251
|
Role for loss of nuclear PTEN in a harbinger of brain metastases. J Clin Neurosci 2017; 44:148-154. [DOI: 10.1016/j.jocn.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
|
252
|
Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, Shendure J, Fowler DM. Variant Interpretation: Functional Assays to the Rescue. Am J Hum Genet 2017; 101:315-325. [PMID: 28886340 PMCID: PMC5590843 DOI: 10.1016/j.ajhg.2017.07.014] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis.
Collapse
Affiliation(s)
- Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Bioinformatics & Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick P Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
253
|
Candesartan Restores the Amyloid Beta-Inhibited Proliferation of Neural Stem Cells by Activating the Phosphatidylinositol 3-Kinase Pathway. Dement Neurocogn Disord 2017; 16:64-71. [PMID: 30906373 PMCID: PMC6427981 DOI: 10.12779/dnd.2017.16.3.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important aspect of Alzheimer's disease (AD) pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to have an important role in neuronal cell survival and is highly involved in adult neurogenesis. Candesartan is an angiotensin II receptor antagonist used for the treatment of hypertension and several studies have reported that it also has some neuroprotective effects. We investigated whether candesartan could restore the amyloid-β(25–35) (Aβ25-35) oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. Methods To evaluate the effects of candesartan on the Aβ25-35 oligomer-inhibited proliferation of NSCs, the NSCs were treated with several concentrations of candesartan and/or Aβ25-35 oligomers, and MTT assay and trypan blue staining were performed. To evaluate the effect of candesartan on the Aβ-inhibited proliferation of NSCs, we performed a bromodeoxyuridine (BrdU) labeling assay. The levels of p85α PI3K, phosphorylated Akt (pAkt) (Ser473), phosphorylated glycogen sinthase kinase-3β (pGSK-3β) (Ser9), and heat shock transcription factor-1 (HSTF-1) were analyzed by Western blotting. Results The BrdU assays demonstrated that NSC proliferation decreased with Aβ25-35 oligomer treatment; however, a combined treatment with candesartan restored it. Western blotting displayed that candesartan treatment increased the expression levels of p85α PI3K, pAkt (Ser473), pGSK-3β (Ser9), and HSTF. The NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of candesartan on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Conclusions Together, these results suggest that candesartan restores the Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Collapse
|
254
|
Chen HJ, Romigh T, Sesock K, Eng C. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome. Hum Mutat 2017; 38:1372-1377. [PMID: 28677221 PMCID: PMC5599331 DOI: 10.1002/humu.23288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 02/01/2023]
Abstract
Germline mutations in the tumor‐suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan–Riley–Ruvalcaba syndrome, and autism. Evidence‐based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene‐informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P‐AKT and P‐ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P‐AKT, but not P‐ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling.
Collapse
Affiliation(s)
- Hannah Jinlian Chen
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Todd Romigh
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kaitlin Sesock
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio.,Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
255
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
256
|
|
257
|
Sigstad E, Grøholt KK, Jørgensen K, Stormorken A, Li HS. A woman in her thirties with breast cancer and bilateral goitre. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2017; 137:806-809. [PMID: 28597636 DOI: 10.4045/tidsskr.16.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Eva Sigstad
- Klinikk for diagnostikk og intervensjon Avdeling for patologi Oslo universitetssykehus
| | | | - Kjersti Jørgensen
- Seksjon for arvelig kreft Avdeling for medisinsk genetikk Oslo universitetssykehus
| | - Astrid Stormorken
- Seksjon for arvelig kreft Avdeling for medisinsk genetikk Oslo universitetssykehus
| | - Henrik Stenwig Li
- Hode- og halskirurgisk seksjon Øre-, nese-, halsavdelingen Klinikk for hode, hals og rekonstruktiv kirurgi Oslo universitetssykehus
| |
Collapse
|
258
|
Ngeow J, Sesock K, Eng C. Clinical Implications for Germline PTEN Spectrum Disorders. Endocrinol Metab Clin North Am 2017; 46:503-517. [PMID: 28476234 DOI: 10.1016/j.ecl.2017.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Patients with PTEN hamartoma tumor syndrome (PHTS) may present to a variety of different subspecialties with benign and malignant clinical features. They have increased lifetime risks of breast, endometrial, thyroid, renal, and colon cancers, as well as neurodevelopmental disorders such as autism spectrum disorder. Patients and affected family members can be offered gene-directed surveillance and management. Patients who are unaffected can be spared unnecessary investigations. With longitudinal follow-up, we are likely to identify other non-cancer manifestations associated with PHTS such as metabolic, immunologic, and neurologic features.
Collapse
Affiliation(s)
- Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA
| | - Kaitlin Sesock
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
259
|
Simple quantitative PCR analysis for allelic Pten loss in tumor progression. Anal Biochem 2017; 526:50-57. [DOI: 10.1016/j.ab.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
|
260
|
Gawron K, Bereta G, Nowakowska Z, Łazarz-Bartyzel K, Potempa J, Chomyszyn-Gajewska M, Górska R, Plakwicz P. Analysis of mutations in the SOS-1 gene in two Polish families with hereditary gingival fibromatosis. Oral Dis 2017; 23:983-989. [PMID: 28425619 DOI: 10.1111/odi.12684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To establish whether two families from Malopolska and Mazovia provinces in Poland are affected by hereditary gingival fibromatosis type 1, caused by a single-cytosine insertion in exon 21 of the Son-of-Sevenless-1 gene. MATERIAL AND METHODS Six subjects with hereditary gingival fibromatosis and five healthy subjects were enrolled in the study. Gingival biopsies were collected during gingivectomy or tooth extraction and used for histopathological evaluation. Total RNA and genomic DNA were purified from cultured gingival fibroblasts followed by cDNA and genomic DNA sequencing and analysis. RESULTS Hereditary gingival fibromatosis was confirmed by periodontal examination, X-ray, and laboratory tests. Histopathological evaluation showed hyperplastic epithelium, numerous collagen bundles, and abundant-to-moderate fibroblasts in subepithelial and connective tissue. Sequencing of exons 19-22 of the Son-of-Sevenless-1 gene did not reveal a single-cytosine insertion nor other mutations. CONCLUSIONS Patients from two Polish families under study had not been affected by hereditary gingival fibromatosis type 1, caused by a single-cytosine insertion in exon 21 of the Son-of-Sevenless-1 gene. Further studies of the remaining regions of this gene as well as of other genes are needed to identify disease-related mutations in these patients. This will help to unravel the pathogenic mechanism of gingival overgrowth.
