251
|
Chaudhary AK, Na D, Lee EY. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs. Biotechnol Adv 2015; 33:914-30. [PMID: 26027891 DOI: 10.1016/j.biotechadv.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Due to global crises such as pollution and depletion of fossil fuels, sustainable technologies based on microbial cell-factories have been garnering great interest as an alternative to chemical factories. The development of microbial cell-factories is imperative in cutting down the overall manufacturing cost. Thus, diverse metabolic engineering strategies and engineering tools have been established to obtain a preferred genotype and phenotype displaying superior productivity. However, these tools are limited to only a handful of genes with permanent modification of a genome and significant labor costs, and this is one of the bottlenecks associated with biofactory construction. Therefore, a groundbreaking rapid and high-throughput engineering tool is needed for efficient construction of microbial cell-factories. During the last decade, copious small noncoding RNAs (ncRNAs) have been discovered in bacteria. These are involved in substantial regulatory roles like transcriptional and post-transcriptional gene regulation by modulating mRNA elongation, stability, or translational efficiency. Because of their vulnerability, ncRNAs can be used as another layer of conditional control over gene expression without modifying chromosomal sequences, and hence would be a promising high-throughput tool for metabolic engineering. Here, we review successful design principles and applications of ncRNAs for high-throughput metabolic engineering or physiological studies of diverse industrially important microorganisms.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
252
|
Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:364-71. [PMID: 25907574 DOI: 10.1016/j.jbiosc.2015.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/12/2015] [Accepted: 02/24/2015] [Indexed: 01/01/2023]
Abstract
Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production.
Collapse
|
253
|
Jiang W, Jiang Y, Bentley GJ, Liu D, Xiao Y, Zhang F. Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH). Biotechnol Bioeng 2015; 112:1613-22. [DOI: 10.1002/bit.25583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/09/2015] [Accepted: 02/23/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Wen Jiang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Yanfang Jiang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Gayle J. Bentley
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| | - Di Liu
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| | - Yi Xiao
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
| | - Fuzhong Zhang
- Department of Energy, Environmental, and Chemical Engineering; Washington University in St. Louis; 1 Brookings Drive, Saint Louis Missouri 63130
- Division of Biological & Biomedical Sciences; Washington University in St. Louis; Saint Louis Missouri
| |
Collapse
|
254
|
Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 2015; 10:e0122217. [PMID: 25837679 PMCID: PMC4383598 DOI: 10.1371/journal.pone.0122217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
Aldehyde deformylating oxygenase (AD) is a key enzyme for alkane biosynthesis in cyanobacteria, and it can be used as a catalyst for alkane production in vitro and in vivo. However, three free Cys residues in AD may impair its catalytic activity by undesired disulfide bond formation and oxidation. To develop Cys-deficient mutants of AD, we examined the roles of the Cys residues in the structure, stability, and alkane producing activity of AD from Nostoc punctiforme PCC 73102 by systematic Cys-to-Ala/Ser mutagenesis. The C71A/S mutations reduced the hydrocarbon producing activity of AD and facilitated the formation of a dimer, indicating that the conserved Cys71, which is located in close proximity to the substrate-binding site, plays crucial roles in maintaining the activity, structure, and stability of AD. On the other hand, mutations at Cys107 and Cys117 did not affect the hydrocarbon producing activity of AD. Therefore, we propose that the C107A/C117A double mutant is preferable to wild type AD for alkane production and that the double mutant may be used as a pseudo-wild type protein for further improvement of the alkane producing activity of AD.
Collapse
|
255
|
Yuan J, Ching CB. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Fact 2015; 14:38. [PMID: 25889168 PMCID: PMC4374593 DOI: 10.1186/s12934-015-0220-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background To achieve high-level production of non-native isoprenoid products, it requires the metabolic flux to be diverted from the production of sterols to the heterologous metabolic reactions. However, there are limited tools for restricting metabolic flux towards ergosterol synthesis. In the present study, we explored dynamic control of ERG9 expression using different ergosterol-responsive promoters to improve the production of non-native isoprenoids. Results Several ergosterol-responsive promoters were identified using quantitative real-time PCR (qRT-PCR) analysis in an engineered strain with relatively high mevalonate pathway activity. We found mRNA levels for ERG11, ERG2 and ERG3 expression were significantly lower in the engineered strain over the reference strain BY4742, indicating these genes are transcriptionally down-regulated when ergosterol is in excess. Further replacement of the native ERG9 promoter with these ergosterol-responsive promoters revealed that all engineered strains improved amorpha-4,11-diene by 2 ~ 5-fold over the reference strain with ERG9 under its native promoter. The best engineered strain with ERG9 under the control of PERG1 produced amorpha-4,11-diene to a titer around 350 mg/L after 96 h cultivation in shake-flasks. Conclusions We envision dynamic control at the branching step using feedback regulation at transcriptional level could serve as a generalized approach for redirecting the metabolic flux towards product-of-interest.
