/12/2016] [Indexed: 11/26/2022] Open
Abstract
Background The complications of clinical metastatic disease are responsible for the majority of breast cancer related deaths, and fewer therapies substantially prolong survival. Nitidine chloride (NC), a natural polyphenolic compound, has been shown to exhibit potent anticancer effects in many cancer types, including breast cancer. The epithelial-mesenchymal transition (EMT) and the acquisition of cancer stem cells (CSCs)-like properties emerge as critical steps in the metastasis of human cancers. However, the effects of NC on the EMT and the CSCs-like properties in breast cancer cells, and the underlying molecular mechanisms are not fully understood. Results In the present study, MDA-MB-468 and MCF-7 cancer cells were treated with NC. Scratch and Transwell assays were performed to determine whether NC could attenuate the migratory and invasive capability of cancer cells; Mammosphere formation and flow cytometry analysis were performed to confirm that NC decreased CSCs-like phenotype; RT-PCR and western blot analysis were used to examine the expression level of EMT and CSC related markers in both cells. Mechanistically, NC could inhibit the components of Hedgehog pathway (smoothened, patched, Gli1 and Gli2), subsequently inhibited the expression of Snail, Slug and Zeb1, which were correlated with the significant changes of the expression of EMT related markers (N-cadherin, E-cadherin, and Vimentin) to reverse EMT. On the other hand, NC could also inhibit the expression of CSCs related factors such as Nanog, Nestin, Oct-4 and CD44 via Hedgehog pathway. Furthermore, transforming growth factor-β1 (TGF-β1)-induced increment of EMT and CSCs properties could be reversed by NC. Conclusions Taken together, these data indicated that NC suppressed breast cancer EMT and CSCs-like properties through inhibiting Hedgehog signaling pathway. Our study suggested that NC may be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Mingjuan Sun
- Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117 Shandong Province People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Wenwen Qi
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China
| | - Zengjun Li
- Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan, 250117 Shandong Province People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012 Shandong Province People's Republic of China ; Pathology Tissue Bank, Qilu Hospital, Shandong University, Wenhua Xi Road No.107, Jinan, 250012 Shandong Province People's Republic of China
| |
Collapse
|
257
|
Li C, Liu Z, Yang F, Liu W, Wang D, Dong E, Wang Y, Wu CI, Lu X. siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget 2016; 6:21603-13. [PMID: 26057633 PMCID: PMC4673289 DOI: 10.18632/oncotarget.4269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Since the essential genes are crucial to the proliferation and survival of cancer cells, the interference of these genes is promising to be an option for cancer therapy to overcome heterogeneity. However, the essential genes are highly overestimated by RNA interference (RNAi) screenings, which is mainly caused by the pervasive off-target effect of small interference RNA (siRNA) and short hairpin RNA (shRNA). In the present study, we designed Match-Mismatch paired siRNAs to discriminate the on-target effect from off-target effect of siRNAs on cell viability. Only one of the 7 potential essential genes was validated as essential to cell viability, which demonstrates the high false positive rate in RNAi screenings. We modified the siRNA by introducing random nucleotides (N) into the guide strand to mitigate the off-target effect, without significantly compromising the on-target effect. The whole transcriptome profile analysis of cells transfected with siRNAs with or without Nindicates that siRNA-dN (with Ns on both the 2nd and the 18th bases of the guide strand) weakens the off-target effect by decreasing the unintended targets. The optimized siRNAs can be applied in the characterization of essential genes in cancer cells.
Collapse
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Zhenzhen Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China
| | - Fang Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Wensheng Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Di Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Encheng Dong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Yu Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Chung-I Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| |
Collapse
|
258
|
Liu J, Ji S, Liang C, Qin Y, Jin K, Liang D, Xu W, Shi S, Zhang B, Liu L, Liu C, Xu J, Ni Q, Yu X. Critical role of oncogenic KRAS in pancreatic cancer (Review). Mol Med Rep 2016; 13:4943-4949. [PMID: 27121414 DOI: 10.3892/mmr.2016.5196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a human malignancy with one of the highest mortality rates and little progress has been achieved in its treatment in recent decades. Further improvement to the understanding of the biological and molecular mechanisms underlying the initiation and development of pancreatic ductal adenocarcinoma (PDAC) is required. Previous studies using genetically engineered mouse models have demonstrated that oncogenic GTPase KRas (KRAS) mutation is involved in the formation of pancreatic intraepithelial neoplasia and promotes the progression of PDAC. However, attempts to target KRAS directly by pharmacological inhibition have been unsuccessful. This has resulted in increased efforts to identify pharmacological targets and nodes associated with the mutated KRAS. The present review discusses the recent progress and prospects of KRAS signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Chen Liang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Dingkon Liang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Si Shi
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Chen Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Jin Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
259
|
Kramann R. Hedgehog Gli signalling in kidney fibrosis. Nephrol Dial Transplant 2016; 31:1989-1995. [PMID: 27229466 DOI: 10.1093/ndt/gfw102] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/03/2016] [Indexed: 12/27/2022] Open
Abstract
Kidney fibrosis is the common final pathway of virtually all progressive injury to the kidney and a promising therapeutic target in chronic kidney disease (CKD). The Hedgehog pathway has been reported to be critical in kidney development, and recent evidence suggests a role in kidney injury and fibrosis. This review provides an overview of recent data suggesting an important role of Gli transcriptional activators in kidney injury and repair. We have reported that the hedgehog transcriptional activator Gli1 specifically marks perivascular mesenchymal stem cells, which are an important source of kidney myofibroblasts. Genetic ablation of these cells ameliorated kidney and heart fibrosis and stabilized organ function after injury. Recent data suggest that Gli2 is an important driver of myofibroblast cell cycle progression and a promising therapeutic target in kidney fibrosis progression and CKD. However, the non-canonical mechanism of Gli activation in kidney fibrosis remains an open question, and further studies are needed to elucidate the role of Hedgehog Gli and Gli1+ perivascular cells in human kidney fibrosis.
Collapse
Affiliation(s)
- Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Pauwelstr 30, Aachen 52074, Germany
| |
Collapse
|
260
|
Abstract
The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.
