251
|
Meikle WG, Adamczyk JJ, Weiss M, Gregorc A, Johnson DR, Stewart SD, Zawislak J, Carroll MJ, Lorenz GM. Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S. PLoS One 2016; 11:e0168603. [PMID: 28030617 PMCID: PMC5193417 DOI: 10.1371/journal.pone.0168603] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/02/2016] [Indexed: 12/02/2022] Open
Abstract
Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.
Collapse
Affiliation(s)
- William G. Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ United States of America
- * E-mail:
| | - John J. Adamczyk
- Southern Horticultural Laboratory, USDA-ARS, Poplarville, MS United States of America
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ United States of America
| | - Ales Gregorc
- Mississippi State University, South MS Branch Experiment Station, Poplarville, MS United States of America
| | - Don R. Johnson
- University of Arkansas Division of Agriculture Cooperative Extension Service, Lonoke Res. & Ext. Ctr., Lonoke, AR United States of America
| | - Scott D. Stewart
- The University of Tennessee, West Tennessee Research & Education Center, 605 Airways Blvd, Jackson, TN United States of America
| | - Jon Zawislak
- University of Arkansas Division of Agriculture Cooperative Extension Service, 2301 South University, Little Rock, AR United States of America
| | - Mark J. Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ United States of America
| | - Gus M. Lorenz
- University of Arkansas Division of Agriculture Cooperative Extension Service, Lonoke Res. & Ext. Ctr., Lonoke, AR United States of America
| |
Collapse
|
252
|
Piiroinen S, Goulson D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc Biol Sci 2016; 283:rspb.2016.0246. [PMID: 27053744 DOI: 10.1098/rspb.2016.0246] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees.
Collapse
Affiliation(s)
- Saija Piiroinen
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
253
|
|
254
|
Burgess ER, King BH. Behavior and Survival of the Filth Fly Parasitoids Spalangia endius and Urolepis rufipes (Hymenoptera: Pteromalidae) in Response to Three Granular House Fly Baits and Components. ENVIRONMENTAL ENTOMOLOGY 2016; 45:1496-1504. [PMID: 28028097 DOI: 10.1093/ee/nvw135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Behaviors and mortality of two filth fly parasitoid wasps, Spalangia endius Walker and Urolepis rufipes Ashmead, were tested in response to granular fly baits containing one of the three active ingredients (AI): Golden Malrin (methomyl), QuickBayt (imidacloprid), or Quikstrike (dinotefuran). Behavioral responses to each of the two components of the baits, the AIs and the fly attractant pheromone (Z)-9-tricosene, were also examined independently. Spalangia endius avoided contact with bait granules, regardless of bait type. However, when S. endius contacted bait residue, the imidacloprid bait appeared to be the least harmful of the baits for S. endius, at least in the short term. Spalangia endius was attracted to imidacloprid by itself. However, S. endius avoided (Z)-9-tricosene. In contrast to S. endius' attraction to imidacloprid, S. endius neither avoided nor was attracted to methomyl or dinotefuran. For U. rufipes, the methomyl bait appeared to be especially harmful. Urolepis rufipes avoided bait granules with imidacloprid or dinotefuran but not with methomyl, died quickly in the presence of methomyl bait residue, and had a methomyl LC50 that was lower than that for S. endius The avoidance by U. rufipes of granules with imidacloprid or dinotefuran appears to be related to components other than the AIs or the (Z)-9-tricosene because U. rufipes did not avoid either individually. The behavioral avoidance of the parasitoids in the present study occurred despite no exposure recently, if ever, to these pesticides.