Collapse
Affiliation(s)
- Jifeng Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore. .,Synthetic Biology Research Consortium, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| | - Chi-Bun Ching
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore. .,Synthetic Biology Research Consortium, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore.
| |
Collapse
|
256
|
Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 2015; 29:113-123. [PMID: 25773521 DOI: 10.1016/j.ymben.2015.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 11/21/2022]
Abstract
Engineered microbes offer the opportunity to design and implement artificial molecular pathways for renewable production of tailored chemical commodities. Targeted biosynthesis of odd-chain fatty alcohols is very challenging in microbe, due to the specificity of fatty acids synthase for two-carbon unit elongation. Here, we developed a novel strategy to directly tailor carbon number in fatty aldehydes formation step by incorporating α-dioxygenase (αDOX) from Oryza sativa (rice) into Escherichia coli αDOX oxidizes Cn fatty acids (even-chain) to form Cn-1 fatty aldehydes (odd-chain). Through combining αDOX with fatty acyl-acyl carrier protein (-ACP) thioesterase (TE) and aldehyde reductase (AHR), the medium odd-chain fatty alcohols profile (C11, C13, C15) was firstly established in E. coli. Also, medium even-chain alkanes (C12, C14) were obtained by substitution of AHR to aldehyde decarbonylase (AD). The titer of odd-chain fatty alcohols was improved from 7.4mg/L to 101.5mg/L in tube cultivation by means of fine-tuning endogenous fatty acyl-ACP TE (TesA'), αDOX, AHRs and the genes involved in fatty acids metabolism pathway. Through high cell density fed-batch fermentation, a titer of 1.95g/L odd-chain fatty alcohols was achieved, which was the highest reported titer in E. coli. Our system has greatly expanded the current microbial fatty alcohols profile that provides a new brand solution for producing complex and desired molecules in microbes.
Collapse
|
257
|
Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H, Wang M. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb Cell Fact 2015; 14:16. [PMID: 25889648 PMCID: PMC4324788 DOI: 10.1186/s12934-015-0199-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
Early trials have demonstrated great potential for the use of duckweed (family Lemnaceae) as the next generation of energy plants for the production of biofuels. Achieving this technological advance demands research to develop novel bioengineering microorganisms that can ferment duckweed feedstock to produce higher alcohols. In this study, we used relevant genes to transfer five metabolic pathways of isoleucine, leucine and valine from the yeast Saccharomyces cerevisiae into the bioengineered microorganism Corynebacterium crenatum. Experimental results showed that the bioengineered strain was able to produce 1026.61 mg/L of 2-methyl-1-butanol by fermenting glucose, compared to 981.79 mg/L from the acid hydrolysates of duckweed. The highest isobutanol yields achieved were 1264.63 mg/L from glucose and 1154.83 mg/L from duckweed, and the corresponding highest yields of 3-methyl-1-butanol were 748.35 and 684.79 mg/L. Our findings demonstrate the feasibility of using bioengineered C. crenatum as a platform to construct a bacterial strain that is capable of producing higher alcohols. We have also shown the promise of using duckweed as the basis for developing higher alcohols, illustrating that this group of plants represents an ideal fermentation substrate that can be considered the next generation of alternative energy feedstocks.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Juan Jiang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Qiuli Lu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Zhao Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Tian Xie
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| | - Hai Zhao
- Bioenergy Laboratory, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, PR China.
| | - Maolin Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, PR China.