Collapse
Affiliation(s)
- K Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - G Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Z Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - K Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Medical College, Institute of Dentistry, Jagiellonian University, Krakow, Poland
| | - J Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - M Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Medical College, Institute of Dentistry, Jagiellonian University, Krakow, Poland
| | - R Górska
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| | - P Plakwicz
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
261
|
Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur J Hum Genet 2017; 25:1087-1091. [PMID: 28513612 DOI: 10.1038/ejhg.2017.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/09/2022] Open
Abstract
Cowden syndrome (CS) is an inherited autosomal dominant disorder associated with germline pathogenic variants of the PTEN tumor suppressor gene. Its phenotypical expression is highly variable and the existence of patients with a CS suggestive phenotype without pathogenic PTEN variant may be related to genetic heterogeneity. In order to explore this hypothesis through the detection of potentially deleterious variants enabling us to identify a new candidate gene, we performed whole-exome sequencing (WES) in a series of 22 CS patients without detectable PTEN pathogenic variant using conventional methods for mutation screening. We failed to identify a novel candidate gene, but interestingly in two patients WES revealed the presence of two distinct, previously undescribed Alu insertions with the same break points in exon 5. These insertions were not found in a series of 35 breast carcinomas that showed a loss of PTEN expression without a detectable alteration of this gene. This study reveals the presence of a PTEN Alu insertion hotspot involved in CS, and suggests that undetected PTEN pathogenic variants could contribute to CS.
Collapse
|
262
|
Fukumoto M, Ijuin T, Takenawa T. PI(3,4)P 2 plays critical roles in the regulation of focal adhesion dynamics of MDA-MB-231 breast cancer cells. Cancer Sci 2017; 108:941-951. [PMID: 28247964 PMCID: PMC5448597 DOI: 10.1111/cas.13215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphoinositides play pivotal roles in the regulation of cancer cell phenotypes. Among them, phosphatidylinositol 3,4‐bisphosphate (PI(3,4)P2) localizes to the invadopodia, and positively regulates tumor cell invasion. In this study, we examined the effect of PI(3,4)P2 on focal adhesion dynamics in MDA‐MB‐231 basal breast cancer cells. Knockdown of SHIP2, a phosphatidylinositol 3,4,5‐trisphosphatase (PIP3) 5‐phosphatase that generates PI(3,4)P2, in MDA‐MB‐231 breast cancer cells, induced the development of focal adhesions and cell spreading, leading to the suppression of invasion. In contrast, knockdown of PTEN, a 3‐phosphatase that de‐phosphorylates PIP3 and PI(3,4)P2, induced cell shrinkage and increased cell invasion. Interestingly, additional knockdown of SHIP2 rescued these phenotypes. Overexpression of the TAPP1 PH domain, which binds to PI(3,4)P2, and knockdown of Lpd, a downstream effector of PI(3,4)P2, resulted in similar phenotypes to those induced by SHIP2 knockdown. Taken together, our results suggest that inhibition of PI(3,4)P2 generation and/or downstream signaling could be useful for inhibiting breast cancer metastasis.
Collapse
Affiliation(s)
- Miki Fukumoto
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadaomi Takenawa
- Division of Molecular and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
263
|
Hill VK, Kim JS, James CD, Waldman T. Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS One 2017; 12:e0176683. [PMID: 28464039 PMCID: PMC5413031 DOI: 10.1371/journal.pone.0176683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
PTEN is among the most commonly mutated tumor suppressor genes in human cancer. However, studying the role of PTEN in the pathogenesis of cancer has been limited, in part, by the paucity of human cell-based isogenic systems that faithfully model PTEN loss. In an effort to remedy this problem, gene editing was used to correct an endogenous mutant allele of PTEN in two human glioblastoma multiforme (GBM) cell lines– 42MGBA and T98G. PTEN correction resulted in reduced cellular proliferation that was Akt-dependent in 42MGBA cells and Akt-independent in T98G cells. This is the first report of human cancer cell lines in which mutant PTEN has been corrected by gene editing. The isogenic sets of gene edited cell lines reported here will likely prove useful for further study of PTEN mutations in the pathogenesis of cancer, and for the discovery and validation of novel therapeutics targeting the PTEN pathway.
Collapse
Affiliation(s)
- Victoria K. Hill
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - Jung-Sik Kim
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - C. David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Todd Waldman
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
264
|
Ma W, Zhao X, Liang L, Wang G, Li Y, Miao X, Zhao Y. miR-146a and miR-146b promote proliferation, migration and invasion of follicular thyroid carcinoma via inhibition of ST8SIA4. Oncotarget 2017; 8:28028-28041. [PMID: 28427206 PMCID: PMC5438628 DOI: 10.18632/oncotarget.15885] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/21/2017] [Indexed: 01/28/2023] Open
Abstract
Follicular thyroid carcinoma (FTC) is a more aggressive form of thyroid cancer than the common papillary type. Alpha-2,8-sialyltransferase (ST8SIA) family members are expressed in various cancers and may be associated with FTC progression. In this study, we measured ST8SIA family expression in two FTC cell lines with different invasive potentials (FTC-133 and FTC-238) and Nthy-ori 3-1 cell lines, as well as FTC and normal thyroid tissues. ST8SIA4 was downregulated in the highly invasive FTC-238 cells and FTC tissues. Additionally, ST8SIA4 inhibited proliferation, migration and invasion of FTC both in vitro and in vivo. miR-146a and miR-146b were previously shown to be upregulated in thyroid carcinoma, and bioinformatics analyses indicated that miR-146a and miR-146b inhibit ST8SIA4. We found that miR-146a and miR-146b were significantly upregulated in FTC and promoted tumour progression. Furthermore, ST8SIA4 restoration decreased the invasiveness of miR-146a/b-overexpressing FTC-133 cells, and ST8SIA4 suppression reversed the effects of miR-146a/b inhibition in FTC-238 cells. We showed that miR-146a/b activated the PI3K-AKT-mTOR signalling pathway at least partially via suppression of ST8SIA4. Thus, our results demonstrate that miR-146a and miR-146b promote proliferation, migration and invasion of FTC via inhibition of ST8SIA4.
Collapse
Affiliation(s)
- Wei Ma
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xuzi Zhao
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Leilei Liang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yanyan Li
- Changping Hospital of Integrated Chinese and Western Medicine, Beijing 102200, Beijing Province, China
| | - Xiaolong Miao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yongfu Zhao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
265
|
Kaur A, Sharma S. Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:293-312. [PMID: 28417246 DOI: 10.1007/s10787-017-0336-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/28/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that belongs to Phosphatidylinositol-3-kinase related kinase superfamily. The signaling pathways of mTOR are integrated through the protein complexes of mTORC1 and mTORC2. mTORC1 controls protein synthesis, cell growth, proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. Dysregulation of the mTOR pathway has been implicated in the pathophysiology of a number of disease conditions, including cancer, cardiovascular, neurodegenerative, and various renal diseases. The hyperactivation of the mTOR pathway leads to increase in cell growth and proliferation and also has been documented to stimulate tumor growth. Therefore, investigation of the involvement of mTOR and its downstream pathways in various diseases intensively preoccupied scientific community. The present review is focussed on recent advances in the understanding of the mTOR signaling pathway and its role in health and various diseases.