Collapse
Affiliation(s)
- Edwin R Burgess
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2861 (; )
| | - B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2861 (; )
| |
Collapse
|
255
|
Affiliation(s)
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour Psychology University of Exeter Perry Road Exeter EX4 4QG UK
| |
Collapse
|
256
|
Rolke D, Fuchs S, Grünewald B, Gao Z, Blenau W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1648-1665. [PMID: 27644949 PMCID: PMC5093180 DOI: 10.1007/s10646-016-1725-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 05/12/2023]
Abstract
Possible effects of clothianidin seed-treated oilseed rape on honey bee colonies were investigated in a large-scale monitoring project in Northern Germany, where oilseed rape usually comprises 25-33 % of the arable land. For both reference and test sites, six study locations were selected and eight honey bee hives were placed at each location. At each site, three locations were directly adjacent to oilseed rape fields and three locations were situated 400 m away from the nearest oilseed rape field. Thus, 96 hives were exposed to fully flowering oilseed rape crops. Colony sizes and weights, the amount of honey harvested, and infection with parasites and diseases were monitored between April and September 2014. The percentage of oilseed rape pollen was determined in pollen and honey samples. After oilseed rape flowering, the hives were transferred to an extensive isolated area for post-exposure monitoring. Total numbers of adult bees and brood cells showed seasonal fluctuations, and there were no significant differences between the sites. The honey, which was extracted at the end of the exposure phase, contained 62.0-83.5 % oilseed rape pollen. Varroa destructor infestation was low during most of the course of the study but increased at the end of the study due to flumethrin resistance in the mite populations. In summary, honey bee colonies foraging in clothianidin seed-treated oilseed rape did not show any detrimental symptoms as compared to colonies foraging in clothianidin-free oilseed rape. Development of colony strength, brood success as well as honey yield and pathogen infection were not significantly affected by clothianidin seed-treatment during this study.
Collapse
Affiliation(s)
- Daniel Rolke
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | - Stefan Fuchs
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | | | - Wolfgang Blenau
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany.
| |
Collapse
|
257
|
Stevenson PC, Nicolson SW, Wright GA. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12761] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip C. Stevenson
- Royal Botanic Gardens, Kew SurreyTW9 3AB UK
- Natural Resources Institute University of Greenwich KentME4 4TB UK
| | - Susan W. Nicolson
- Department of Zoology & Entomology University of Pretoria Private Bag X20 Hatfield0028 South Africa
| | - Geraldine A. Wright
- Centre for Behaviour and Evolution Institute of Neuroscience Newcastle University Newcastle upon TyneNE1 7RU UK
| |
Collapse
|
258
|
Campbell JW, Cabrera AR, Stanley-Stahr C, Ellis JD. An Evaluation of the Honey Bee (Hymenoptera: Apidae) Safety Profile of a New Systemic Insecticide, Flupyradifurone, Under Field Conditions in Florida. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1967-1972. [PMID: 27563069 DOI: 10.1093/jee/tow186] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Flupyradifurone (Sivanto) is a novel systemic insecticide from the butenolide class developed by Bayer. Based on available data (USEPA 2014), this insecticide appears to have a favorable safety profile for honey bee colonies. As a result, the label permits the product to be applied during prebloom and bloom in various crops, including citrus, except when mixed with azole fungicides during the blooming period. We placed 24 honey bee (Apis mellifera L.) colonies adjacent to eight flowering buckwheat (Fagopyrum esculentum Moench) fields that either had been sprayed with the maximum label rate of flupyradifurone or with water only (control fields), with three colonies placed adjacent to each field. We conducted colony strength assessments during which the number of adult bees, eggs, uncapped brood cells, capped brood cells, food storage cells, and weights of honey supers and brood chambers were determined prior to, during, and after the flowering period. We also analyzed bee-collected pollen and nectar for flupyradifurone residues. Overall, there were no differences in any colony strength parameter for colonies placed at control and flupyradifurone-treated buckwheat fields. Residue analyses showed that pollen (x = 565.8 ppb) and nectar (x = 259.4 ppb) gathered by bees on fields treated with flupyradifurone contained significantly higher flupyradifurone residues than did bee bread and unprocessed nectar collected by bees from control fields (75% of samples <LOD). Within the conditions set forth by our experimental design, our collective data suggest no adverse effects of flupyradifurone on honey bee colonies when following label directions.
Collapse
Affiliation(s)
- Joshua W Campbell
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611 (; ) Corresponding author, e-mail:
| | - Ana R Cabrera
- Bayer, Crop Science Division, Research Triangle Park, 2 TW Alexander Dr., NC 27709
| | | | - James D Ellis
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611 (; )
| |
Collapse
|
259
|
dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B. Queens become workers: pesticides alter caste differentiation in bees. Sci Rep 2016; 6:31605. [PMID: 27530246 PMCID: PMC4987680 DOI: 10.1038/srep31605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/21/2016] [Indexed: 11/09/2022] Open
Abstract
Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies.