| |
Collapse
|
258
|
Wang X, Ort DR, Yuan JS. Photosynthetic terpene hydrocarbon production for fuels and chemicals. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:137-46. [PMID: 25626473 DOI: 10.1111/pbi.12343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 05/19/2023]
Abstract
Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA; Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA; Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
259
|
Gerhardt EC, Rodrigues TE, Müller-Santos M, Pedrosa FO, Souza EM, Forchhammer K, Huergo LF. The Bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase. Mol Microbiol 2015; 95:1025-35. [DOI: 10.1111/mmi.12912] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Edileusa C.M. Gerhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen; Auf der Morgenstelle 28 Tübingen 72076 Germany
| | - Thiago E. Rodrigues
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Marcelo Müller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Fabio O. Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Emanuel M. Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen; Auf der Morgenstelle 28 Tübingen 72076 Germany
| | - Luciano F. Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Paraná; CEP 81531-990 CP 19046 Curitiba PR Brazil
| |
Collapse
|
260
|
Buijs NA, Zhou YJ, Siewers V, Nielsen J. Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 2015; 112:1275-9. [PMID: 25545362 DOI: 10.1002/bit.25522] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022]
Abstract
In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.
Collapse
Affiliation(s)
- Nicolaas A Buijs
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | | | | | | |
Collapse
|
261
|
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015; 28:223-239. [PMID: 25576747 DOI: 10.1016/j.ymben.2014.12.007] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Abstract
Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples.
Collapse
Affiliation(s)
- Sol Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea
| | - Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 305-701, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Hørsholm, Denmark.
| |
Collapse
|
262
|
Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 2015; 33:377-83. [PMID: 25558867 PMCID: PMC4867547 DOI: 10.1038/nbt.3095] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023]
Abstract
Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kangjian Qiao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven Edgar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
263
|
Lim HG, Lim JH, Jung GY. Modular design of metabolic network for robust production of n-butanol from galactose-glucose mixtures. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:137. [PMID: 26347006 PMCID: PMC4559943 DOI: 10.1186/s13068-015-0327-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/25/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. RESULTS In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. CONCLUSIONS Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our knowledge, this study demonstrated the first and highest n-butanol production from galactose in E. coli. Moreover, robust production of n-butanol with sugar mixtures with variable composition would facilitate the economic feasibility of the microbial process using a mixture of sugars from cheap biomass in the near future.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- />Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| | - Jae Hyung Lim
- />School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| | - Gyoo Yeol Jung
- />Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
- />School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk Korea
| |
Collapse
|
264
|
Ling H, Pratomo Juwono NK, Teo WS, Liu R, Leong SSJ, Chang MW. Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:231. [PMID: 26719765 PMCID: PMC4696261 DOI: 10.1186/s13068-015-0411-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/04/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels. RESULTS To increase alkane tolerance in S. cerevisiae, we sought to exploit the pleiotropic drug resistance (Pdr) transcription factors Pdr1p and Pdr3p, which are master regulators of genes with pleiotropic drug resistance elements (PDREs)-containing upstream sequences. Wild-type and site-mutated Pdr1p and Pdr3p were expressed in S. cerevisiae BY4741 pdr1Δ pdr3Δ (BYL13). The point mutations of PDR1 (F815S) and PDR3 (Y276H) in BYL13 resulted in the highest tolerance to C10 alkane, and the expression of wild-type PDR3 in BYL13 led to the highest tolerance to C11 alkane. To identify and verify the correlation between the Pdr transcription factors and tolerance improvement, we analyzed the expression patterns of genes regulated by the Pdr transcription factors in the most tolerant strains against C10 and C11 alkanes. Quantitative PCR results showed that the Pdr transcription factors differentially regulated genes associated with multi-drug resistance, stress responses, and membrane modifications, suggesting different extents of intracellular alkane levels, reactive oxygen species (ROS) production and membrane integrity. We further showed that (i) the expression of Pdr1mt1 + Pdr3mt reduced intracellular C10 alkane by 67 % and ROS by 53 %, and significantly alleviated membrane damage; and (ii) the expression of the Pdr3wt reduced intracellular C11 alkane by 72 % and ROS by 21 %. Alkane transport assays also revealed that the reduction of alkane accumulation was due to higher export (C10 and C11 alkanes) and lower import (C11 alkane). CONCLUSIONS We improved yeast's tolerance to alkane biofuels by modulating the expression of the wild-type and site-mutated Pdr1p and Pdr3p, and extensively identified the correlation between Pdr transcription factors and tolerance improvement by analyzing gene patterns, alkane transport, ROS, and membrane integrity. These findings provide valuable insights into manipulating transcription factors in yeast for improved alkane tolerance and productivity.