Collapse
|
261
|
Jakobs P, Schulz P, Ortmann C, Schürmann S, Exner S, Rebollido-Rios R, Dreier R, Seidler DG, Grobe K. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells. Sci Rep 2016; 6:26435. [PMID: 27199253 PMCID: PMC4873810 DOI: 10.1038/srep26435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells.
Collapse
Affiliation(s)
- P Jakobs
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - P Schulz
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - C Ortmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Schürmann
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - S Exner
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - R Rebollido-Rios
- Center for Medical Biotechnology#, University of Duisburg-Essen, 45117 Essen, Germany
| | - R Dreier
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - D G Seidler
- Centre for Internal Medicine, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - K Grobe
- Institute for Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| |
Collapse
|
262
|
Klieser E, Swierczynski S, Mayr C, Jäger T, Schmidt J, Neureiter D, Kiesslich T, Illig R. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review. World J Gastrointest Pathophysiol 2016; 7:199-210. [PMID: 27190692 PMCID: PMC4867399 DOI: 10.4291/wjgp.v7.i2.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/21/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer.
Collapse
|
263
|
Marcucci F, Rumio C, Lefoulon F. Anti-Cancer Stem-like Cell Compounds in Clinical Development - An Overview and Critical Appraisal. Front Oncol 2016; 6:115. [PMID: 27242955 PMCID: PMC4861739 DOI: 10.3389/fonc.2016.00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with elevated tumor-initiating potential. Upon differentiation, they replenish the bulk of the tumor cell population. Enhanced tumor-forming capacity, resistance to antitumor drugs, and metastasis-forming potential are the hallmark traits of CSCs. Given these properties, it is not surprising that CSCs have become a therapeutic target of prime interest in drug discovery. In fact, over the last few years, an enormous number of articles describing compounds endowed with anti-CSC activities have been published. In the meanwhile, several of these compounds and also approaches that are not based on the use of pharmacologically active compounds (e.g., vaccination, radiotherapy) have progressed into clinical studies. This article gives an overview of these compounds, proposes a tentative classification, and describes their biological properties and their developmental stage. Eventually, we discuss the optimal clinical setting for these compounds, the need for biomarkers allowing patient selection, the redundancy of CSC signaling pathways and the utility of employing combinations of anti-CSC compounds and the therapeutic limitations posed by the plasticity of CSCs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | | |
Collapse
|
264
|
Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, Leong HS, Norrie IC, Miller CJ, Poulogiannis G, Lauffenburger DA, Jørgensen C. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell 2016; 165:910-20. [PMID: 27087446 PMCID: PMC4868820 DOI: 10.1016/j.cell.2016.03.029] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022]
Abstract
Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Christopher J Tape
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Ling
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Maria Dimitriadi
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Kelly M McMahon
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Jonathan D Worboys
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Hui Sun Leong
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Ida C Norrie
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Crispin J Miller
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Claus Jørgensen
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
265
|
Narayanan V, Weekes CD. Molecular therapeutics in pancreas cancer. World J Gastrointest Oncol 2016; 8:366-79. [PMID: 27096032 PMCID: PMC4824715 DOI: 10.4251/wjgo.v8.i4.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease.
Collapse
|
266
|
Martello M, Remondini D, Borsi E, Santacroce B, Procacci M, Pezzi A, Dico FA, Martinelli G, Zamagni E, Tacchetti P, Pantani L, Testoni N, Marzocchi G, Rocchi S, Zannetti BA, Mancuso K, Cavo M, Terragna C. Opposite activation of the Hedgehog pathway in CD138+ plasma cells and CD138-CD19+ B cells identifies two subgroups of patients with multiple myeloma and different prognosis. Leukemia 2016; 30:1869-76. [PMID: 27074969 DOI: 10.1038/leu.2016.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Hyperactivation of the Hedgehog (Hh) pathway, which controls refueling of multiple myeloma (MM) clones, might be critical to disease recurrence. Although several studies suggest the Hh pathway is activated in CD138- immature cells, differentiated CD138+ plasma cells might also be able to self-renew by producing themselves the Hh ligands. We studied the gene expression profiles of 126 newly diagnosed MM patients analyzed in both the CD138+ plasma cell fraction and CD138-CD19+ B-cell compartment. Results demonstrated that an Hh-gene signature was able to cluster patients in two subgroups characterized by the opposite Hh pathway expression in mature plasma cells and their precursors. Strikingly, patients characterized by Hh hyperactivation in plasma cells, but not in their B cells, displayed high genomic instability and an unfavorable outcome in terms of shorter progression-free survival (hazard ratio: 1.92; 95% confidence interval: 1.19-3.07) and overall survival (hazard ratio: 2.61; 95% confidence interval: 1.26-5.38). These results suggest that the mechanisms triggered by the Hh pathway ultimately led to identify a more indolent vs a more aggressive biological and clinical subtype of MM. Therefore, patient stratification according to their molecular background might help the fine-tuning of future clinical and therapeutic studies.
Collapse
Affiliation(s)
- M Martello
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - D Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy
| | - E Borsi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B Santacroce
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Procacci
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - A Pezzi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - F A Dico
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Martinelli
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - E Zamagni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - P Tacchetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - L Pantani
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - N Testoni
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - G Marzocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - S Rocchi
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - B A Zannetti
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - K Mancuso
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - M Cavo
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| | - C Terragna
- Institute of Haematology 'L. & A. Seràgnoli', Department of Experimental Diagnostic and Specialty Medicine (DIMES), Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
267
|
Gu D, Schlotman KE, Xie J. Deciphering the role of hedgehog signaling in pancreatic cancer. J Biomed Res 2016; 30:353-360. [PMID: 27346466 PMCID: PMC5044707 DOI: 10.7555/jbr.30.20150107] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Kelly E Schlotman
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
268
|
Lim Y, Gondek L, Li L, Wang Q, Ma H, Ma H, Chang E, Huso DL, Foerster S, Marchionni L, McGovern K, Watkins DN, Peacock CD, Levis M, Smith BD, Merchant AA, Small D, Matsui W. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia. Sci Transl Med 2016; 7:291ra96. [PMID: 26062848 DOI: 10.1126/scitranslmed.aaa5731] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations resulting in constitutive kinase activity are common in acute myeloid leukemia (AML) and carry a poor prognosis. Several agents targeting FLT3 have been developed, but their limited clinical activity suggests that the inhibition of other factors contributing to the malignant phenotype is required. We examined gene expression data sets as well as primary specimens and found that the expression of GLI2, a major effector of the Hedgehog (Hh) signaling pathway, was increased in FLT3-ITD compared to wild-type FLT3 AML. To examine the functional role of the Hh pathway, we studied mice in which Flt3-ITD expression results in an indolent myeloproliferative state and found that constitutive Hh signaling accelerated the development of AML by enhancing signal transducer and activator of transcription 5 (STAT5) signaling and the proliferation of bone marrow myeloid progenitors. Furthermore, combined FLT3 and Hh pathway inhibition limited leukemic growth in vitro and in vivo, and this approach may serve as a therapeutic strategy for FLT3-ITD AML.