Collapse
Affiliation(s)
- Charles F. dos Santos
- Departamento de Biodiversidade e Ecologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - André L. Acosta
- Departamento de Ecologia, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, 05508-090 São Paulo, SP, Brazil
- Núcleo de Pesquisa em Biodiversidade e Computação - BioComp. Escola Politécnica, Av. Prof. Luciano Gualberto, Trav. 3, n. 380, 05508-010 São Paulo, São Paulo, Brazil
| | - Andressa L. Dorneles
- Departamento de Biodiversidade e Ecologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Patrick D. S. dos Santos
- Departamento de Biodiversidade e Ecologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Betina Blochtein
- Departamento de Biodiversidade e Ecologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
- Instituto do Meio Ambiente, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| |
Collapse
|
260
|
Morrison WR, Lee DH, Reissig WH, Combs D, Leahy K, Tuttle A, Cooley D, Leskey TC. Inclusion of Specialist and Generalist Stimuli in Attract-and-Kill Programs: Their Relative Efficacy in Apple Maggot Fly (Diptera: Tephritidae) Pest Management. ENVIRONMENTAL ENTOMOLOGY 2016; 45:974-982. [PMID: 27330148 DOI: 10.1093/ee/nvw043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/01/2016] [Indexed: 06/06/2023]
Abstract
Investigating the chemical ecology of agricultural systems continues to be a salient part of integrated pest management programs. Apple maggot fly, a key pest of apple in eastern North America, is a visual specialist with attraction to host fruit-mimicking cues. These cues have been incorporated into red spherical traps used for both monitoring and behaviorally based management. Incorporating generalist or specialist olfactory cues can potentially increase the overall success of this management system. The primary aim of this study was to evaluate the attractiveness of a generalist olfactory cue, ammonium carbonate, and the specialist olfactory cue, a five-component apple volatile blend, when included as a component of a red attracticidal sphere system. Secondly, we assessed how critical it was to maintain minimal deviation from the optimal, full-round specialist visual stimulus provided by red spheres. Finally, attracticidal spheres were deployed with specialist olfactory cues in commercial apple orchards to evaluate their potential for effective management of apple maggot. Ammonium carbonate did not increase residency, feeding time, or mortality in the laboratory-based trials. Field deployment of specialist olfactory cues increased apple maggot captures on red spheres, while the generalist cue did not. Apple maggot tolerated some deviation from the optimal visual stimulus without reducing captures on red spheres. Attracticidal spheres hung in perimeter trees in orchards resulted in acceptable and statistically identical levels of control compared with standard insecticide programs used by growers. Overall, our study contributes valuable information for developing a reliable attract-and-kill system for apple maggot.
Collapse
Affiliation(s)
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam-si, Kyeonggi-do, South Korea
| | | | - David Combs
- Department of Entomology, Cornell University, Geneva, NY (; )
| | | | - Arthur Tuttle
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA (; )
| | - Daniel Cooley
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA (; )
| | - Tracy C Leskey
- USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV (; )
| |
Collapse
|
261
|
McMenamin AJ, Brutscher LM, Glenny W, Flenniken ML. Abiotic and biotic factors affecting the replication and pathogenicity of bee viruses. CURRENT OPINION IN INSECT SCIENCE 2016; 16:14-21. [PMID: 27720045 PMCID: PMC5113721 DOI: 10.1016/j.cois.2016.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 05/20/2023]
Abstract
Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. Recent losses of both managed and wild bee species have negative impacts on crop production and ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has been associated with colony losses. Numerous pathogens infect bees including fungi, protists, bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on bee health, particularly in the context of other stressors. Herein we review the influence environmental factors have on the replication and pathogenicity of bee viruses and identify research areas that require further investigation.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - William Glenny
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA; Institute on Ecosystems, Montana State University, Bozeman, MT, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
262
|
Ma C, Kessler S, Simpson A, Wright G. A Novel Behavioral Assay to Investigate Gustatory Responses of Individual, Freely-moving Bumble Bees (Bombus terrestris). J Vis Exp 2016. [PMID: 27500630 PMCID: PMC5304935 DOI: 10.3791/54233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Generalist pollinators like the buff-tailed bumble bee, Bombus terrestris, encounter both nutrients and toxins in the floral nectar they collect from flowering plants. Only a few studies have described the gustatory responses of bees toward toxins in food, and these experiments have mainly used the proboscis extension response on restrained honey bees. Here, a new behavioral assay is presented for measuring the feeding responses of freely-moving, individual worker bumble bees to nutrients and toxins. This assay measures the amount of solution ingested by each bumble bee and identifies how tastants in food influence the microstructure of the feeding behavior. The solutions are presented in a microcapillary tube to individual bumble bees that have been previously starved for 2-4 hr. The behavior is captured on digital video. The fine structure of the feeding behavior is analyzed by continuously scoring the position of the proboscis (mouthparts) from video recordings using event logging software. The position of the proboscis is defined by three different behavioral categories: (1) proboscis is extended and in contact with the solution, (2) proboscis is extended but not in contact with the solution and (3) proboscis is stowed under the head. Furthermore the speed of the proboscis retracting away from the solution is also estimated. In the present assay the volume of solution consumed, the number of feeding bouts, the duration of the feeding bouts and the speed of the proboscis retraction after the first contact is used to evaluate the phagostimulatory or the deterrent activity of the compounds tested. This new taste assay will allow researchers to measure how compounds found in nectar influence the feeding behavior of bees and will also be useful to pollination biologists, toxicologists and neuroethologists studying the bumble bee's taste system.