Collapse
Affiliation(s)
- Hua Ling
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Nina Kurniasih Pratomo Juwono
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Wei Suong Teo
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Ruirui Liu
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Susanna Su Jan Leong
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
- />Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Matthew Wook Chang
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| |
Collapse
|
265
|
Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
266
|
Comba S, Sabatini M, Menendez-Bravo S, Arabolaza A, Gramajo H. Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:172. [PMID: 25593590 PMCID: PMC4295399 DOI: 10.1186/s13068-014-0172-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations. RESULTS The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lppβ genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L(-1) at the end of the process. CONCLUSIONS This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
Collapse
Affiliation(s)
- Santiago Comba
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Martín Sabatini
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Simón Menendez-Bravo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Ana Arabolaza
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - Hugo Gramajo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| |
Collapse
|
267
|
Yu AQ, Pratomo Juwono NK, Leong SSJ, Chang MW. Production of Fatty Acid-derived valuable chemicals in synthetic microbes. Front Bioeng Biotechnol 2014; 2:78. [PMID: 25566540 PMCID: PMC4275033 DOI: 10.3389/fbioe.2014.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022] Open
Abstract
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.
Collapse
Affiliation(s)
- Ai-Qun Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| | - Nina Kurniasih Pratomo Juwono
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| | - Susanna Su Jan Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore ; Singapore Institute of Technology , Singapore , Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore ; Synthetic Biology Research Program, National University of Singapore , Singapore , Singapore
| |
Collapse
|
268
|
Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, Deng Z, Liu T. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng 2014; 28:82-90. [PMID: 25536488 DOI: 10.1016/j.ymben.2014.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Abstract
Alkanes and alkenes are ideal biofuels, due to their high energy content and ability to be safely transported. To date, fatty acid-derived pathways for alkane and alkene bioproduction have been thoroughly explored. In this study, we engineered the pathway of the iterative Type I polyketide synthase (PKS) SgcE with the cognate thioesterase (TE) SgcE10 in Escherichia coli, with the goal of overproducing pentadecaheptaene (PDH) followed by its hydrogenation to pentadecane (PD). Based on initial in vitro titration assays, we learned that PDH production is strongly dependent on the SgcE10:SgcE ratio. Thus, we engineered a high-yield E. coli strain by fine-tuning SgcE10 expression via synthetic promoters. We analyzed engineered E. coli strains using a modified multiple reactions monitoring mass spectrometry (MRM-MS)-based targeted proteomic approach, using a chimeric SgcE10 and SgcE fusion construct to gain insight into expression levels of the two proteins. Lastly, through fed-batch fermentation followed by flow chemical hydrogenation, we obtained a PD yield of nearly 140mg/L in single-alkane form. Thus, we not only employed a metabolic engineering approach to the iterative polyketide pathway, we highlighted the potential of PKS shunt products to play a role in the production of single-form and high-value chemicals.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kaiyue Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; J1 Biotech, Co. Ltd., Wuhan 430075, China
| | - Yongbo Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Lei Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Erting Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
269
|
Rahman Z, Sung BH, Yi JY, Bui LM, Lee JH, Kim SC. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J Biotechnol 2014; 192 Pt A:187-91. [DOI: 10.1016/j.jbiotec.2014.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
|
270
|
Pertusi DA, Stine AE, Broadbelt LJ, Tyo KEJ. Efficient searching and annotation of metabolic networks using chemical similarity. ACTA ACUST UNITED AC 2014; 31:1016-24. [PMID: 25417203 DOI: 10.1093/bioinformatics/btu760] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/11/2014] [Indexed: 11/14/2022]
Abstract