Collapse
Affiliation(s)
- Avileen Kaur
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I. S. F. College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
266
|
Mizuno S, Takeichi T, Sato J, Nakamura M, Goto H, Sugiura K, Akiyama M. Multiple keratotic papules and plaques on the trunk in Cowden's disease with MALT lymphoma. J Dermatol 2017; 45:238-240. [PMID: 28391632 DOI: 10.1111/1346-8138.13851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sayaka Mizuno
- Department of Dermatology, Nagoya University, Nagoya, Japan
| | | | - Junichi Sato
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | | |
Collapse
|
267
|
Narbonne P, Maddox PS, Labbé JC. DAF-18/PTEN signals through AAK-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation. PLoS Genet 2017; 13:e1006738. [PMID: 28410423 PMCID: PMC5409174 DOI: 10.1371/journal.pgen.1006738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/28/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Under replete growth conditions, abundant nutrient uptake leads to the systemic activation of insulin/IGF-1 signalling (IIS) and the promotion of stem cell growth/proliferation. Activated IIS can stimulate the ERK/MAPK pathway, the activation of which also supports optimal stem cell proliferation in various systems. Stem cell proliferation rates can further be locally refined to meet the resident tissue's need for differentiated progeny. We have recently shown that the accumulation of mature oocytes in the C. elegans germ line, through DAF-18/PTEN, inhibits adult germline stem cell (GSC) proliferation, despite high systemic IIS activation. We show here that this feedback occurs through a novel cryptic signalling pathway that requires PAR-4/LKB1, AAK-1/AMPK and PAR-5/14-3-3 to inhibit the activity of MPK-1/MAPK, antagonize IIS, and inhibit both GSC proliferation and the production of additional oocytes. Interestingly, our results imply that DAF-18/PTEN, through PAR-4/LKB1, can activate AAK-1/AMPK in the absence of apparent energy stress. As all components are conserved, similar signalling cascades may regulate stem cell activities in other organisms and be widely implicated in cancer.
Collapse
Affiliation(s)
- Patrick Narbonne
- Department of Pathology and Cell Biology, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Paul S. Maddox
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, United States of America
| | - Jean-Claude Labbé
- Department of Pathology and Cell Biology, Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
268
|
Lumish HS, Steinfeld H, Koval C, Russo D, Levinson E, Wynn J, Duong J, Chung WK. Impact of Panel Gene Testing for Hereditary Breast and Ovarian Cancer on Patients. J Genet Couns 2017; 26:1116-1129. [PMID: 28357778 DOI: 10.1007/s10897-017-0090-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
Recent advances in next generation sequencing have enabled panel gene testing, or simultaneous testing for mutations in multiple genes for a clinical condition. With more extensive and widespread genetic testing, there will be increased detection of genes with moderate penetrance without established clinical guidelines and of variants of uncertain significance (VUS), or genetic variants unknown to either be disease-causing or benign. This study surveyed 232 patients who underwent genetic counseling for hereditary breast and ovarian cancer to examine the impact of panel gene testing on psychological outcomes, patient understanding, and utilization of genetic information. The survey used standardized instruments including the Impact of Event Scale (IES), Multidimensional Impact of Cancer Risk Assessment (MICRA), Satisfaction with Decision Instrument (SWD), Ambiguity Tolerance Scale (AT-20), genetics knowledge, and utilization of genetic test results. Study results suggested that unaffected individuals with a family history of breast or ovarian cancer who received positive results were most significantly impacted by intrusive thoughts, avoidance, and distress. However, scores were also modestly elevated among unaffected patients with a family history of breast and ovarian cancer who received VUS, highlighting the impact of ambiguous results that are frequent among patients undergoing genetic testing with large panels of genes. Potential risk factors for increased genetic testing-specific distress in this study included younger age, black or African American race, Hispanic origin, lower education level, and lower genetic knowledge and highlight the need for developing strategies to provide effective counseling and education to these communities, particularly when genetic testing utilizes gene panels that more commonly return VUS. More detailed pre-test education and counseling may help patients appreciate the probability of various types of test results and how results would be used clinically, and allow them to make more informed decisions about the type of genetic testing to select.
Collapse
Affiliation(s)
- Heidi S Lumish
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hallie Steinfeld
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carrie Koval
- Division of Clinical Genetics, New York Presbyterian Hospital, New York, NY, USA
| | - Donna Russo
- Division of Clinical Genetics, New York Presbyterian Hospital, New York, NY, USA
| | - Elana Levinson
- Division of Clinical Genetics, New York Presbyterian Hospital, New York, NY, USA
| | - Julia Wynn
- Division of Clinical Genetics, New York Presbyterian Hospital, New York, NY, USA
| | - James Duong
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA. .,Division of Molecular Genetics, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.
| |
Collapse
|
269
|
Nguyen KA, Syed JS, Shuch B. Hereditary Kidney Cancer Syndromes and Surgical Management of the Small Renal Mass. Urol Clin North Am 2017; 44:155-167. [PMID: 28411908 DOI: 10.1016/j.ucl.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The management of patients with hereditary kidney cancers presents unique challenges to clinicians. In addition to an earlier age of onset compared with patients with sporadic kidney cancer, those with hereditary kidney cancer syndromes often present with bilateral and/or multifocal renal tumors and are at risk for multiple de novo lesions. This population of patients may also present with extrarenal manifestations, which adds an additional layer of complexity. Physicians who manage these patients should be familiar with the underlying clinical characteristics of each hereditary kidney cancer syndrome and the suggested surgical approaches and recommendations of genetic testing for at-risk individuals.
Collapse
Affiliation(s)
- Kevin A Nguyen
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Jamil S Syed
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Brian Shuch
- Department of Radiology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA; Department of Urology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA.
| |
Collapse
|
270
|
Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat Chem Biol 2017; 13:415-424. [PMID: 28192414 DOI: 10.1038/nchembio.2297] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.
Collapse
|
271
|
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 2017; 37:BSR20160432. [PMID: 28082369 PMCID: PMC5301276 DOI: 10.1042/bsr20160432] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Collapse
|
272
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
273
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
274
|
Kennedy RA, Thavaraj S, Diaz-Cano S. An Overview of Autosomal Dominant Tumour Syndromes with Prominent Features in the Oral and Maxillofacial Region. Head Neck Pathol 2017; 11:364-376. [PMID: 28110467 PMCID: PMC5550396 DOI: 10.1007/s12105-017-0778-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/07/2017] [Indexed: 12/16/2022]
Abstract
Several autosomal dominant inherited tumour syndromes demonstrate prominent features in the oral and maxillofacial region. Although multiple organ systems are frequently involved, the target organs more frequently affected are the skin (nevoid basal cell carcinoma syndrome, Brooke-Spiegler syndrome, Birt-Hogg-Dube syndrome and Muir-Torre syndrome), gastrointestinal tract (Peutz-Jegher syndrome and Gardner syndrome) or endocrine system (multiple endocrine neoplasia type 2b and hyperparathyroidism-jaw tumour syndrome). In some syndromes, the disease is multisystem with skin index lesions presenting in the head and neck (Cowden syndrome and tuberous sclerosis complex). The pertinent features of these syndromes are reviewed with a systems-based approach, emphasising their clinical impact and diagnosis.