Collapse
Affiliation(s)
- Carolyn Ma
- Institute of Neuroscience, Newcastle University
| | | | | | | |
Collapse
|
263
|
Tison L, Hahn ML, Holtz S, Rößner A, Greggers U, Bischoff G, Menzel R. Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7218-7227. [PMID: 27268938 DOI: 10.1021/acs.est.6b02658] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The decline of pollinators worldwide is of growing concern and has been related to the use of plant-protecting chemicals. Most studies have focused on three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) currently subject to a moratorium in the EU. Here, we focus on thiacloprid, a widely used cyano-substituted neonicotinoid thought to be less toxic to honey bees and of which use has increased in the last years. Honey bees (Apis mellifera carnica) were exposed chronically to thiacloprid in the field for several weeks at a sublethal concentration. Foraging behavior, homing success, navigation performance, and social communication were impaired, and thiacloprid residue levels increased both in the foragers and the nest mates over time. The effects observed in the field were not due to a repellent taste of the substance. For the first time, we present the necessary data for the risk evaluation of thiacloprid taken up chronically by honey bees in field conditions.
Collapse
Affiliation(s)
- Léa Tison
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Marie-Luise Hahn
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Sophie Holtz
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Alexander Rößner
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Uwe Greggers
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| | - Gabriela Bischoff
- Julius Kühn-Institut , Institute for Bee Protection, D-14195 Berlin, Germany
| | - Randolf Menzel
- Free University Berlin , Institute for Biology-Neurobiology, D-14195 Berlin, Germany
| |
Collapse
|
264
|
Clark HO. A Guide to North America's Bees: The Bees in Your BackyardA Guide to North America's Bees: The Bees in Your Backyard.Joseph S. Wilson and Olivia Messinger Carril. 2016. Princeton University Press, Princeton, NJ. 288 pages; $29.95, softbound. ISBN: 978-0691160771. WEST N AM NATURALIST 2016. [DOI: 10.3398/064.076.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
265
|
Stanley DA, Raine NE. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct Ecol 2016; 30:1132-1139. [PMID: 27512241 PMCID: PMC4950133 DOI: 10.1111/1365-2435.12644] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
Insect pollinators are essential for both the production of a large proportion of world crops and the health of natural ecosystems. As important pollinators, bumblebees must learn to forage on flowers to feed both themselves and provision their colonies.Increased use of pesticides has caused concern over sublethal effects on bees, such as impacts on reproduction or learning ability. However, little is known about how sublethal exposure to field-realistic levels of pesticide might affect the ability of bees to visit and manipulate flowers.We observed the behaviour of individual bumblebees from colonies chronically exposed to a neonicotinoid pesticide (10 ppb thiamethoxam) or control solutions foraging for the first time on an array of morphologically complex wildflowers (Lotus corniculatus and Trifolium repens) in an outdoor flight arena.We found that more bees released from pesticide-treated colonies became foragers, and that they visited more L. corniculatus flowers than controls. Interestingly, bees exposed to pesticide collected pollen more often than controls, but control bees learnt to handle flowers efficiently after fewer learning visits than bees exposed to pesticide. There were also different initial floral preferences of our treatment groups; control bees visited a higher proportion of T. repens flowers, and bees exposed to pesticide were more likely to choose L. corniculatus on their first visit.Our results suggest that the foraging behaviour of bumblebees on real flowers can be altered by sublethal exposure to field-realistic levels of pesticide. This has implications for the foraging success and persistence of bumblebee colonies, but perhaps more importantly for the interactions between wild plants and flower-visiting insects and ability of bees to deliver the crucial pollination services to plants necessary for ecosystem functioning.