MOTIVATION The urgent need for efficient and sustainable biological production of fuels and high-value chemicals has elicited a wave of in silico techniques for identifying promising novel pathways to these compounds in large putative metabolic networks. To date, these approaches have primarily used general graph search algorithms, which are prohibitively slow as putative metabolic networks may exceed 1 million compounds. To alleviate this limitation, we report two methods--SimIndex (SI) and SimZyme--which use chemical similarity of 2D chemical fingerprints to efficiently navigate large metabolic networks and propose enzymatic connections between the constituent nodes. We also report a Byers-Waterman type pathway search algorithm for further paring down pertinent networks. RESULTS Benchmarking tests run with SI show it can reduce the number of nodes visited in searching a putative network by 100-fold with a computational time improvement of up to 10(5)-fold. Subsequent Byers-Waterman search application further reduces the number of nodes searched by up to 100-fold, while SimZyme demonstrates ∼ 90% accuracy in matching query substrates with enzymes. Using these modules, we have designed and annotated an alternative to the methylerythritol phosphate pathway to produce isopentenyl pyrophosphate with more favorable thermodynamics than the native pathway. These algorithms will have a significant impact on our ability to use large metabolic networks that lack annotation of promiscuous reactions. AVAILABILITY AND IMPLEMENTATION Python files will be available for download at http://tyolab.northwestern.edu/tools/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dante A Pertusi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Andrew E Stine
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
271
|
Ledesma-Amaro R. Microbial oils: A customizable feedstock through metabolic engineering. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rodrigo Ledesma-Amaro
- Departamento de Microbiología y Genética, Metabolic Engineering Group; Universidad de Salamanca; Salamanca Spain
| |
Collapse
|
272
|
Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W. Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid. Angew Chem Int Ed Engl 2014; 53:14153-7. [PMID: 25366462 DOI: 10.1002/anie.201409227] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 12/29/2022]
Abstract
The combination of two cofactor self-sufficient biocatalytic cascade modules allowed the successful transformation of cyclohexanol into the nylon-6 monomer 6-aminohexanoic acid at the expense of only oxygen and ammonia. A hitherto unprecedented carboxylic acid capping strategy was introduced to minimize the formation of the dead-end intermediate 6-hydroxyhexanoic acid. For this purpose, the precursor ε-caprolactone was converted in aqueous medium in the presence of methanol into the corresponding methyl ester instead of the acid. Hence, it was shown for the first time that esterases--specifically horse liver esterase--can perform the selective ring-opening of ε-caprolactone with a clear preference for methanol over water as the nucleophile.
Collapse
Affiliation(s)
- Johann H Sattler
- Institut für Chemie, Organische und Bioorganische Chemie, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria); Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz (Austria)
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Pei G, Chen L, Wang J, Qiao J, Zhang W. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803. Front Bioeng Biotechnol 2014; 2:48. [PMID: 25405149 PMCID: PMC4217553 DOI: 10.3389/fbioe.2014.00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 12/04/2022] Open
Abstract
Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap in the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.
Collapse
Affiliation(s)
- Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Jianjun Qiao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University , Tianjin , China ; Key Laboratory of Systems Bioengineering, Ministry of Education of China , Tianjin , China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin , China
| |
Collapse
|
274
|
Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W. Introducing an In Situ Capping Strategy in Systems Biocatalysis To Access 6-Aminohexanoic acid. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
275
|
Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol 2014; 42:437-51. [PMID: 25306882 DOI: 10.1007/s10295-014-1518-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
Abstract
Fatty acids or their activated forms, fatty acyl-CoAs and fatty acyl-ACPs, are important precursors to synthesize a wide variety of fuels and chemicals, including but not limited to free fatty acids (FFAs), fatty alcohols (FALs), fatty acid ethyl esters (FAEEs), and alkanes. However, Saccharomyces cerevisiae, an important cell factory, does not naturally accumulate fatty acids in large quantities. Therefore, metabolic engineering strategies were carried out to increase the glycolytic fluxes to fatty acid biosynthesis in yeast, specifically to enhance the supply of precursors, eliminate competing pathways, and bypass the host regulatory network. This review will focus on the genetic manipulation of both structural and regulatory genes in each step for fatty acids overproduction in S. cerevisiae, including from sugar to acetyl-CoA, from acetyl-CoA to malonyl-CoA, and from malonyl-CoA to fatty acyl-CoAs. The downstream pathways for the conversion of fatty acyl-CoAs to the desired products will also be discussed.
Collapse
|
276
|
Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol 2014; 29:99-106. [DOI: 10.1016/j.copbio.2014.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/01/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
277
|
Ninh PH, Honda K, Sakai T, Okano K, Ohtake H. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol Bioeng 2014; 112:189-96. [PMID: 25065559 DOI: 10.1002/bit.25338] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022]
Abstract
In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.