Collapse
Affiliation(s)
- Yiting Lim
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lukasz Gondek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Li Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qiuju Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hayley Ma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Emily Chang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David L Huso
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Foerster
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Luigi Marchionni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - David Neil Watkins
- Cancer Developmental Biology, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Craig D Peacock
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bruce Douglas Smith
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akil A Merchant
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Donald Small
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - William Matsui
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
269
|
|
270
|
Ko AH, LoConte N, Tempero MA, Walker EJ, Kelley RK, Lewis S, Chang WC, Kantoff E, Vannier MW, Catenacci DV, Venook AP, Kindler HL. A Phase I Study of FOLFIRINOX Plus IPI-926, a Hedgehog Pathway Inhibitor, for Advanced Pancreatic Adenocarcinoma. Pancreas 2016; 45:370-5. [PMID: 26390428 PMCID: PMC5908466 DOI: 10.1097/mpa.0000000000000458] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In mouse models of pancreatic cancer, IPI-926, an oral Hedgehog inhibitor, increases chemotherapy delivery by depleting tumor-associated stroma. This multicenter phase Ib study evaluated IPI-926 in combination with FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, oxaliplatin) in patients with advanced pancreatic cancer. METHODS Patients were treated with once-daily IPI-926 plus FOLFIRINOX. A 3 + 3 dose escalation design was used, with cohort expansion at the maximum tolerated dose. A subset of patients underwent perfusion computed tomography to assess changes in tumor perfusion. RESULTS The maximum tolerated dose was identified 1 dose level below standard FOLFIRINOX. Common treatment-related adverse events included liver function test abnormalities, neuropathy, nausea/vomiting, and diarrhea. Objective response rate was high (67%), and patients receiving IPI-926 maintenance showed further declines in CA19-9 levels even after FOLFIRINOX discontinuation. Treatment did not result in consistent increases in tumor perfusion. The study closed early when a separate phase II trial of IPI-926 plus gemcitabine indicated detrimental effects of this combination. CONCLUSIONS This is the first study to demonstrate the feasibility of using FOLFIRINOX as the chemotherapeutic backbone in a clinical trial design. Although robust antitumor activity and acceptable safety were observed with the addition of IPI-926 to this regimen, future development of Hedgehog inhibitors in pancreatic cancer seems unlikely.
Collapse
Affiliation(s)
- Andrew H. Ko
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Noelle LoConte
- Division of Hematology/Oncology, University of Wisconsin, Madison, WI
| | - Margaret A. Tempero
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Evan J. Walker
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - R. Kate Kelley
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Stephanie Lewis
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Emily Kantoff
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | | | | | - Alan P. Venook
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA
| | - Hedy L. Kindler
- Division of Hematology/Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
271
|
Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling. Int J Mol Sci 2016; 17:308. [PMID: 26927093 PMCID: PMC4813171 DOI: 10.3390/ijms17030308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
Abstract
The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER− cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes.
Collapse
|
272
|
Papadopoulos V, Tsapakidis K, Riobo Del Galdo NA, Papandreou CN, Del Galdo F, Anthoney A, Sakellaridis N, Dimas K, Kamposioras K. The Prognostic Significance of the Hedgehog Signaling Pathway in Colorectal Cancer. Clin Colorectal Cancer 2016; 15:116-27. [PMID: 27032873 DOI: 10.1016/j.clcc.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Despite significant advances in the management of colorectal cancer (CRC) the identification of new prognostic biomarkers continues to be a challenge. Since its initial discovery, the role of the Hedgehog (Hh) signaling pathway in carcinogenesis has been extensively studied. We herein review and comment on the prognostic significance of the Hh signaling pathway in CRC. The differential expression of Hh pathway components between malignant and nonmalignant conditions as well as correlation of Hh activation markers with various clinicopathological parameters and the effect on disease-free survival, overall survival, and disease recurrence in patients with CRC is summarized and discussed. According to the studies reviewed herein the activation of the Hh pathway seems to be correlated with adverse clinicopathological features and worse survival. However, to date study results show significant variability with regard to the effect on outcomes. Such results need to be interpreted carefully and emphasize the need for further well designed studies to characterize the actual influence of the Hh pathway in CRC prognosis.
Collapse
Affiliation(s)
| | | | - Natalia A Riobo Del Galdo
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Francesco Del Galdo
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, Leeds, United Kingdom
| | - Alan Anthoney
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom.
| |
Collapse
|
273
|
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers (Basel) 2016; 8:cancers8020022. [PMID: 26891329 PMCID: PMC4773745 DOI: 10.3390/cancers8020022] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Tadas K Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Shadi Qasem
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Michael Chan
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
274
|
Gruber W, Hutzinger M, Elmer DP, Parigger T, Sternberg C, Cegielkowski L, Zaja M, Leban J, Michel S, Hamm S, Vitt D, Aberger F. DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance. Oncotarget 2016; 7:7134-48. [PMID: 26784250 PMCID: PMC4872774 DOI: 10.18632/oncotarget.6910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds.Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Resistance, Neoplasm
- Forkhead Transcription Factors/physiology
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Smoothened Receptor/antagonists & inhibitors
- Smoothened Receptor/genetics
- Smoothened Receptor/metabolism
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Dyrk Kinases
Collapse
Affiliation(s)
- Wolfgang Gruber
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Hutzinger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Dominik Patrick Elmer
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Thomas Parigger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christina Sternberg
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Lukasz Cegielkowski
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mirko Zaja
- 4SC Discovery GmbH, Planegg-Martinsried, Germany
| | - Johann Leban
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | - Daniel Vitt
- 4SC Discovery GmbH, Planegg-Martinsried, Germany
- 4SC AG, Planegg-Martinsried, Germany
| | - Fritz Aberger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
275
|
Lichtenberger BM, Mastrogiannaki M, Watt FM. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat Commun 2016; 7:10537. [PMID: 26837596 PMCID: PMC4742837 DOI: 10.1038/ncomms10537] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. The molecular mechanisms regulating skin dermal changes are unclear. Here, the authors show that deletion of Hedgehog (Hh) in the upper dermis alters the response to epidermal Wnt signalling, which, together with changes in extracellular matrix production, influences distinct fibroblast lineages differently.
