251
|
Venkatesan BM, Elibol OH, Dorvel B, Park K, Bashir R. Research Highlights. Nanomedicine (Lond) 2008. [DOI: 10.2217/17435889.3.5.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- B Murali Venkatesan
- Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - OH Elibol
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - B Dorvel
- Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- BioPhysics Program, University of Illinois, Urban-Champaign, Urbana, IL, USA
| | - K Park
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - R Bashir
- Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
252
|
|
253
|
Xia F, Guo W, Mao Y, Hou X, Xue J, Xia H, Wang L, Song Y, Ji H, Ouyang Q, Wang Y, Jiang L. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 2008; 130:8345-50. [PMID: 18540578 DOI: 10.1021/ja800266p] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Switchable ion channels that are made of membrane proteins play different roles in cellular circuits. Since gating nanopore channels made of proteins can only work in the environment of lipid membrane, they are not fully compatible to the application requirement as a component of those nanodevice systems in which lipid membranes are hard to establish. Here we report a synthetic nanopore-DNA system where single solid-state conical nanopores can be reversibly gated by switching DNA motors immobilized inside the nanopores. High- (on-state) and low- (off-state) conductance states were found within this nanopore-DNA system corresponding to the single-stranded and i-motif structures of the attached DNA motors. The highest gating efficiency indicated as current ratio of on-state versus off-state was found when the length of the attached DNA molecule matched the tip diameter of the nanopore well. This novel nanopore-DNA system, which was gated by collective folding of structured DNA molecules responding to the external stimulus, provided an artificial counterpart of switchable protein-made nanopore channels. The concept of this DNA motor-driven nanopore switch can be used to build novel, biologically inspired nanopore machines with more precisely controlled functions in the near future by replacing the DNA molecules with other functional biomolecules, such as polypeptides or protein enzymes.
Collapse
Affiliation(s)
- Fan Xia
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Uram JD, Ke K, Mayer M. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS NANO 2008; 2:857-72. [PMID: 19206482 DOI: 10.1021/nn700322m] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanopores and submicrometer pores have recently been explored for applications ranging from detection of single molecules, assemblies of nanoparticles, nucleic acids, occurrence of chemical reactions, and unfolding of proteins. Most of these applications rely on monitoring electrical current through these pores, hence the noise and signal bandwidth of these current recordings are critical for achieving accurate and sensitive measurements. In this report, we present a detailed theoretical and experimental study on the noise and signal bandwidth of current recordings from glass and polyethylene terephthalate (PET) membranes that contain a single submicrometer pore or nanopore. We examined the theoretical signal bandwidth of two different pore geometries, and we measured the signal bandwidth of the electronics used to record the ionic current. We also investigated the theoretical noise generated by the substrate material, the pore, and the electronics used to record the current. Employing a combination of theory and experimental results, we were able to predict the noise in current traces recorded from glass and PET pores with no applied voltage with an error of less than 12% in a range of signal bandwidths from 1 to 40 kHz. In approximately half of all experiments, application of a voltage did not significantly increase the noise. In the other half of experiments, however, application of a voltage resulted in an additional source of noise. For these pores, predictions of the noise were usually still accurate within 35% error at signal bandwidths of at least 10 kHz. The power spectra of this extra noise suggested a 1/f(alpha) origin with best fits to the power spectrum for alpha = 0.4-0.8. This work provides the theoretical background and experimental data for understanding the bandwidth requirements and the main sources of noise in current recordings; it will be useful for minimizing noise and achieving accurate recordings.
Collapse
Affiliation(s)
- Jeffrey D Uram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
255
|
Ali M, Schiedt B, Healy K, Neumann R, Ensinger W. Modifying the surface charge of single track-etched conical nanopores in polyimide. NANOTECHNOLOGY 2008; 19:085713. [PMID: 21730744 DOI: 10.1088/0957-4484/19/8/085713] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification.
Collapse
Affiliation(s)
- M Ali
- Department of Materials Science, Darmstadt University of Technology, Petersenstraße 23, D-64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
256
|
Höfler L, Gyurcsányi R. Coarse Grained Molecular Dynamics Simulation of Electromechanically-Gated DNA Modified Conical Nanopores. ELECTROANAL 2008. [DOI: 10.1002/elan.200704058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
257
|
Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS. Nanoprecipitation-assisted ion current oscillations. NATURE NANOTECHNOLOGY 2008; 3:51-7. [PMID: 18654451 DOI: 10.1038/nnano.2007.420] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/23/2007] [Indexed: 05/15/2023]
Abstract
Nanoscale pores exhibit transport properties that are not seen in micrometre-scale pores, such as increased ionic concentrations inside the pore relative to the bulk solution, ionic selectivity and ionic rectification. These nanoscale effects are all caused by the presence of permanent surface charges on the walls of the pore. Here we report a new phenomenon in which the addition of small amounts of divalent cations to a buffered monovalent ionic solution results in an oscillating ionic current through a conical nanopore. This behaviour is caused by the transient formation and redissolution of nanoprecipitates, which temporarily block the ionic current through the pore. The frequency and character of ionic current instabilities are regulated by the potential across the membrane and the chemistry of the precipitate. We discuss how oscillating nanopores could be used as model systems for studying nonlinear electrochemical processes and the early stages of crystallization in sub-femtolitre volumes. Such nanopore systems might also form the basis for a stochastic sensor.