Collapse
Affiliation(s)
- Pham Huynh Ninh
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
278
|
Overproduction of AcrR increases organic solvent tolerance mediated by modulation of SoxS regulon in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:8763-73. [DOI: 10.1007/s00253-014-6024-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
|
279
|
Kallio P, Pásztor A, Thiel K, Akhtar MK, Jones PR. An engineered pathway for the biosynthesis of renewable propane. Nat Commun 2014; 5:4731. [PMID: 25181600 PMCID: PMC4164768 DOI: 10.1038/ncomms5731] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/17/2014] [Indexed: 12/24/2022] Open
Abstract
The deployment of next-generation renewable biofuels can be enhanced by improving their compatibility with the current infrastructure for transportation, storage and utilization. Propane, the bulk component of liquid petroleum gas, is an appealing target as it already has a global market. In addition, it is a gas under standard conditions, but can easily be liquefied. This allows the fuel to immediately separate from the biocatalytic process after synthesis, yet does not preclude energy-dense storage as a liquid. Here we report, for the first time, a synthetic metabolic pathway for producing renewable propane. The pathway is based on a thioesterase specific for butyryl-acyl carrier protein (ACP), which allows native fatty acid biosynthesis of the Escherichia coli host to be redirected towards a synthetic alkane pathway. Propane biosynthesis is markedly stimulated by the introduction of an electron-donating module, optimizing the balance of O2 supply and removal of native aldehyde reductases. Propane is the main component of liquid petroleum gas and has a wide variety of commercial applications. Here, the authors engineer a synthetic metabolic pathway in E. coli, and demonstrate for the first time the renewable production of propane.
Collapse
Affiliation(s)
- Pauli Kallio
- 1] Department of Biochemistry, University of Turku, Tykistökatu 6B 4krs, 20520 Turku, Finland [2]
| | - András Pásztor
- 1] Department of Biochemistry, University of Turku, Tykistökatu 6B 4krs, 20520 Turku, Finland [2]
| | - Kati Thiel
- Department of Biochemistry, University of Turku, Tykistökatu 6B 4krs, 20520 Turku, Finland
| | - M Kalim Akhtar
- 1] Department of Biochemistry, University of Turku, Tykistökatu 6B 4krs, 20520 Turku, Finland [2]
| | - Patrik R Jones
- 1] Department of Biochemistry, University of Turku, Tykistökatu 6B 4krs, 20520 Turku, Finland [2] Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
280
|
Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2014; 2:32. [PMID: 25225637 PMCID: PMC4150446 DOI: 10.3389/fbioe.2014.00032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Abstract
Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.
Collapse
Affiliation(s)
- Yongjin J. Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Nicolaas A. Buijs
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
281
|
Sherkhanov S, Korman TP, Bowie JU. Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 2014; 25:1-7. [DOI: 10.1016/j.ymben.2014.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 12/17/2022]
|
282
|
Bormann S, Baer ZC, Sreekumar S, Kuchenreuther JM, Dean Toste F, Blanch HW, Clark DS. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metab Eng 2014; 25:124-30. [DOI: 10.1016/j.ymben.2014.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
|
283
|
Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 2014; 25:227-37. [PMID: 25108218 DOI: 10.1016/j.ymben.2014.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.
Collapse
|
284
|
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 2014; 111:11299-304. [PMID: 25049420 DOI: 10.1073/pnas.1406401111] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA-derived compounds.
Collapse
|
285
|
Hollinshead W, He L, Tang YJ. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Front Microbiol 2014; 5:344. [PMID: 25071754 PMCID: PMC4088188 DOI: 10.3389/fmicb.2014.00344] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and 13C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production.
Collapse
Affiliation(s)
- Whitney Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | - Lian He
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| |
Collapse
|
286
|
Yu JL, Xia XX, Zhong JJ, Qian ZG. Direct biosynthesis of adipic acid from a synthetic pathway in recombinantEscherichia coli. Biotechnol Bioeng 2014; 111:2580-6. [DOI: 10.1002/bit.25293] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Jia-Le Yu
- State Key Laboratory of Bioreactor Engineering; School of Biotechnology, East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University; 800 Dong Chuan Road Shanghai 200240 China
| | - Jian-Jiang Zhong
- State Key Laboratory of Bioreactor Engineering; School of Biotechnology, East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University; 800 Dong Chuan Road Shanghai 200240 China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University; 800 Dong Chuan Road Shanghai 200240 China
| |
Collapse
|
287
|
Kim S, Lee YC, Cho DH, Lee HU, Huh YS, Kim GJ, Kim HS. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS One 2014; 9:e101018. [PMID: 24988123 PMCID: PMC4079685 DOI: 10.1371/journal.pone.0101018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 06/02/2014] [Indexed: 12/04/2022] Open
Abstract
Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH2)3]8Si8Mg6O12(OH)4), for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×102 transformants/µg DNA), second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods.