Collapse
Affiliation(s)
- Dara A Stanley
- School of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK; Botany and Plant Science School of Natural Sciences and Ryan Institute National University of Ireland Galway Ireland
| | - Nigel E Raine
- School of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK; School of Environmental Sciences University of Guelph Guelph ON N1G 2W1 Canada
| |
Collapse
|
266
|
Démares FJ, Crous KL, Pirk CWW, Nicolson SW, Human H. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide. PLoS One 2016; 11:e0156584. [PMID: 27272274 PMCID: PMC4896446 DOI: 10.1371/journal.pone.0156584] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022] Open
Abstract
Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed.
Collapse
Affiliation(s)
- Fabien J. Démares
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Kendall L. Crous
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Christian W. W. Pirk
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Susan W. Nicolson
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Hannelie Human
- Social Research Insect Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| |
Collapse
|
267
|
Vannette RL, Fukami T. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 2016; 97:1410-9. [DOI: 10.1890/15-0858.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rachel L. Vannette
- Department of Biology Stanford University Stanford California 94305‐5020 USA
| | - Tadashi Fukami
- Department of Biology Stanford University Stanford California 94305‐5020 USA
| |
Collapse
|
268
|
Long EY, Krupke CH. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 2016; 7:11629. [PMID: 27240870 PMCID: PMC4895021 DOI: 10.1038/ncomms11629] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/14/2016] [Indexed: 02/08/2023] Open
Abstract
Recent efforts to evaluate the contribution of neonicotinoid insecticides to worldwide pollinator declines have focused on honey bees and the chronic levels of exposure experienced when foraging on crops grown from neonicotinoid-treated seeds. However, few studies address non-crop plants as a potential route of pollinator exposure to neonicotinoid and other insecticides. Here we show that pollen collected by honey bee foragers in maize- and soybean-dominated landscapes is contaminated throughout the growing season with multiple agricultural pesticides, including the neonicotinoids used as seed treatments. Notably, however, the highest levels of contamination in pollen are pyrethroid insecticides targeting mosquitoes and other nuisance pests. Furthermore, pollen from crop plants represents only a tiny fraction of the total diversity of pollen resources used by honey bees in these landscapes, with the principle sources of pollen originating from non-cultivated plants. These findings provide fundamental information about the foraging habits of honey bees in these landscapes.
Collapse
Affiliation(s)
- Elizabeth Y. Long
- Department of Entomology, The Ohio State University, OARDC, 1680 Madison Ave, Wooster, Ohio 44691, USA
| | - Christian H. Krupke
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
269
|
|
270
|
Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Sci Rep 2016; 6:24764. [PMID: 27124107 PMCID: PMC4849185 DOI: 10.1038/srep24764] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022] Open
Abstract
There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.