Collapse
Affiliation(s)
- Matthew R Powell
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Healy K, Schiedt B, Morrison AP. Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine (Lond) 2007; 2:875-97. [DOI: 10.2217/17435889.2.6.875] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanopore-based DNA analysis is a new single-molecule technique that involves monitoring the flow of ions through a narrow pore, and detecting changes in this flow as DNA molecules also pass through the pore. It has the potential to carry out a range of laboratory and medical DNA analyses, orders of magnitude faster than current methods. Initial experiments used a protein channel for its pre-defined, precise structure, but since then several approaches for the fabrication of solid-state pores have been developed. These aim to match the capabilities of biochannels, while also providing increased durability, control over pore geometry and compatibility with semiconductor and microfluidics fabrication techniques. This review summarizes each solid-state nanopore fabrication technique reported to date, and compares their advantages and disadvantages. Methods and applications for nanopore surface modification are also presented, followed by a discussion of approaches used to measure pore size, geometry and surface properties. The review concludes with an outlook on the future of solid-state nanopores.
Collapse
Affiliation(s)
- Ken Healy
- University College Cork, Department of Electrical and Electronic Engineering, Ireland
- University of Pennsylvania, Department of Physics and Astronomy, 209 S 33rd Street, Philadelphia, PA 19104, USA
| | - Birgitta Schiedt
- Gesellschaft für Schwerionenforschung, Planckstr. 1, D-64291, Darmstadt, Germany
- Centre National de la Recherche Scientifique, Laboratory for Photonics and Nanostructures, Route de Nozay, F-91460 Marcoussis, France
- Université d’Évry Val d’Essonne, Laboratoire MPI, Bd. François Mitterrand, F-91025 Évry, France
| | - Alan P Morrison
- University College Cork, Department of Electrical and Electronic Engineering, Ireland
| |
Collapse
|
259
|
Abstract
Salt plays a critical role in the physiological activities of cells. We show that ionic strength significantly affects the kinetics of noncovalent interactions in protein channels, as observed in stochastic studies of the transfer of various analytes through pores of wild-type and mutant alpha-hemolysin proteins. As the ionic strength increased, the association rate constant of electrostatic interactions was accelerated, whereas those of both hydrophobic and aromatic interactions were retarded. Dramatic decreases in the dissociation rate constants, and thus increases in the overall reaction formation constants, were observed for all noncovalent interactions studied. The results suggest that with the increase of salt concentration, the streaming potentials for all the protein pores decrease, whereas the preferential selectivities of the pores for either cations or anions drop. Furthermore, results also show that the salt effect on the rate of association of analytes to a pore differs significantly depending on the nature of the noncovalent interactions occurring in the protein channel. In addition to providing new insights into the nature of analyte-protein pore interactions, the salt-dependence of noncovalent interactions in protein pores observed provides a useful means to greatly enhance the sensitivity of the nanopore, which may find useful application in stochastic sensing.
Collapse
|
260
|
Benner S, Chen RJA, Wilson NA, Abu-Shumays R, Hurt N, Lieberman KR, Deamer DW, Dunbar WB, Akeson M. Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. NATURE NANOTECHNOLOGY 2007; 2:718-24. [PMID: 18654412 PMCID: PMC2507869 DOI: 10.1038/nnano.2007.344] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 09/19/2007] [Indexed: 05/20/2023]
Abstract
Nanoscale pores have potential to be used as biosensors and are an established tool for analysing the structure and composition of single DNA or RNA molecules. Recently, nanopores have been used to measure the binding of enzymes to their DNA substrates. In this technique, a polynucleotide bound to an enzyme is drawn into the nanopore by an applied voltage. The force exerted on the charged backbone of the polynucleotide by the electric field is used to examine the enzyme-polynucleotide interactions. Here we show that a nanopore sensor can accurately identify DNA templates bound in the catalytic site of individual DNA polymerase molecules. Discrimination among unbound DNA, binary DNA/polymerase complexes, and ternary DNA/polymerase/deoxynucleotide triphosphate complexes was achieved in real time using finite state machine logic. This technique is applicable to numerous enzymes that bind or modify DNA or RNA including exonucleases, kinases and other polymerases.
Collapse
|
261
|
Affiliation(s)
- Charles R Martin
- Department of Chemistry and the Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
262
|
Abstract
Nanopore-based DNA analysis is a single-molecule technique with revolutionary potential. It promises to carry out a range of analyses, orders of magnitude faster than current methods, including length measurement, specific sequence detection, single-molecule dynamics and even de novo sequencing. The concept involves using an applied voltage to drive DNA molecules through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions and, thus, their structure and length can be determined based on the degree and duration of the resulting current reductions. In this review, I explain the nanopore-based DNA analysis concept and briefly explore its historical foundations, before discussing and summarizing all experimental results reported to date. I conclude with a summary of the obstacles that must be overcome for it to realize its promised potential.
Collapse
Affiliation(s)
- Ken Healy
- University College Cork, Department of Electrical and Electronic Engineering, Ireland.
| |
Collapse
|