Collapse
Affiliation(s)
- Sora Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Republic of Korea
- * E-mail: (YCL); (HSK)
| | - Dae-Hyun Cho
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyun Uk Lee
- Division of Materials Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwang-ju, Republic of Korea
| | - Hee-Sik Kim
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- * E-mail: (YCL); (HSK)
| |
Collapse
|
288
|
Menendez-Bravo S, Comba S, Sabatini M, Arabolaza A, Gramajo H. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli. Metab Eng 2014; 24:97-106. [DOI: 10.1016/j.ymben.2014.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 01/25/2023]
|
289
|
Abstract
Engineering the microbial transformation of lignocellulosic biomass is essential to developing modern biorefining processes that alleviate reliance on petroleum-derived energy and chemicals. Many current bioprocess streams depend on the genetic tractability of Escherichia coli with a primary emphasis on engineering cellulose/hemicellulose catabolism, small molecule production, and resistance to product inhibition. Conversely, bioprocess streams for lignin transformation remain embryonic, with relatively few environmental strains or enzymes implicated. Here we develop a biosensor responsive to monoaromatic lignin transformation products compatible with functional screening in E. coli. We use this biosensor to retrieve metagenomic scaffolds sourced from coal bed bacterial communities conferring an array of lignin transformation phenotypes that synergize in combination. Transposon mutagenesis and comparative sequence analysis of active clones identified genes encoding six functional classes mediating lignin transformation phenotypes that appear to be rearrayed in nature via horizontal gene transfer. Lignin transformation activity was then demonstrated for one of the predicted gene products encoding a multicopper oxidase to validate the screen. These results illuminate cellular and community-wide networks acting on aromatic polymers and expand the toolkit for engineering recombinant lignin transformation based on ecological design principles.
Collapse
|
290
|
Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. Metab Eng 2014; 25:63-71. [PMID: 24972370 DOI: 10.1016/j.ymben.2014.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/06/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
Metabolic pathways in cells must be sufficiently robust to tolerate fluctuations in expression levels and changes in environmental conditions. Perturbations in expression levels may lead to system failure due to the disappearance of a stable steady state. Increasing evidence has suggested that biological networks have evolved such that they are intrinsically robust in their network structure. In this article, we presented Ensemble Modeling for Robustness Analysis (EMRA), which combines a continuation method with the Ensemble Modeling approach, for investigating the robustness issue of non-native pathways. EMRA investigates a large ensemble of reference models with different parameters, and determines the effects of parameter drifting until a bifurcation point, beyond which a stable steady state disappears and system failure occurs. A pathway is considered to have high bifurcational robustness if the probability of system failure is low in the ensemble. To demonstrate the utility of EMRA, we investigate the bifurcational robustness of two synthetic central metabolic pathways that achieve carbon conservation: non-oxidative glycolysis and reverse glyoxylate cycle. With EMRA, we determined the probability of system failure of each design and demonstrated that alternative designs of these pathways indeed display varying degrees of bifurcational robustness. Furthermore, we demonstrated that target selection for flux improvement should consider the trade-offs between robustness and performance.
Collapse
Affiliation(s)
- Yun Lee
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Jimmy G Lafontaine Rivera
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, 611 Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
291
|
Janssen PJD, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G. Photosynthesis at the forefront of a sustainable life. Front Chem 2014; 2:36. [PMID: 24971306 PMCID: PMC4054791 DOI: 10.3389/fchem.2014.00036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/25/2014] [Indexed: 11/13/2022] Open
Abstract
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
Collapse
Affiliation(s)
- Paul J. D. Janssen
- Molecular and Cellular Biology - Unit of Microbiology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK•CENMol, Belgium
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-CES, Ruhr-Universität BochumBochum, Germany
| | - Cecilia Bartolucci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Katia Buonasera
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Raoul N. Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University AmsterdamAmsterdam, Netherlands
| | | | - Giuseppina Rea
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| |
Collapse
|
292
|
Woo HM, Park JB. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. J Biotechnol 2014; 180:43-51. [DOI: 10.1016/j.jbiotec.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/08/2014] [Accepted: 03/03/2014] [Indexed: 01/21/2023]
|
293
|
Zhuang Q, Wang Q, Liang Q, Qi Q. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 2014; 24:78-86. [PMID: 24836703 DOI: 10.1016/j.ymben.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/17/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10wt% of cell dry weight scl-mcl PHA copolymers, of which 21.18mol% was 3-hydroxybutyrate and 78.82mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.