Collapse
|
271
|
Christen V, Mittner F, Fent K. Molecular Effects of Neonicotinoids in Honey Bees (Apis mellifera). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4071-81. [PMID: 26990785 DOI: 10.1021/acs.est.6b00678] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neonicotinoids are implicated in the decline of bee populations. As agonists of nicotinic acetylcholine receptors, they disturb acetylcholine receptor signaling leading to neurotoxicity. Several behavioral studies showed the link between neonicotinoid exposure and adverse effects on foraging activity and reproduction. However, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic levels of three neonicotinoids and nicotine, and compared laboratory studies to field exposures with acetamiprid. We assessed transcriptional alterations of eight selected genes in caged honey bees exposed to different concentrations of the neonicotinoids acetamiprid, clothianidin, imidacloporid, and thiamethoxam, as well as nicotine. We determined transcripts of several targets, including nicotinic acetylcholine receptor α 1 and α 2 subunit, the multifunctional gene vitellogenin, immune system genes apidaecin and defensin-1, stress-related gene catalase and two genes linked to memory formation, pka and creb. Vitellogenin showed a strong increase upon neonicotinoid exposures in the laboratory and field, while creb and pka transcripts were down-regulated. The induction of vitellogenin suggests adverse effects on foraging activity, whereas creb and pka down-regulation may be implicated in decreased long-term memory formation. Transcriptional alterations occurred at environmental concentrations and provide an explanation for the molecular basis of observed adverse effects of neonicotinoids to bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Fabian Mittner
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology Zürich (ETH Zürich) , Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland
| |
Collapse
|
272
|
Tena A, Wäckers FL, Heimpel GE, Urbaneja A, Pekas A. Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control. CURRENT OPINION IN INSECT SCIENCE 2016; 14:100-104. [PMID: 27436654 DOI: 10.1016/j.cois.2016.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 06/06/2023]
Abstract
One focus of conservation biological control studies has been to improve the nutritional state and fitness of parasitoids by adding nectar and artificial sugars to agroecosystems. This approach has largely overlooked the presence of honeydew, which is likely the primary carbohydrate source available to parasitoids in many agroecosystems. Over the last decade, it has been demonstrated that parasitoids often utilize this sugar source and there is evidence that honeydew can indirectly impact the population dynamics of herbivores through its nutritional value for parasitoids. The consumption of honeydew by parasitoids can shape direct and indirect interactions with other arthropods. The strength of these effects will depend on: first, parasitoid biology, second, the presence of other sugar sources (mainly nectar), third, the quality and quantity of the honeydew, and fourth, the presence and competitive strength of other honeydew consumers such as ants. The combination of these four factors is expected to result in distinct scenarios that should be analyzed for each agroecosystem. This analysis can reveal opportunities to increase the biocontrol services provided by parasitoids. Moreover, honeydew can be a resource-rich habitat for insect pathogens; or contain plant secondary chemicals sequestered by hemipterans or systemic insecticides toxic for the parasitoid. Their presence and effect on parasitoid fitness will need to be addressed in future research.
Collapse
Affiliation(s)
- Alejandro Tena
- Unidad Asociada de Entomología UJI-IVIA, Instituto Valenciano de Investigaciones, Agrarias, IVIA, Spain.
| | - Felix L Wäckers
- Biobest, Ilse Velden 18, 2260 Westerlo, Belgium; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, United States
| | - Alberto Urbaneja
- Unidad Asociada de Entomología UJI-IVIA, Instituto Valenciano de Investigaciones, Agrarias, IVIA, Spain
| | - Apostolos Pekas
- Biobest, Ilse Velden 18, 2260 Westerlo, Belgium; Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
273
|
Urlacher E, Monchanin C, Rivière C, Richard FJ, Lombardi C, Michelsen-Heath S, Hageman KJ, Mercer AR. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions. J Chem Ecol 2016; 42:127-38. [PMID: 26872472 DOI: 10.1007/s10886-016-0672-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/20/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023]
Abstract
Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.
Collapse
Affiliation(s)
- Elodie Urlacher
- University of Otago, Department of Zoology, 340 Great King Street PO Box 56, Dunedin, 9054, New Zealand.
| | - Coline Monchanin
- University of Otago, Department of Zoology, 340 Great King Street PO Box 56, Dunedin, 9054, New Zealand
| | - Coraline Rivière
- University of Otago, Department of Zoology, 340 Great King Street PO Box 56, Dunedin, 9054, New Zealand
| | - Freddie-Jeanne Richard
- Laboratoire Ecologie et Biologie des intéractions, UMR CNRS 7267, Team Ecologie Evolution Symbiose, University of Poitiers, 6, rue Michel Brunet, TSA 51106, F-86073, Poitiers Cedex 9, France
| | - Christie Lombardi
- Department of Chemistry, University of Otago, Union Street West, PO Box 56, Dunedin, 9054, New Zealand
| | - Sue Michelsen-Heath
- University of Otago, Department of Zoology, 340 Great King Street PO Box 56, Dunedin, 9054, New Zealand