Collapse
Affiliation(s)
- Beate M Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Mastrogiannaki
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
276
|
Meerang M, Bérard K, Felley-Bosco E, Lauk O, Vrugt B, Boss A, Kenkel D, Broggini-Tenzer A, Stahel RA, Arni S, Weder W, Opitz I. Antagonizing the Hedgehog Pathway with Vismodegib Impairs Malignant Pleural Mesothelioma Growth In Vivo by Affecting Stroma. Mol Cancer Ther 2016; 15:1095-105. [PMID: 26839306 DOI: 10.1158/1535-7163.mct-15-0583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022]
Abstract
An autocrine-driven upregulation of the Hedgehog (Hh) signaling pathway has been described in malignant pleural mesothelioma (MPM), in which the ligand, desert Hh (DHH), was produced from tumor cells. However, our investigation revealed that the Hh pathway is activated in both tumor and stroma of MPM tumor specimens and an orthotopic immunocompetent rat MPM model. This was demonstrated by positive immunohistochemical staining of Glioma-associated oncogene 1 (GLI1) and Patched1 (PTCH1) in both tumor and stromal fractions. DHH was predominantly expressed in the tumor fractions. To further investigate the role of the Hh pathway in MPM stroma, we antagonized Hh signaling in the rat model of MPM using a Hh antagonist, vismodegib, (100 mg/kg orally). Daily treatment with vismodegib efficiently downregulated Hh target genes Gli1, Hedgehog Interacting Protein (Hhip), and Ptch1, and caused a significant reduction of tumor volume and tumor growth delay. Immunohistochemical analyses revealed that vismodegib treatment primarily downregulated GLI1 and HHIP in the stromal compartment along with a reduced expression of previously described fibroblast Hh-responsive genes such as Fibronectin (Fn1) and Vegfa Primary cells isolated from the rat model cultured in 3% O2 continued to express Dhh but did not respond to vismodegib in vitro However, culture supernatant from these cells stimulated Gli1, Ptch1, and Fn1 expression in mouse embryonic fibroblasts, which was suppressed by vismodegib. Our study provides new evidence regarding the role of Hh signaling in MPM stroma in the maintenance of tumor growth, emphasizing Hh signaling as a treatment target for MPM. Mol Cancer Ther; 15(5); 1095-105. ©2016 AACR.
Collapse
Affiliation(s)
- Mayura Meerang
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Karima Bérard
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Olivia Lauk
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David Kenkel
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Angela Broggini-Tenzer
- Laboratory for Molecular Radiobiology, Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Rolf A Stahel
- Clinic for Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Arni
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
277
|
Vidal MTA, Lourenço SV, Soares FA, Gurgel CA, Studart EJB, Valverde LDF, Araújo IBDO, Ramos EAG, Xavier FCDA, dos Santos JN. The sonic hedgehog signaling pathway contributes to the development of salivary gland neoplasms regardless of perineural infiltration. Tumour Biol 2016; 37:9587-601. [DOI: 10.1007/s13277-016-4841-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
|
278
|
Vlčková K, Ondrušová L, Vachtenheim J, Réda J, Dundr P, Zadinová M, Žáková P, Poučková P. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis 2016; 7:e2048. [PMID: 26775700 PMCID: PMC4816174 DOI: 10.1038/cddis.2015.389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Survivin, an important antiapoptotic protein, is expressed in tumors, whereas in normal tissues the expression of this protein is extremely low, defining a role for survivin as a cancer gene. Survivin exhibits multifunctional activity in tumor cells. However, why survivin expression is sharply and invariably restricted to tumor tissue remains unclear. Here, we identified 11 putative consensus binding sites for GLI transcription factors in the survivin promoter and characterized the promoter activity. Inhibitors of the Hedgehog/GLI pathway, cyclopamine and GANT61, decreased the promoter activity in reporter assays. ΔNGLI2 (which lacks the repressor domain) was the most potent vector in activating the survivin promoter–reporter. Moreover, GANT61, a GLI1/2 inhibitor, repressed endogenous survivin protein and mRNA expression in most cells across a large panel of tumor cell lines. Chromatin immunoprecipitation showed GLI2 binding to the survivin promoter. The ectopic GLI2-evoked expression of endogenous survivin was observed in normal human fibroblasts. GANT61 decreased survivin level in nude mice tumors, mimicking the activity of GANT61 in cultured cells. The immunohistochemistry and double immunofluorescence of human tumors revealed a correlation between the tissue regions showing high GLI2 and survivin positivity. Thus, these results demonstrated that survivin is a classical transcriptional target of GLI2, a Hedgehog pathway signaling effector. This potentially reflects the high expression of survivin in human tumor cells. As the Hedgehog pathway is upregulated in virtually all types of cancer cells, these findings substantially contribute to the explanation of uniform survivin expression in tumors as a potential target for the development of a more effective treatment of cancers through the inhibition of GLI2 to restrain survivin activity.