Collapse
Affiliation(s)
- Robert A. Kennedy
- Head and Neck Pathology, King’s College London Dental Institute, Guy’s & St, NHS Foundation Trust, London, SE1 9RT UK ,Head and Neck Pathology, Guy’s Hospital, Floor 4, Tower Wing, Great Maze Pond, London, SE1 9RT UK
| | - Selvam Thavaraj
- Head and Neck Pathology, King’s College London Dental Institute, Guy’s & St, NHS Foundation Trust, London, SE1 9RT UK
| | - Salvador Diaz-Cano
- Department of Histopathology, King’s College Hospital, London, SE5 9R UK
| |
Collapse
|
275
|
Lv XP. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncol Lett 2017; 13:1499-1508. [PMID: 28454282 PMCID: PMC5403708 DOI: 10.3892/ol.2017.5629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Gastrointestinal (GI) tract cancers that arise due to genetic mutations affect a large number of individuals worldwide. Even though many of the GI tract cancers arise sporadically, few of these GI tract cancers harboring a hereditary predisposition are now recognized and well characterized. These include Cowden syndrome, MUTYH-associated polyposis, hereditary pancreatic cancer, Lynch syndrome, Peutz-Jeghers syndrome, familial adenomatous polyposis (FAP), attenuated FAP, serrated polyposis syndrome, and hereditary gastric cancer. Molecular characterization of the genes that are involved in these syndromes was useful in the development of genetic testing for diagnosis and also facilitated understanding of the genetic basis of GI cancers. Current knowledge on the genetics of GI cancers with emphasis on heritability and germ line mutations forms the basis of the present review.
Collapse
Affiliation(s)
- Xiao-Peng Lv
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
276
|
Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun 2017; 8:14328. [PMID: 28094257 PMCID: PMC5247606 DOI: 10.1038/ncomms14328] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling. Pten is known to regulate haematopoietic stem cell functions. Here the authors show that Pten alteration of Notch signalling has stage-specific muscle regenerative functions in muscle stem cells by preventing premature differentiation of quiescent cells and enhancing the self-renewal of activated cells.
Collapse
|
277
|
Madhunapantula SV, Robertson GP. Targeting protein kinase-b3 (akt3) signaling in melanoma. Expert Opin Ther Targets 2017; 21:273-290. [PMID: 28064546 DOI: 10.1080/14728222.2017.1279147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and
Collapse
Affiliation(s)
- SubbaRao V Madhunapantula
- a Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry , JSS Medical College, Jagadguru Sri Shivarathreeshwara University (Accredited 'A' Grade by NAAC and Ranked 35 by National Institutional Ranking Framework (NIRF)-2015, Ministry of Human Resource Development, Government of India) , Mysuru , India
| | - Gavin P Robertson
- b Department of Pharmacology , The Pennsylvania State University College of Medicine , Hershey , PA , USA.,c Department of Pathology , The Pennsylvania State University College of Medicine , Hershey , PA , USA.,d Department of Dermatology , The Pennsylvania State University College of Medicine , Hershey , PA , USA.,e Department of Surgery , The Pennsylvania State University College of Medicine , Hershey , PA , USA.,f The Melanoma Center , The Pennsylvania State University College of Medicine , Hershey , PA , USA.,g The Melanoma Therapeutics Program , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
278
|
Biswal BN, Das SN, Das BK, Rath R. Alteration of cellular metabolism in cancer cells and its therapeutic prospects. J Oral Maxillofac Pathol 2017; 21:244-251. [PMID: 28932034 PMCID: PMC5596675 DOI: 10.4103/jomfp.jomfp_60_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transformation of a normal cell into a cancerous phenotype is essentially backed by genetic mutations that trigger several oncogenic signaling pathways. These signaling pathways rewire the cellular metabolism to meet the bioenergetic and biomass requirement of proliferating cell, which is different from a quiescent cell. Although the change of metabolism in a cancer cell was observed and studied in the mid-20th century, it was not adequate to explain oncogenesis. Now, equipped with a revolution of oncogenes, we have a genetic basis to explain the transformation. Through several studies, it is clear now that such metabolic alterations not only promote cancer progression but also contribute to the chemoresistance of cancer. Targeting specific enzymes and combinations of enzymes can improve the efficacy of cancer therapy and help to overcome the therapeutic resistance.
Collapse
Affiliation(s)
- Biranchi Narayan Biswal
- Department of Oral Pathology and Microbiology, S.C.B. Dental College and Hospital, Cuttack, Odisha, India
| | - Surya Narayan Das
- Department of Oral Pathology and Microbiology, S.C.B. Dental College and Hospital, Cuttack, Odisha, India
| | - Bijoy Kumar Das
- Department of Oral Pathology and Microbiology, S.C.B. Dental College and Hospital, Cuttack, Odisha, India
| | - Rachna Rath
- Department of Oral Pathology and Microbiology, S.C.B. Dental College and Hospital, Cuttack, Odisha, India
| |
Collapse
|
279
|
de Gouvea ACRC, Garber JE. Breast Cancer Genetics. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
280
|
Elder JE, Hardikar W. Ocular Manifestations of Gastrointestinal Disease. THE EYE IN PEDIATRIC SYSTEMIC DISEASE 2017:263-293. [DOI: 10.1007/978-3-319-18389-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
281
|
Abstract
A genome-wide association study (GWAS) was conducted to identify expression quantitative trait loci (eQTLs) for the genes involved in phosphatidylinositol-3-kinase/v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway.Data on mRNA expression of 341 genes in lymphoblastoid cell lines of 373 Europeans recruited by the 1000 Genomes Project using Illumina HiSeq2000 were utilized. We used their genotypes at 5,941,815 nucleotide variants obtained by Genome Analyzer II and SOLiD.The association analysis revealed 4166 nucleotide variants associated with expression of 85 genes (P < 5 × 10). A total of 73 eQTLs were identified as association signals for the expression of multiple genes. They included 9 eQTLs for both of the genes encoding collagen type I alpha 1 (COL1A1) and integrin alpha 11 (ITGA11), which synthesize a major complex of plasma membrane. They also included eQTLs for type IV collagen molecules; 13 eQTLs for both collagen type IV alpha 1 (COL4A1) and collagen type IV alpha 2 (COL4A2) and 18 eQTLs for both collagen type IV alpha 5 (COL4A5) and collagen type IV alpha 6 (COL4A6). Some genes expressed by the eQTLs might induce expression of the genes encoding type IV collagen. One eQTL (rs16871986) was located in the promoter of palladin (PALLD) gene which might synthesize collagen by activating fibroblasts through the PI3K/AKT pathway. Another eQTL (rs34845474) was located in an enhancer of cadherin related family member 3 (CDHR3) gene which can mediate cell adhesion.This study showed a profile of eQTLs for the genes involved in the PI3K/AKT pathway using a healthy population, revealing 73 eQTLs associated with expression of multiple genes. They might be candidates of common variants in predicting genetic susceptibility to cancer and in targeting cancer therapy. Further studies are required to examine their underlying mechanisms for regulating expression of the genes.