| | - Kimberly J Hageman
- Department of Chemistry, University of Otago, Union Street West, PO Box 56, Dunedin, 9054, New Zealand
| | - Alison R Mercer
- University of Otago, Department of Zoology, 340 Great King Street PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
274
|
Reetz JE, Schulz W, Seitz W, Spiteller M, Zühlke S, Armbruster W, Wallner K. Uptake of Neonicotinoid Insecticides by Water-Foraging Honey Bees (Hymenoptera: Apidae) Through Guttation Fluid of Winter Oilseed Rape. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:31-40. [PMID: 26516090 DOI: 10.1093/jee/tov287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/08/2015] [Indexed: 05/04/2023]
Abstract
The water-foraging activity of honey bees (Apis mellifera L.) on guttation fluid of seed-coated crops, such as winter oilseed rape (WOR; Brassica napus L.), has not yet been evaluated. We analyzed the uptake of active substances (a.s.) in guttation fluid by evaluating residues of honey-sac contents. In autumn, insecticide residues of up to 130 µg a.s. per liter were released in WOR guttation fluid; this concentration is noticeably lower than levels reported in guttation fluid of seed-coated maize. Until winter dormancy, the concentrations declined to <30 µg a.s. per liter. In spring, residues were linked to prewintered plants and declined steadily until flowering. The maximum release of residues in guttation fluid of seed-coated WOR occurs on the first leaves in autumn when the colonies' water demand decreases. For the first time, proof for the uptake of guttation fluid from seed-coated WOR by honey bees was provided by measuring residues in individual honey-sac contents. In total, 38 out of 204 samples (19%) showed residues of thiamethoxam at concentrations ranging from 0.3 to 0.95 µg per liter while the corresponding concentrations in guttation fluid of WOR varied between 3.6 to 12.9 µg thiamethoxam per liter. The amounts of thiamethoxam we found in the honey sacs of water-foraging honey bees were therefore below the thresholds in nectar and pollen that are considered to have negative effects on honey bees after chronic exposure.
Collapse
Affiliation(s)
- J E Reetz
- Apicultural State Institute, University of Hohenheim, August-von-Hartmann-Str. 13, D-70593 Stuttgart, Germany (; ),
| | - W Schulz
- Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Am Spitzigen Berg 1, D-89129 Langenau, Germany (; )
| | - W Seitz
- Zweckverband Landeswasserversorgung, Laboratory for Operation Control and Research, Am Spitzigen Berg 1, D-89129 Langenau, Germany (; )
| | - M Spiteller
- Institute of Environmental Research (INFU), Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany (; ), and
| | - S Zühlke
- Institute of Environmental Research (INFU), Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany (; ), and
| | - W Armbruster
- Institute of Food Chemistry and Analytical Chemistry, University of Hohenheim, Garbenstr. 28, D-70593 Stuttgart, Germany
| | - K Wallner
- Apicultural State Institute, University of Hohenheim, August-von-Hartmann-Str. 13, D-70593 Stuttgart, Germany (; )
| |
Collapse
|
275
|
Dolezal AG, Carrillo-Tripp J, Miller WA, Bonning BC, Toth AL. Pollen Contaminated With Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:41-8. [PMID: 26476556 DOI: 10.1093/jee/tov301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen.
Collapse
|
276
|
Peng W, Ding F, Peng YK. In vitro evaluation of the conjugations of neonicotinoids with transport protein: photochemistry, ligand docking and molecular dynamics studies. RSC Adv 2016. [DOI: 10.1039/c5ra14661e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The flexibility of ligand structures and the property of substituents in neonicotinoids play a pivotal role in protein–neonicotinoid and this type of biorecognition may have a great impact on the potential toxicity of these widely used agrochemicals.
Collapse
Affiliation(s)
- Wei Peng
- College of Agriculture and Plant Protection
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Food Science and Engineering
| | - Fei Ding
- College of Agriculture and Plant Protection
- Qingdao Agricultural University
- Qingdao 266109
- China
- Department of Biological Engineering
| | - Yu-Kui Peng
- Center for Food Quality Supervision & Testing
- Ministry of Agriculture
- College of Food Science & Engineering
- Northwest A&F University
- Yangling 712100
| |
Collapse
|
277
|
Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci Rep 2015; 5:17938. [PMID: 26643971 PMCID: PMC4672302 DOI: 10.1038/srep17938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
Neonicotinoid insecticides are commonly used in managing pest insects, including the imported fire ant, Solenopsis invicta Buren. There is increasing evidence that neonicotinoid insecticides at sublethal concentrations have profound effects on social insects. However, the sublethal effect of neonicotinoids on S. invicta has never been investigated. In this study, the newly mated queens were fed with water containing 0.01 or 0.25 μg/ml imidacloprid. Imidacloprid at both concentrations did not cause any increase in queen mortality during the founding stage; however, it significantly reduced queens’ brood tending ability. In the 0.25 μg/ml imidacloprid treatment, the time to larval emergence was significantly delayed and no pupae or adult workers were produced. This study provides clear evidence that imidacloprid at sublethal concentrations has a significant detrimental impact on S. invicta queens and the development of incipient colonies.