Collapse
Affiliation(s)
- K Vlčková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - L Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - M Zadinová
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Poučková
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
279
|
Luo HS, Zhan T, Huang XD. Relationship between Hedgehog signaling pathway and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:75-80. [DOI: 10.11569/wcjd.v24.i1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling pathway consists of ligands such as Hh, receptor (patched), transmembrane protein Smo, nuclear transcription factor Gli, and downstream target genes. This pathway plays an important role in cell differentiation, tissue development and organ formation in the embryonic stage. In recent years, the Hh signaling pathway has been reported to play an important role in the development of pancreatic cancer. It can induce differentiation, proliferation and invasion of pancreatic cancer cells. Blocking the Hh signaling pathway in pancreatic cancer cells will provide a new and effective method for the treatment of pancreatic cancer. In this review, we will summarize the composition of the Hh signaling pathway and its relationship with the development of pancreatic cancer.
Collapse
|
280
|
Hadden MK. Hedgehog and Vitamin D Signaling Pathways in Development and Disease. VITAMIN D HORMONE 2016; 100:231-53. [DOI: 10.1016/bs.vh.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
281
|
Srinath S, Iyengar AR, Mysorekar V. Sonic hedgehog in oral squamous cell carcinoma: An immunohistochemical study. J Oral Maxillofac Pathol 2016; 20:377-383. [PMID: 27721600 PMCID: PMC5051283 DOI: 10.4103/0973-029x.190906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have revealed the involvement of hedgehog (Hh) signaling component in proliferation and invasive behavior of many carcinomas. AIM This study aims to identify the expression of sonic Hh (SHH) protein of SHH pathway in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC) using SHH (H-160) (Santa Cruz, sc-9042) which could have therapeutic implication in future. MATERIALS AND METHODS A total of 250 cases comprising 50 normal oral mucosa, 50 cases of oral epithelial dysplasia, 50 well, 50 moderate and 50 poorly differentiated OSCCs were included in the study. Immunohistochemical evaluation of SHH protein expression was conducted using monoclonal antibody. Interpretation of the expression was done by immunoreactive score of Remmele and Stegner (IRS) scoring method. STATISTICAL ANALYSIS Chi-Square test was used to analyze the results. RESULTS The study showed that SHH signaling molecules are highly expressed in OSCC, and their expression was mainly in the cytoplasm of epithelial cells. CONCLUSION The SHH signaling component is associated with the pathological parameter in OSCC and oral epithelial dysplasia.
Collapse
Affiliation(s)
- Sahana Srinath
- Department of Oral Pathology, GDCRI, Bengaluru, Karnataka, India
| | - Asha R Iyengar
- Department of Oral Medicine and Radiology, DAPMRV, Bengaluru, Karnataka, India
| | | |
Collapse
|
282
|
Hettmer S, Lin MM, Tchessalova D, Tortorici SJ, Castiglioni A, Desai T, Mao J, McMahon AP, Wagers AJ. Hedgehog-driven myogenic tumors recapitulate skeletal muscle cellular heterogeneity. Exp Cell Res 2016; 340:43-52. [PMID: 26460176 PMCID: PMC4718790 DOI: 10.1016/j.yexcr.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022]
Abstract
Hedgehog (Hh) pathway activation in R26-SmoM2;CAGGS-CreER mice, which carry a tamoxifen-inducible activated Smoothened allele (SmoM2), results in numerous microscopic tumor foci in mouse skeletal muscle. These tumors exhibit a highly differentiated myogenic phenotype and resemble human fetal rhabdomyomas. This study sought to apply previously established strategies to isolate lineally distinct populations of normal mouse myofiber-associated cells in order to examine cellular heterogeneity in SmoM2 tumors. We demonstrate that established SmoM2 tumors are composed of cells expressing myogenic, adipocytic and hematopoietic lineage markers and differentiation capacity. SmoM2 tumors thus recapitulate the phenotypic and functional hetereogeneity observed in normal mouse skeletal muscle. SmoM2 tumors also contain an expanded population of PAX7+ and MyoD+ satellite-like cells with extremely low clonogenic activity. Selective activation of Hh signaling in freshly isolated muscle satellite cells enhanced terminal myogenic differentiation without stimulating proliferation. Our findings support the conclusion that SmoM2 tumors represent an aberrant skeletal muscle state and demonstrate that, similar to normal muscle, myogenic tumors contain functionally distinct cell subsets, including cells lacking myogenic differentiation potential.
Collapse
Affiliation(s)
- Simone Hettmer
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany.
| | - Michael M Lin
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Daria Tchessalova
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Sara J Tortorici
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Alessandra Castiglioni
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Tushar Desai
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
283
|
Topalovski M, Brekken RA. Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett 2015; 381:252-8. [PMID: 26742464 DOI: 10.1016/j.canlet.2015.12.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly metastatic disease that resists most current therapies. A defining characteristic of PDA is an intense fibrotic response that promotes tumor cell invasion and chemoresistance. Efforts to understand the complex relationship between the tumor and its extracellular network and to therapeutically perturb tumor-stroma interactions are ongoing. Fibronectin (FN), a provisional matrix protein abundant in PDA stroma but not normal tissues, supports metastatic spread and chemoresistance of this deadly disease. FN also supports angiogenesis, which is required for even hypovascular tumors such as PDA to develop and progress. Targeting components of the tumor stroma, such as FN, can effectively reduce tumor growth and spread while also enhancing delivery of chemotherapy. Here, we review the molecular mechanisms by which FN drives angiogenesis, metastasis and chemoresistance in PDA. In light of these new findings, we also discuss therapeutic strategies to inhibit FN signaling.