Collapse
|
282
|
Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer 2016; 23:R577-R595. [PMID: 27807061 DOI: 10.1530/erc-16-0067] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Familial non-medullary thyroid cancer (FNMTC) constitutes 3-9% of all thyroid cancers. Out of all FNMTC cases, only 5% in the syndromic form has well-studied driver germline mutations. These associated syndromes include Cowden syndrome, familial adenomatous polyposis, Gardner syndrome, Carney complex type 1, Werner syndrome and DICER1 syndrome. It is important for the clinician to recognize these phenotypes so that genetic counseling and testing can be initiated to enable surveillance for associated malignancies and genetic testing of family members. The susceptibility chromosomal loci and genes of 95% of FNMTC cases remain to be characterized. To date, 4 susceptibility genes have been identified (SRGAP1 gene (12q14), TITF-1/NKX2.1 gene (14q13), FOXE1 gene (9q22.33) and HABP2 gene (10q25.3)), out of which only the FOXE1 and the HABP2 genes have been validated by separate study groups. The causal genes located at the other 7 FNMTC-associated chromosomal loci (TCO (19q13.2), fPTC/ PRN (1q21), FTEN (8p23.1-p22), NMTC1 (2q21), MNG1 (14q32), 6q22, 8q24) have yet to be identified. Increasingly, gene regulatory mechanisms (miRNA and enhancer elements) are recognized to affect gene expression and FNMTC tumorigenesis. With newer sequencing technique, along with functional studies, there has been progress in the understanding of the genetic basis of FNMTC. In our review, we summarize the FNMTC studies to date and provide an update on the recently reported susceptibility genes including novel germline SEC23B variant in Cowden syndrome, SRGAP1 gene, FOXE1 gene and HABP2 genes in non-syndromic FNMTC.
Collapse
Affiliation(s)
- Samantha Peiling Yang
- Endocrinology DivisionDepartment of Medicine, National University Hospital of Singapore, Singapore, Singapore
- Yong Loo Lin School of MedicineNational University of Singapore, Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics ServiceDivision of Medical Oncology, National Cancer Centre, Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
283
|
Mittal P, Wang X, Rajkovic A. The Role of Mediator Complex Subunit 12 in Leiomyoma Biology. CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
284
|
Heaney RM, Farrell M, Stokes M, Gorey T, Murray D. Cowden Syndrome: Serendipitous Diagnosis in Patients with Significant Breast Disease. Case Series and Literature Review. Breast J 2016; 23:90-94. [PMID: 27886412 DOI: 10.1111/tbj.12691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cowden syndrome (CS) is a multi-system disease that carries an increased lifetime risk of developing certain cancers as well as benign neoplasms. The presence of features of CS in the general unaffected population results in difficulties in the recognition and diagnosis of this condition. Early diagnosis is essential to prevent the development of malignant neoplasms, yet despite the introduction of diagnostic criteria and risk calculators, accurate diagnosis remains a challenge. We identified three patients who presented to the symptomatic breast unit of a University Teaching Hospital over a period of 12 weeks who subsequently were diagnosed with CS. In this article, we discuss their clinical presentations as well as their path to diagnosis. The short timeframe between the presentations of these patients undoubtedly expedited their diagnosis. Upon application of internationally recognized diagnostic criteria, only two out of our three patients were accurately diagnosed. The risk of breast cancer in CS is comparable with that found in Hereditary Breast and Ovarian Cancer Syndrome and while a protocol for breast screening in these patients exists in most centres, no such protocol exists for patients with CS in our institution. The recommended cancer surveillance programs for patients with CS have not been found to prolong survival, however. CS consists of a vast array of diseases that span the various specialties and the subsequent varied phenotypic presentation poses diagnostic difficulties for clinicians as emphasized in our series. Continued research is required to improve recognition and diagnosis and will hopefully result in the emergence of life prolonging strategies.
Collapse
Affiliation(s)
| | | | - Maurice Stokes
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Tom Gorey
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Dylan Murray
- Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
285
|
Chen Y, Fu F, Lin Y, Qiu L, Lu M, Zhang J, Qiu W, Yang P, Wu N, Huang M, Wang C. The precision relationships between eight GWAS-identified genetic variants and breast cancer in a Chinese population. Oncotarget 2016; 7:75457-75467. [PMID: 27705907 PMCID: PMC5342752 DOI: 10.18632/oncotarget.12255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022] Open
Abstract
Some of the new breast cancer susceptibility loci discovered in recent Genome-wide association studies (GWASs) have not been confirmed in Chinese populations. To determine whether eight novel Single-Nucleotide Polymorphisms (SNPs) have associations with breast cancer risk in women from southeast China, we conducted a case-control study of 1,156 breast cancer patients and 1,256 healthy controls. We first validated that the SNPs rs12922061, rs2290203, and rs2981578 were associated with overall breast cancer risk in southeast Chinese women, with the per-allele OR of 1.209 (95%CI: 1.064-1.372), 1.176 (95%CI: 1.048-1.320), and 0.852 (95%CI: 0.759-0.956), respectively. Rs12922061 and rs2290203 even passed the threshold for Bonferroni correction (P value: 0.00625). In stratified analysis, we found another three SNPs were significantly associated within different subgroups. However, after Bonferroni correction (P value: 0.000446), there were no statistically significant was observed. In gene-environment interaction analysis, we observed gene-environment interactions played a potential role of in the risk of breast cancer. These findings provide new insight into the associations between the genetic susceptibility and fine classifications of breast cancer. Based on these results, we encourage further large series studies and functional research to confirm these finding.