Collapse
|
278
|
Anthony WE, Palmer-Young EC, Leonard AS, Irwin RE, Adler LS. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees. PLoS One 2015; 10:e0142496. [PMID: 26545106 PMCID: PMC4636389 DOI: 10.1371/journal.pone.0142496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.
Collapse
Affiliation(s)
- Winston E. Anthony
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Evan C. Palmer-Young
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Anne S. Leonard
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Rebecca E. Irwin
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
279
|
Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Sci Rep 2015; 5:15322. [PMID: 26477973 PMCID: PMC4609922 DOI: 10.1038/srep15322] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 11/11/2022] Open
Abstract
Neonicotinoids are often applied as systemic seed treatments to crops and have reported negative impact on pollinators when they appear in floral nectar and pollen. Recently, we found that bees in a two-choice assay prefer to consume solutions containing field-relevant doses of the neonicotinoid pesticides, imidacloprid (IMD) and thiamethoxam (TMX), to sucrose alone. This suggests that neonicotinoids enhance the rewarding properties of sucrose and that low, acute doses could improve learning and memory in bees. To test this, we trained foraging-age honeybees to learn to associate floral scent with a reward containing nectar-relevant concentrations of IMD and TMX and tested their short (STM) and long-term (LTM) olfactory memories. Contrary to our predictions, we found that none of the solutions enhanced the rate of olfactory learning and some of them impaired it. In particular, the effect of 10 nM IMD was observed by the second conditioning trial and persisted 24 h later. In most other groups, exposure to IMD and TMX affected STM but not LTM. Our data show that negative impacts of low doses of IMD and TMX do not require long-term exposure and suggest that impacts of neonicotinoids on olfaction are greater than their effects on rewarding memories.
Collapse
|
280
|
Scherber C. Insect responses to interacting global change drivers in managed ecosystems. CURRENT OPINION IN INSECT SCIENCE 2015; 11:56-62. [PMID: 28285759 DOI: 10.1016/j.cois.2015.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 06/06/2023]
Abstract
Insects are facing an increasingly stressful combination of global change drivers such as habitat fragmentation, agricultural intensification, pollution, or climatic changes. While single-factor studies have yielded considerable insights, multi-factor manipulations have gained momentum recently. Nevertheless, most work to date has remained within particular domains of research, such as 'habitat destruction' or 'climate change', and linkages among subdisciplines within the ecological literature have remained scarce. Here, I provide an overview of the most recent developments in the field, with a focus on main functional groups of insects, but also their interactions with other organisms. All major global change drivers (landscape modification, climate change, agricultural management) are covered both singly and in interaction. The manuscript concludes with concepts on how to statistically and conceptually deal with interactions in experimental and observational work.
Collapse
Affiliation(s)
- Christoph Scherber
- Agroecology, Department of Crop Science, Georg-August-University Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany; Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany.
| |
Collapse
|
281
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
282
|
Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS One 2015; 10:e0136928. [PMID: 26313444 PMCID: PMC4552548 DOI: 10.1371/journal.pone.0136928] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/11/2015] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.
Collapse
Affiliation(s)
- Ola Lundin
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
- University of California, Department of Entomology and Nematology, Davis, California 95616, United States of America
- * E-mail:
| | - Maj Rundlöf
- Lund University, Department of Biology, SE-223 62 Lund, Sweden
| | - Henrik G. Smith
- Lund University, Department of Biology, SE-223 62 Lund, Sweden
- Lund University, Centre for Environmental and Climate Research, SE-223 62 Lund, Sweden
| | - Ingemar Fries
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
| | - Riccardo Bommarco
- Swedish University of Agricultural Sciences, Department of Ecology, SE-750 07 Uppsala, Sweden
| |
Collapse
|
283
|
Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. Sci Rep 2015; 5:12574. [PMID: 26270806 PMCID: PMC4535276 DOI: 10.1038/srep12574] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/25/2015] [Indexed: 11/08/2022] Open
Abstract
Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.
Collapse
|
284
|
|
285
|
|