Collapse
Affiliation(s)
- Mary Topalovski
- Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
284
|
Catenacci DVT, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, Marsh R, Wallace J, Kozloff M, Rajdev L, Cohen D, Wade J, Sleckman B, Lenz HJ, Stiff P, Kumar P, Xu P, Henderson L, Takebe N, Salgia R, Wang X, Stadler WM, de Sauvage FJ, Kindler HL. Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer. J Clin Oncol 2015; 33:4284-92. [PMID: 26527777 PMCID: PMC4678179 DOI: 10.1200/jco.2015.62.8719] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Sonic hedgehog (SHH), an activating ligand of smoothened (SMO), is overexpressed in > 70% of pancreatic cancers (PCs). We investigated the impact of vismodegib, an SHH antagonist, plus gemcitabine (GV) or gemcitabine plus placebo (GP) in a multicenter phase Ib/randomized phase II trial and preclinical PC models. PATIENTS AND METHODS Patients with PC not amenable to curative therapy who had received no prior therapy for metastatic disease and had Karnofsky performance score ≥ 80 were enrolled. Patients were randomly assigned in a one-to-one ratio to GV or GP. The primary end point was progression-free-survival (PFS). Exploratory correlative studies included serial SHH serum levels and contrast perfusion computed tomography imaging. To further investigate putative biologic mechanisms of SMO inhibition, two autochthonous pancreatic cancer models (Kras(G12D); p16/p19(fl/fl); Pdx1-Cre and Kras(G12D); p53(R270H/wt); Pdx1-Cre) were studied. RESULTS No safety issues were identified in the phase Ib portion (n = 7), and the phase II study enrolled 106 evaluable patients (n = 53 in each arm). Median PFS was 4.0 and 2.5 months for GV and GP arms, respectively (95% CI, 2.5 to 5.3 and 1.9 to 3.8, respectively; adjusted hazard ratio, 0.81; 95% CI, 0.54 to 1.21; P = .30). Median overall survival (OS) was 6.9 and 6.1 months for GV and GP arms, respectively (95% CI, 5.8 to 8.0 and 5.0 to 8.0, respectively; adjusted hazard ratio, 1.04; 95% CI, 0.69 to 1.58; P = .84). Response rates were not significantly different. There were no significant associations between correlative markers and overall response rate, PFS, or OS. Preclinical trials revealed no significant differences with vismodegib in drug delivery, tumor growth rate, or OS in either model. CONCLUSION The addition of vismodegib to gemcitabine in an unselected cohort did not improve overall response rate, PFS, or OS in patients with metastatic PC. Our preclinical and clinical results revealed no statistically significant differences with respect to drug delivery or treatment efficacy using vismodegib.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Melissa R Junttila
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Theodore Karrison
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nathan Bahary
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Margit N Horiba
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sreenivasa R Nattam
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert Marsh
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James Wallace
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Kozloff
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lakshmi Rajdev
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deirdre Cohen
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James Wade
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bethany Sleckman
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Heinz-Josef Lenz
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Patrick Stiff
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Pankaj Kumar
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peng Xu
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Les Henderson
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naoko Takebe
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ravi Salgia
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xi Wang
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Walter M Stadler
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frederic J de Sauvage
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hedy L Kindler
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
285
|
Affiliation(s)
- Aiguo Tian
- Department of Developmental Biology, UT Southwestern Medical School at Dallas, TX, USA
| | - Jin Jiang
- Department of Developmental Biology, UT Southwestern Medical School at Dallas, TX, USA
| |
Collapse
|
286
|
Song L, Li ZY, Liu WP, Zhao MR. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther 2015; 16:1-7. [PMID: 25692617 DOI: 10.4161/15384047.2014.972215] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Wnt/β-catenin and Hedgehog/Gli signalings play key roles in multiple biogenesis such as embryonic development and tissue homeostasis. Dysregulations of these 2 pathways are frequently found in most cancers, particularly in colon cancer. Their crosstalk has been increasingly appreciated as an important mechanism in regulating colon cancer progression. Our studies into the link between Wnt/β-catenin and Hedgehog/Gli signalings in colon cancer revealed several possible crosstalk points and suggested potential therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Li Song
- a MOE Key Lab of Environmental Remediation and Ecosystem Health; College of Environmental and Resource Sciences; Zhejiang University ; Hangzhou , China
| | | | | | | |
Collapse
|
287
|
Lu T, Wang B, Gao Y, Dresser M, Graham RA, Jin JY. Semi-Mechanism-Based Population Pharmacokinetic Modeling of the Hedgehog Pathway Inhibitor Vismodegib. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:680-9. [PMID: 26783504 PMCID: PMC4716579 DOI: 10.1002/psp4.12039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Vismodegib, approved for the treatment of advanced basal cell carcinoma, has shown unique pharmacokinetic (PK) nonlinearity and binding to α1-acid glycoprotein (AAG) in humans. A semi-mechanism-based population pharmacokinetic (PopPK) model was developed from a meta-dataset of 225 subjects enrolled in five clinical studies to quantitatively describe the clinical PK of vismodegib and identify sources of interindividual variability. Total and unbound vismodegib were analyzed simultaneously, together with time-varying AAG data. The PK of vismodegib was adequately described by a one-compartment model with first-order absorption, first-order elimination of unbound drug, and saturable binding to AAG with fast-equilibrium. The variability of total vismodegib concentration at steady-state was predominantly explained by the range of AAG level. The impact of AAG on unbound concentration was clinically insignificant. Various approaches were evaluated for model validation. The semi-mechanism-based PopPK model described herein provided insightful information on the nonlinear PK and has been utilized for various clinical applications.
Collapse
Affiliation(s)
- T Lu
- Genentech, Inc. South San Francisco California USA
| | - B Wang
- Genentech, Inc. South San Francisco California USA
| | - Y Gao
- Quantitative Solutions, Inc. Menlo Park California USA
| | - M Dresser
- Genentech, Inc. South San Francisco California USA
| | - R A Graham
- Genentech, Inc. South San Francisco California USA
| | - J Y Jin
- Genentech, Inc. South San Francisco California USA
| |
Collapse
|
288
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
289
|
Lampichler K, Ferrer P, Vila G, Lutz MI, Wolf F, Knosp E, Wagner L, Luger A, Baumgartner-Parzer S. The role of proto-oncogene GLI1 in pituitary adenoma formation and cell survival regulation. Endocr Relat Cancer 2015. [PMID: 26219678 DOI: 10.1530/erc-15-0109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Hedgehog (Hh) pathway is an important regulator of early tissue patterning and stem cell propagation. It was found to be aberrantly activated in numerous types of human cancer and might be relevant in cancer stem cells. The identification of adult stem cells in the pituitary raised the question if tumor-initiating cells and Hh signaling are involved in pituitary adenoma formation. The present study aimed at the evaluation of Hh signaling in relation to stem cell and cell cycle markers in 30 human pituitary adenomas and in cultured murine adenoma cells. Therefore, expression levels of components of the Hh pathway, stem cell marker SOX2, cell cycle regulator tumor-protein 53 (TP53), proliferation marker Ki67 (MKI67) and superoxide dismutase 1 (SOD1) were evaluated in 30 human pituitary adenomas in comparison to control tissue. Modulation of cell function and target gene expression by the inhibition and activation of the Hh pathway were studied in murine adenoma cells. We show that transcription factor glioma-associated oncogene 1 (GLI1) is overexpressed in 87% of all pituitary adenomas. The expression of GLI1 significantly correlated with that of SOX2, TP53, MKI67 and SOD1. Inhibition of GLI1 resulted in the downregulation of the above genes and severe cell death in mouse adenoma cells. On the other hand, activation of the Hh pathway increased cell viability and target gene expression. In conclusion, our findings point toward an alternative, ligand-independent Hh pathway activation with GLI1 playing a major role in the cell survival of pituitary adenoma cells.