Collapse
Affiliation(s)
- Yazhen Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Fangmeng Fu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Yuxiang Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Lin Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Minjun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Jiantang Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Wei Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Peidong Yang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Na Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Meng Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, Fujian Province, 350001, China
| | - Chuan Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| |
Collapse
|
286
|
Deb S, Lakhani SR, Ottini L, Fox SB. The cancer genetics and pathology of male breast cancer. Histopathology 2016; 68:110-8. [PMID: 26768033 DOI: 10.1111/his.12862] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Male breast cancer (MBC) is an uncommon and poorly understood disease. Recent molecular studies have shown important differences from female breast cancer which are likely to influence treatment strategies from the current female-based management towards a more tailored approach. Significantly more MBCs than female breast cancers arise with an underlying germline cancer predisposition, and display a vastly different penetrance compared with females. Furthermore, the genophenotypical association of basal-like cancer with BRCA1 present in female breast cancer is not observed in male breast cancer. Differences in somatic changes between male and female breast cancer have also been reported, with particular enrichment of PIK3CA mutations and a paucity of TP53 mutations. In general, chromosomal-based changes, in particular regions of gains, are seen more frequently in male than female breast cancer and methylation is seen less frequently. Clinically, several molecular subtypes with prognostic relevance have been described, including chromosomal complex high and methylation high groups, and subgroups with profiling signatures pertaining to epithelial mesenchymal transition and hormonal therapy insensitivity. As with female breast cancer, attention to male specific multicentre trials based on the individual characteristics are needed, together with establishment of reliable preclinical models to understand more clearly the pathogenesis of male breast cancer and improve the general poor outcome of this disease.
Collapse
Affiliation(s)
- Siddhartha Deb
- Department of Pathology, Peter MacCallum Cancer Centre, Department of Pathology and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia.,Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Melbourne, Vic., Australia
| | - Sunil R Lakhani
- Department of Anatomical Pathology, Pathology Queensland, University of Queensland, Brisbane, Qld, Australia.,Department of Molecular and Cellular Pathology, School of Medicine, University of Queensland, Brisbane, Qld, Australia.,The Royal Brisbane and Women's Hospital, University of Queensland Centre for Clinical Research, Brisbane, Qld, Australia
| | - Laura Ottini
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Department of Pathology and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
287
|
Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol 2016; 82:943-56. [PMID: 27232857 PMCID: PMC5137819 DOI: 10.1111/bcp.13021] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K)-AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K-AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well-characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT.
Collapse
Affiliation(s)
- Prabhjot S Mundi
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jasgit Sachdev
- Translational Genomics Research Institute, Virginia G. Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA
| | - Carolyn McCourt
- Division of Gynecologic Oncology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Kevin Kalinsky
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
288
|
Zhang Z, Hou SQ, He J, Gu T, Yin Y, Shen WH. PTEN regulates PLK1 and controls chromosomal stability during cell division. Cell Cycle 2016; 15:2476-85. [PMID: 27398835 PMCID: PMC5026806 DOI: 10.1080/15384101.2016.1203493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Sheng-Qi Hou
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Jinxue He
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Tingting Gu
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Yuxin Yin
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
- Present address: Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wen H. Shen
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
289
|
Management of renal cell carcinoma in young patients and patients with hereditary syndromes. Curr Opin Urol 2016; 26:396-404. [DOI: 10.1097/mou.0000000000000322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
290
|
Abstract
Malignant melanoma is a rare, often fatal form of skin cancer with a complex multigenic etiology. The incidence of melanoma is increasing at an alarming rate. A number of heritable factors contribute to a patient's overall melanoma risk, including response to ultraviolet light, nevus number, and pigmentation characteristics, such as eye and hair color. Approximately 5%-10% of melanoma cases are familial, yet the majority of familial cases lack identifiable germ-line mutations in known susceptibility genes. Additionally, most familial melanomas lack germ-line mutations in genes that are commonly mutated in sporadic melanoma. Candidate and systematic genome-wide association studies have led to an improved understanding of the risk factors for melanoma and the identification of susceptibility genes. In this review, we provide an overview of the major risk factors and known genes implicated in familial melanoma susceptibility.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Amanda Truong
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Laurence J Meyer
- Department of Dermatology, University of Utah, Salt Lake City, UT; Veterans Administration Hospital, Salt Lake City, UT.
| |
Collapse
|
291
|
Nielsen FC, van Overeem Hansen T, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 2016; 16:599-612. [PMID: 27515922 DOI: 10.1038/nrc.2016.72] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
292
|
Evans DG, Astley S, Stavrinos P, Harkness E, Donnelly LS, Dawe S, Jacob I, Harvie M, Cuzick J, Brentnall A, Wilson M, Harrison F, Payne K, Howell A. Improvement in risk prediction, early detection and prevention of breast cancer in the NHS Breast Screening Programme and family history clinics: a dual cohort study. PROGRAMME GRANTS FOR APPLIED RESEARCH 2016. [DOI: 10.3310/pgfar04110] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BackgroundIn the UK, women are invited for 3-yearly mammography screening, through the NHS Breast Screening Programme (NHSBSP), from the ages of 47–50 years to the ages of 69–73 years. Women with family histories of breast cancer can, from the age of 40 years, obtain enhanced surveillance and, in exceptionally high-risk cases, magnetic resonance imaging. However, no NHSBSP risk assessment is undertaken. Risk prediction models are able to categorise women by risk using known risk factors, although accurate individual risk prediction remains elusive. The identification of mammographic breast density (MD) and common genetic risk variants [single nucleotide polymorphisms (SNPs)] has presaged the improved precision of risk models.ObjectivesTo (1) identify the best performing model to assess breast cancer risk in family history clinic (FHC) and population settings; (2) use information from MD/SNPs to improve risk prediction; (3) assess the acceptability and feasibility of offering risk assessment in the NHSBSP; and (4) identify the incremental costs and benefits of risk stratified screening in a preliminary cost-effectiveness analysis.DesignTwo cohort studies assessing breast cancer incidence.SettingHigh-risk FHC and the NHSBSP Greater Manchester, UK.ParticipantsA total of 10,000 women aged 20–79 years [Family History Risk Study (FH-Risk); UK Clinical Research Network identification number (UKCRN-ID) 8611] and 53,000 women from the NHSBSP [aged 46–73 years; Predicting the Risk of Cancer At Screening (PROCAS) study; UKCRN-ID 8080].InterventionsQuestionnaires collected standard risk information, and mammograms were assessed for breast density by a number of techniques. All FH-Risk and 10,000 PROCAS participants participated in deoxyribonucleic acid (DNA) studies. The risk prediction models Manual method, Tyrer–Cuzick (TC), BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) and Gail were used to assess risk, with modelling based on MD and SNPs. A preliminary model-based cost-effectiveness analysis of risk stratified screening was conducted.Main outcome measuresBreast cancer incidence.Data sourcesThe NHSBSP; cancer registration.ResultsA total of 446 women developed incident breast cancers in FH-Risk in 97,958 years of follow-up. All risk models accurately stratified women into risk categories. TC had better risk precision than Gail, and BOADICEA accurately predicted risk in the 6268 single probands. The Manual model was also accurate in the whole cohort. In PROCAS, TC had better risk precision than Gail [area under the curve (AUC) 0.58 vs. 0.54], identifying 547 prospective breast cancers. The addition of SNPs in the FH-Risk case–control study improved risk precision but was not useful inBRCA1(breast cancer 1 gene) families. Risk modelling of SNPs in PROCAS showed an incremental improvement from using SNP18 used in PROCAS to SNP67. MD measured by visual assessment score provided better risk stratification than automatic measures, despite wide intra- and inter-reader variability. Using a MD-adjusted TC model in PROCAS improved risk stratification (AUC = 0.6) and identified significantly higher rates (4.7 per 10,000 vs. 1.3 per 10,000;p < 0.001) of high-stage cancers in women with above-average breast cancer risks. It is not possible to provide estimates of the incremental costs and benefits of risk stratified screening because of lack of data inputs for key parameters in the model-based cost-effectiveness analysis.ConclusionsRisk precision can be improved by using DNA and MD, and can potentially be used to stratify NHSBSP screening. It may also identify those at greater risk of high-stage cancers for enhanced screening. The cost-effectiveness of risk stratified screening is currently associated with extensive uncertainty. Additional research is needed to identify data needed for key inputs into model-based cost-effectiveness analyses to identify the impact on health-care resource use and patient benefits.Future workA pilot of real-time NHSBSP risk prediction to identify women for chemoprevention and enhanced screening is required.FundingThe National Institute for Health Research Programme Grants for Applied Research programme. The DNA saliva collection for SNP analysis for PROCAS was funded by the Genesis Breast Cancer Prevention Appeal.