Collapse
Affiliation(s)
- Qianqian Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
294
|
Thompson B, Moon TS, Nielsen DR. 'Hybrid' processing strategies for expanding and improving the synthesis of renewable bioproducts. Curr Opin Biotechnol 2014; 30:17-23. [PMID: 24794630 DOI: 10.1016/j.copbio.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
The versatile functionality of microbial biocatalysts offers a promising solution to the growing need to replace conventional, petroleum-derived fuels, chemicals, and materials with sustainable alternatives from renewable biomass. Whereas metabolic pathway engineering and strain optimization have greatly expanded the range of attainable bioproducts, it is by coupling microbial biosynthesis with traditional chemical conversions that the diversity of products that can ultimately be derived from biomass is truly beginning to reach its full potential. As will be the focus of this short review, such 'hybrid' strategies are now facilitating the generation of new and useful value-added bioproducts from renewable sources, the likes of which have previously been unattainable via biological routes alone.
Collapse
Affiliation(s)
- Brian Thompson
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, United States
| | - Tae Seok Moon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, United States
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, United States.
| |
Collapse
|
295
|
Cloning, characterization, and expression analysis of acyl–acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis). Gene 2014; 542:16-22. [DOI: 10.1016/j.gene.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
|
296
|
Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl Microbiol Biotechnol 2014; 98:6739-50. [PMID: 24769906 DOI: 10.1007/s00253-014-5758-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Production of biofuels derived from microbial fatty acids has attracted great attention in recent years owing to their potential to replace petroleum-derived fuels. To be cost competitive with current petroleum fuel, flux toward the direct precursor fatty acids needs to be enhanced to approach high yields. Herein, fatty acyl-CoA metabolism in Saccharomyces cerevisiae was engineered to accumulate more free fatty acids (FFA). For this purpose, firstly, haploid S. cerevisiae double deletion strain △faa1△faa4 was constructed, in which the genes FAA1 and FAA4 encoding two acyl-CoA synthetases were deleted. Then the truncated version of acyl-CoA thioesterase ACOT5 (Acot5s) encoding Mus musculus peroxisomal acyl-CoA thioesterase 5 was expressed in the cytoplasm of the strain △faa1△faa4. The resulting strain △faa1△faa4 [Acot5s] accumulated more extracellular FFA with higher unsaturated fatty acid (UFA) ratio as compared to the wild-type strain and double deletion strain △faa1△faa4. The extracellular total fatty acids (TFA) in the strain △faa1△faa4 [Acot5s] increased to 6.43-fold as compared to the wild-type strain during the stationary phase. UFA accounted for 42 % of TFA in the strain △faa1△faa4 [Acot5s], while no UFA was detected in the wild-type strain. In addition, the expression of Acot5s in △faa1△faa4 restored the growth, which indicates that FFA may not be the reason for growth inhibition in the strain △faa1△faa4. RT-PCR results demonstrated that the de-repression of fatty acid synthesis genes led to the increase of extracellular fatty acids. The study presented here showed that through control of the acyl-CoA metabolism by deleting acyl-CoA synthetase and expressing thioesterase, more FFA could be produced in S. cerevisiae, demonstrating great potential for exploitation in the platform of microbial fatty acid-derived biofuels.
Collapse
|
297
|
Li X, Guo D, Cheng Y, Zhu F, Deng Z, Liu T. Overproduction of fatty acids in engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2014; 111:1841-52. [DOI: 10.1002/bit.25239] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Daoyi Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Yongbo Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Fayin Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan China
| |
Collapse
|
298
|
|
299
|
|
300
|
Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis. Microb Cell Fact 2014; 13:42. [PMID: 24642094 PMCID: PMC3994946 DOI: 10.1186/1475-2859-13-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields - the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route - in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, 13C-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P)H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that 13C-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories.
Collapse
|