Collapse
Affiliation(s)
- Katharina Lampichler
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Patricio Ferrer
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Greisa Vila
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Mirjam I Lutz
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Florian Wolf
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Engelbert Knosp
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ludwig Wagner
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Anton Luger
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and MetabolismDepartment of Internal Medicine IIIClinical Institute of NeurologyDepartment of Biomedical Imaging and Image-Guided TherapyDivision of NeurosurgeryDepartment of SurgeryDivision of NephrologyDepartment of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
290
|
Mundy C, Bello A, Sgariglia F, Koyama E, Pacifici M. HhAntag, a Hedgehog Signaling Antagonist, Suppresses Chondrogenesis and Modulates Canonical and Non-Canonical BMP Signaling. J Cell Physiol 2015; 231:1033-44. [DOI: 10.1002/jcp.25192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics; Division of Orthopaedic Surgery; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | | | - Federica Sgariglia
- Translational Research Program in Pediatric Orthopaedics; Division of Orthopaedic Surgery; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics; Division of Orthopaedic Surgery; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics; Division of Orthopaedic Surgery; The Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
291
|
Justilien V, Fields AP. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res 2015; 21:505-13. [PMID: 25646180 DOI: 10.1158/1078-0432.ccr-14-0507] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy.
Collapse
Affiliation(s)
- Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida.
| |
Collapse
|
292
|
Schneider P, Miguel Bayo-Fina J, Singh R, Kumar Dhanyamraju P, Holz P, Baier A, Fendrich V, Ramaswamy A, Baumeister S, Martinez ED, Lauth M. Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1. Nat Commun 2015; 6:8023. [PMID: 26310823 PMCID: PMC4552080 DOI: 10.1038/ncomms9023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The Down syndrome-associated DYRK1A kinase has been reported as a stimulator of the developmentally important Hedgehog (Hh) pathway, but cells from Down syndrome patients paradoxically display reduced Hh signalling activity. Here we find that DYRK1A stimulates GLI transcription factor activity through phosphorylation of general nuclear localization clusters. In contrast, in vivo and in vitro experiments reveal that DYRK1A kinase can also function as an inhibitor of endogenous Hh signalling by negatively regulating ABLIM proteins, the actin cytoskeleton and the transcriptional co-activator MKL1 (MAL). As a final effector of the DYRK1A-ABLIM-actin-MKL1 sequence, we identify the MKL1 interactor Jumonji domain demethylase 1A (JMJD1A) as a novel Hh pathway component stabilizing the GLI1 protein in a demethylase-independent manner. Furthermore, a Jumonji-specific small-molecule antagonist represents a novel and powerful inhibitor of Hh signal transduction by inducing GLI1 protein degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Philipp Schneider
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Juan Miguel Bayo-Fina
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Rajeev Singh
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Philipp Holz
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Aninja Baier
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Volker Fendrich
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Annette Ramaswamy
- Department of Pathology, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Stefan Baumeister
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Elisabeth D. Martinez
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Matthias Lauth
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
293
|
Wang J, Peng Y, Liu Y, Yang J, Ding N, Tan W. Berberine, a natural compound, suppresses Hedgehog signaling pathway activity and cancer growth. BMC Cancer 2015; 15:595. [PMID: 26296751 PMCID: PMC4546096 DOI: 10.1186/s12885-015-1596-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/10/2015] [Indexed: 01/17/2023] Open
Abstract
Background Berberine (BBR), a natural alkaloid compound, is used as a non-prescription drug in China for treating diarrhea and gastroenteritis. Many studies have revealed that BBR possesses anticancer effect. However, the molecular mechanisms underlying its anticancer action is far from being fully elucidated. This study is aimed to determine the effect of BBR on the hedgehog (Hh) activity and the growth of cancers addiction to Hh activity. Methods The Hh activity was determined by dual luciferase assays and quantitative RT-PCR analyses. The growth inhibition of BBR on medulloblastoma which was obtained from ptch+/−;p53−/− mice was analyzed by 5-bromo-2-deoxyuridine (Brdu) assays and by allografting the medulloblastoma into nude mice. The data were statistically analyzed by one-way analysis of variance (ANOVA), and multiple comparison between the groups was performed using Dunnett’s method. Results In this study, we found that BBR significantly inhibited the Hh pathway activity. Meanwhile, we observed that BBR failed to affect the transcriptional factors activities provoked by tumor necrosis factor-α (TNF-α) and Prostaglandin E2 (PGE2), thus suggesting its unique property against Hh pathway activity. Further studies revealed that BBR inhibited the Hh pathway activity by potentially targeting the critical component Smoothened (Smo) and most likely shared the same binding site on Smo with cyclopamine, a classical Smo inhibitor. Finally, we demonstrated that BBR obviously suppressed the Hh-dependent medulloblastoma growth in vitro and in vivo. Conclusion Collectively, our study uncovered a novel molecular mechanism responsible for the anticancer action of BBR, thus opening the way for the usage of BBR for therapeutics of cancers addiction to aberrant Hh pathway activity.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
| | - Yuanqiu Peng
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
| | - Yuan Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, P.R. China. .,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.
| |
Collapse
|
294
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
295
|
Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2015; 7:1554-85. [PMID: 26270676 PMCID: PMC4586784 DOI: 10.3390/cancers7030851] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - Anette Szczepny
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
- UNSW Faculty of Medicine, Randwick, New South Wales 2031, Australia.
- Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia.