Collapse
Affiliation(s)
- D Gareth Evans
- Department of Genomic Medicine, Institute of Human Development, Manchester Academic Health Science Centre (MAHSC), Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Susan Astley
- Institute of Population Health, Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Paula Stavrinos
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| | - Elaine Harkness
- Institute of Population Health, Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Louise S Donnelly
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| | - Sarah Dawe
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| | - Ian Jacob
- Department of Health Economics, University of Manchester, Manchester, UK
| | - Michelle Harvie
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| | - Jack Cuzick
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Adam Brentnall
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Mary Wilson
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| | | | - Katherine Payne
- Department of Health Economics, University of Manchester, Manchester, UK
| | - Anthony Howell
- Institute of Population Health, Centre for Imaging Sciences, University of Manchester, Manchester, UK
- The Nightingale Centre and Genesis Prevention Centre, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
293
|
Oral manifestations of phosphatase and tensin homolog hamartoma tumor syndrome: a report of three cases. J Am Dent Assoc 2016; 145:950-4. [PMID: 25170002 DOI: 10.14219/jada.2014.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS) encompasses several rare disorders linked to mutations of the PTEN gene, including Cowden disease (CD) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). The authors present a case series involving patients with characteristic periodontal features. CASE DESCRIPTIONS The authors assessed three patients, two of whom already had been diagnosed with BRRS: a 60-year-old man and his 33-year-old daughter, both of whom had pathognomonic oral and cutaneous manifestations, and a 26-year-old man affected by multiple micropapillomatous and keratotic periodontal lesions, through which the diagnosis of CD was made. All three patients were referred to the oral medicine unit of the authors' institution because of asymptomatic lesions of the oral mucosa, and two of them underwent incisional biopsy. CONCLUSIONS This series of cases emphasizes that oral health care workers always should perform a more careful visual inspection of the oral cavity without neglecting a macroscopic analysis of the gingival pattern. The knowledge of these diseases and their clinical features, associated with a multidisciplinary approach, allows clinicians to achieve remarkable diagnostic success. PRACTICAL IMPLICATIONS Gingival manifestations may represent one of the primary clinically detectable manifestations of these rare systemic diseases, in respect of which an early diagnosis could decrease the associated mortality and morbidity.
Collapse
|
294
|
Li X, Tran KM, Aziz KE, Sorokin AV, Chen J, Wang W. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Mol Cell Proteomics 2016; 15:3030-44. [PMID: 27432908 DOI: 10.1074/mcp.m116.060277] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphorylation, which plays a vital role in a variety of human cellular processes, is coordinated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Genomic studies provide compelling evidence that PTPs are frequently mutated in various human cancers, suggesting that they have important roles in tumor suppression. However, the cellular functions and regulatory machineries of most PTPs are still largely unknown. To gain a comprehensive understanding of the protein-protein interaction network of the human PTP family, we performed a global proteomic study. Using a Minkowski distance-based unified scoring environment (MUSE) for the data analysis, we identified 940 high confidence candidate-interacting proteins that comprise the interaction landscape of the human PTP family. Through a gene ontology analysis and functional validations, we connected the PTP family with several key signaling pathways or cellular functions whose associations were previously unclear, such as the RAS-RAF-MEK pathway, the Hippo-YAP pathway, and cytokinesis. Our study provides the first glimpse of a protein interaction network for the human PTP family, linking it to a number of crucial signaling events, and generating a useful resource for future studies of PTPs.
Collapse
Affiliation(s)
- Xu Li
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Kim My Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Kathryn E Aziz
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Alexey V Sorokin
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030;
| | - Wenqi Wang
- §Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| |
Collapse
|
295
|
Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K, Kato T, Okano T, Takashima T, Kobayashi K, Kimura M, Kunitsu T, Maruo Y, Kanegane H, Takagi M, Yoshida K, Okuno Y, Muramatsu H, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Kojima S, Ogawa S, Ohara O, Okada S, Kobayashi M, Morio T, Nonoyama S. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 2016; 138:1672-1680.e10. [PMID: 27426521 DOI: 10.1016/j.jaci.2016.03.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6. OBJECTIVE This study aimed to identify novel genes responsible for APDS. METHODS Whole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays. RESULTS We identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway. CONCLUSION PTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.
Collapse
Affiliation(s)
- Yuki Tsujita
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan; Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kiyotaka Zaha
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Mitsuaki Kimura
- Department of Allergy and Clinical Immunology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Tomoaki Kunitsu
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
296
|
Gammon A, Jasperson K, Champine M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management. Appl Clin Genet 2016; 9:83-92. [PMID: 27471403 PMCID: PMC4948690 DOI: 10.2147/tacg.s41947] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cowden syndrome (CS) is an often difficult to recognize hereditary cancer predisposition syndrome caused by mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN). In addition to conferring increased cancer risks, CS also predisposes individuals to developing hamartomatous growths in many areas of the body. Due to the rarity of CS, estimates vary on the penetrance of certain phenotypic features, such as macrocephaly and skin findings (trichilemmomas, mucocutaneous papules), as well as the conferred lifetime cancer risks. To address this variability, separate clinical diagnostic criteria and PTEN testing guidelines have been created to assist clinicians in the diagnosis of CS. As knowledge of CS increases, making larger studies of affected patients possible, these criteria continue to be refined. Similarly, the management guidelines for cancer screening and risk reduction in patients with CS continue to be updated. This review will summarize the current literature on CS to assist clinicians in staying abreast of recent advances in CS knowledge, diagnostic approaches, and management.