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
296
|
Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med 2015; 21:431-9. [PMID: 25951530 DOI: 10.1038/nm.3853] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
Much has been written about the advantages and disadvantages of various oncology model systems, with the overall finding that these models lack the predictive power required to translate preclinical efficacy into clinical activity. Despite assertions that some preclinical model systems are superior to others, no single model can suffice to inform preclinical target validation and molecule selection. This perspective provides a balanced albeit critical view of these claims of superiority and outlines a framework for the proper use of existing preclinical models for drug testing and discovery. We also highlight gaps in oncology mouse models and discuss general and pervasive model-independent shortcomings in preclinical oncology work, and we propose ways to address these issues.
Collapse
Affiliation(s)
- Stephen E Gould
- Department of Molecular Oncology at Genentech, Inc., South San Francisco, California, USA
| | - Melissa R Junttila
- Department of Molecular Oncology at Genentech, Inc., South San Francisco, California, USA
| | - Frederic J de Sauvage
- Department of Molecular Oncology at Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
297
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12:445-64. [PMID: 25850553 PMCID: PMC4520755 DOI: 10.1038/nrclinonc.2015.61] [Citation(s) in RCA: 984] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents.
Collapse
Affiliation(s)
- Naoko Takebe
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Lucio Miele
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Pamela Jo Harris
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Woondong Jeong
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Hideaki Bando
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Michael Kahn
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Sherry X. Yang
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| |
Collapse
|
298
|
Inhibition of smoothened decreases proliferation of synoviocytes in rheumatoid arthritis. Cell Mol Immunol 2015; 14:214-222. [PMID: 26189371 DOI: 10.1038/cmi.2015.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 12/16/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) contribute to synovial hyperplasia in rheumatoid arthritis (RA). Smoothened (Smo) is a key component of sonic hedgehog (Shh) signaling and contributes to tumor cell proliferation. The objective of this study was to investigate the role of Smo in RA synoviocyte proliferation. FLSs were isolated from RA synovium. Shh signaling was studied using a Smo antagonist (GDC-0449) and small interfering RNA (siRNA) targeting the Smo gene in FLSs. Cell proliferation was quantified by using kit-8 assay and cell cycle distribution and apoptosis were evaluated by flow cytometry. Cell cycle-related genes and proteins were detected by real-time PCR and western blot. FLSs treated with GDC-0449 or Smo-siRNA showed significantly decreased proliferation compared to controls (P < 0.05). Incubation with GDC-0449 or transfection with Smo-siRNA resulted in a significant increase of G1 phase cells compared to controls (P < 0.05). Cell cycle arrest was validated by the significant increase in cyclin D1 and E1 mRNA expression, decrease in cyclin-dependent kinase p21 mRNA expression in Smo-siRNA transfected cells (P < 0.05). Protein expression of cyclin D1 was also downregulated after Smo gene knockdown (P < 0.05). The results suggest that Shh signaling plays an important role in RA-FLSs proliferation in a Smo-dependent manner and may contribute to synovial hyperplasia. Targeting Shh signaling may help control joint damage in patients with RA.
Collapse
|
299
|
Cortés CR, Metzis V, Wicking C. Unmasking the ciliopathies: craniofacial defects and the primary cilium. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:637-53. [PMID: 26173831 DOI: 10.1002/wdev.199] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 12/29/2022]
Abstract
Over the past decade, the primary cilium has emerged as a pivotal sensory organelle that acts as a major signaling hub for a number of developmental signaling pathways. In that time, a vast number of proteins involved in trafficking and signaling have been linked to ciliary assembly and/or function, demonstrating the importance of this organelle during embryonic development. Given the central role of the primary cilium in regulating developmental signaling, it is not surprising that its dysfunction results in widespread defects in the embryo, leading to an expanding class of human congenital disorders known as ciliopathies. These disorders are individually rare and phenotypically variable, but together they affect virtually every vertebrate organ system. Features of ciliopathies that are often overlooked, but which are being reported with increasing frequency, are craniofacial abnormalities, ranging from subtle midline defects to full-blown orofacial clefting. The challenge moving forward is to understand the primary mechanism of disease given the link between the primary cilium and a number of developmental signaling pathways (such as hedgehog, platelet-derived growth factor, and WNT signaling) that are essential for craniofacial development. Here, we provide an overview of the diversity of craniofacial abnormalities present in the ciliopathy spectrum, and reveal those defects in common across multiple disorders. Further, we discuss the molecular defects and potential signaling perturbations underlying these anomalies. This provides insight into the mechanisms leading to ciliopathy phenotypes more generally and highlights the prevalence of widespread dysmorphologies resulting from cilia dysfunction.
Collapse
Affiliation(s)
- Claudio R Cortés
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Vicki Metzis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
300
|
Felley-Bosco E, Opitz I, Meerang M. Hedgehog Signaling in Malignant Pleural Mesothelioma. Genes (Basel) 2015; 6:500-11. [PMID: 26184317 PMCID: PMC4584313 DOI: 10.3390/genes6030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a cancer associated with exposure to asbestos fibers, which accumulate in the pleural space, damage tissue and stimulate regeneration. Hedgehog signaling is a pathway important during embryonic mesothelium development and is inactivated in adult mesothelium. The pathway is reactivated in some MPM patients with poor clinical outcome, mainly mediated by the expression of the ligands. Nevertheless, mutations in components of the pathway have been observed in a few cases. Data from different MPM animal models and primary culture suggest that both autocrine and paracrine Hedgehog signaling are important to maintain tumor growth. Drugs inhibiting the pathway at the level of the smoothened receptor (Smo) or glioma-associated protein transcription factors (Gli) have been used mostly in experimental models. For clinical development, biomarkers are necessary for the selection of patients who can benefit from Hedgehog signaling inhibition.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- University Hospital Zurich, Laboratory of Molecular Oncology, Clinic of Oncology, Haeldeliweg 4, 8044 Zürich, Switzerland.
| | - Isabelle Opitz
- University Hospital Zurich, Division of Thoracic Surgery, Raemistrasse 100, 8091 Zurich, Switzerland.
| | - Mayura Meerang
- University Hospital Zurich, Division of Thoracic Surgery, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|