Collapse
Affiliation(s)
- Amanda Gammon
- Huntsman Cancer Institute Family Cancer Assessment Clinic Salt Lake City, UT, USA
| | - Kory Jasperson
- Huntsman Cancer Institute Family Cancer Assessment Clinic Salt Lake City, UT, USA
- Ambry Genetics Medical Affairs Aliso Viejo, CA USA
| | - Marjan Champine
- Huntsman Cancer Institute Family Cancer Assessment Clinic Salt Lake City, UT, USA
| |
Collapse
|
297
|
Nitta N, Nakasu S, Shima A, Nozaki K. mTORC1 signaling in primary central nervous system lymphoma. Surg Neurol Int 2016; 7:S475-80. [PMID: 27512609 PMCID: PMC4960920 DOI: 10.4103/2152-7806.185781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) acts as a downstream effector of phosphatidyl-inositol-3 kinase, which is frequently hyperactivated in glioblastoma multiforme and links to cell signaling in cellular proliferation, differentiation, metabolism, and survival. Although many studies have suggested the importance of mTORC1 in tumorigenesis, its role remains unclear in brain tumors other than glioblastoma. Methods: In the present study, we evaluated the activation of mTORC1 in 24 cases of primary central nervous system lymphoma (PCNSL). Results: Immunohistochemical analysis showed overexpression of Rheb, which is immediately upstream of mTORC1, in 20 cases of PCNSL. Immunohistochemical analysis also showed overexpression of phospho-4E-BP1 (Thr37/46) and phospho-S6 (Ser235/236), which are increased after mTORC1 activation as mTORC1 downstream effectors in 17 and 21 cases, respectively. Conclusion: Our data suggest that abnormal activation of the mTORC1 signaling pathway may cause tumor growth in patients with PCNSL.
Collapse
Affiliation(s)
- Naoki Nitta
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Satoshi Nakasu
- Department of Neurosurgery, Kusatsu General Hospital, Shiga, Japan
| | - Ayako Shima
- Department of Neurosurgery, Koto Memorial Hospital, Shiga, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
298
|
Pain M, Darbinyan A, Fowkes M, Shrivastava R. Multiple Meningiomas in a Patient with Cowden Syndrome. J Neurol Surg Rep 2016; 77:e128-33. [PMID: 27563534 PMCID: PMC4996671 DOI: 10.1055/s-0036-1584265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cowden syndrome is a rare, multisystem disease manifesting with increased hamartomas and neoplasms. Though meningioma has been documented in patients with Cowden syndrome, the relationship between these two phenomena is still unclear. CASE DESCRIPTION We report a case of a 43-year-old female patient with a known PTEN mutation and clinical history of Cowden syndrome. A workup of headache demonstrated two skull base meningiomas. At the time of surgery, several additional tiny meningiomas were detected in the same region. CONCLUSIONS The development of multiple meningiomas in a patient with predisposition for tumor is more than coincidental. Though PTEN mutations and deletions have not been shown to be critical for meningioma development, this case challenges that conclusion. In light of recent genetic advances in meningioma molecular pathogenesis, the role of the PTEN/AKT/PI3K pathway is discussed.
Collapse
Affiliation(s)
- Margaret Pain
- Department of Neurosurgery, The Mount Sinai Hospital, New York, New York, United States
| | - Armine Darbinyan
- Department of Pathology, The Mount Sinai Hospital, New York, New York, United States
| | - Mary Fowkes
- Department of Pathology, The Mount Sinai Hospital, New York, New York, United States
| | - Raj Shrivastava
- Department of Neurosurgery, The Mount Sinai Hospital, New York, New York, United States
| |
Collapse
|
299
|
Sheng WZ, Chen YS, Tu CT, He J, Zhang B, Gao WD. MicroRNA-21 promotes phosphatase gene and protein kinase B/phosphatidylinositol 3-kinase expression in colorectal cancer. World J Gastroenterol 2016; 22:5532-5539. [PMID: 27350731 PMCID: PMC4917613 DOI: 10.3748/wjg.v22.i24.5532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the regulatory mechanism of the target gene of microRNA-21 (miR-21), phosphatase gene (PTEN), and its downstream proteins, protein kinase B (AKT) and phosphatidylinositol 3-kinase (PI3K), in colorectal cancer (CRC) cells.
METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of miR-21 and PTEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of PTEN mRNA and its downstream proteins AKT and PI3K in HCT116 cells after downregulating miR-21 were investigated.
RESULTS: Comparing the miR-21 expression in CRC cells, the expression levels of miR-21 were highest in HCT116 cells, and the expression levels of miR-21 were lowest in SW480 cells. In comparing miR-21 and PTEN expression in CRC cells, we found that the protein expression levels of miR-21 and PTEN were inversely correlated (P < 0.05); when miR-21 expression was reduced, mRNA expression levels of PTEN did not significantly change (P > 0.05), but the expression levels of its protein significantly increased (P < 0.05). In comparing the levels of PTEN protein and downstream AKT and PI3K in HCT116 cells after downregulation of miR-21 expression, the levels of AKT and PI3K protein expression significantly decreased (P < 0.05).
CONCLUSION: PTEN is one of the direct target genes of miR-21. Thus, phosphatase gene and its downstream AKT and PI3K expression levels can be regulated by regulating the expression levels of miR-21, which in turn regulates the development of CRC.
Collapse
|
300
|
XTEN as Biological Alternative to PEGylation Allows Complete Expression of a Protease-Activatable Killin-Based Cytostatic. PLoS One 2016; 11:e0157193. [PMID: 27295081 PMCID: PMC4905650 DOI: 10.1371/journal.pone.0157193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Increased effectiveness and reduced side effects are general goals in drug research, especially important in cancer therapy. The aim of this study was to design a long-circulating, activatable cytostatic drug that is completely producible in E. coli. Crucial for this goal was the novel unstructured polypeptide XTEN, which acts like polyethylene glycol (PEG) but has many important advantages. Most importantly, it can be produced in E. coli, is less immunogenic, and is biodegradable. We tested constructs containing a fragment of Killin as cytostatic/cytotoxic element, a cell-penetrating peptide, an MMP-2 cleavage site for specific activation, and XTEN for long blood circulation and deactivation of Killin. One of three sequence variants was efficiently expressed in E. coli. As typical for XTEN, it allowed efficient purification of the E. coli lysate by a heat step (10 min 75°C) and subsequent anion exchange chromatography using XTEN as purification tag. After 24 h XTEN-Killin reduced the number of viable cells of HT-1080 tumor cell line to 3.8 ±2.0% (p<0.001) compared to untreated controls. In contrast, liver derived non-tumor cells (BRL3A) did not show significant changes in viability. Our results demonstrate the feasibility of completely producing a complex protease-activatable, potentially long-circulating cytostatic/cytotoxic prodrug in E. coli—a concept that could lead to efficient production of highly multifunctional drugs in the future.
Collapse
|