251
|
Jacus MO, Daryani VM, Harstead KE, Patel YT, Throm SL, Stewart CF. Pharmacokinetic Properties of Anticancer Agents for the Treatment of Central Nervous System Tumors: Update of the Literature. Clin Pharmacokinet 2016; 55:297-311. [PMID: 26293618 PMCID: PMC4761278 DOI: 10.1007/s40262-015-0319-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant improvement in outcomes for patients with hematologic malignancies and solid tumors over the past 10 years, patients with primary or metastatic brain tumors continue to have a poor prognosis. A primary reason for this is the inability of many chemotherapeutic drugs to penetrate into the brain and brain tumors at concentrations high enough to exert an antitumor effect because of unique barriers and efflux transporters. Several studies have been published recently examining the central nervous system pharmacokinetics of various anticancer drugs in patients with primary and metastatic brain tumors. To summarize recent advances in the field, this review critically presents studies published within the last 9 years examining brain and cerebrospinal fluid penetration of clinically available anticancer agents for patients with central nervous system tumors.
Collapse
Affiliation(s)
- Megan O Jacus
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Vinay M Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - K Elaine Harstead
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yogesh T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stacy L Throm
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
252
|
Chen SR, Qiu HC, Hu Y, Wang Y, Wang YT. Herbal Medicine Offered as an Initiative Therapeutic Option for the Management of Hepatocellular Carcinoma. Phytother Res 2016; 30:863-77. [PMID: 26879574 DOI: 10.1002/ptr.5594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant cancer and is the third leading cause of death worldwide. Effective treatment of this disease is limited by the complicated molecular mechanism underlying HCC pathogenesis. Thus, therapeutic options for HCC management are urgently needed. Targeting the Wnt/β-catenin, Hedgehog, Notch, and Hippo-YAP signaling pathways in cancer stem cell development has been extensively investigated as an alternative treatment. Herbal medicine has emerged as an initiative therapeutic option for HCC management because of its multi-level, multi-target, and coordinated intervention effects. In this article, we summarized the recent progress and clinical benefits of targeting the above mentioned signaling pathways and using natural products such as herbal medicine formulas to treat HCC. Proving the clinical success of herbal medicine is expected to deepen the knowledge on herbal medicine efficiency and hasten the adoption of new therapies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Hong-Cong Qiu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| | - Yang Hu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| |
Collapse
|
253
|
Meani RE, Lim SW, Chang ALS, Kelly JW. Emergence of chemoresistance in a metastatic basal cell carcinoma patient after complete response to hedgehog pathway inhibitor vismodegib (GDC-0449). Australas J Dermatol 2016; 55:218-21. [PMID: 25117162 DOI: 10.1111/ajd.12196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/08/2014] [Indexed: 11/28/2022]
Abstract
Vismodegib (GDC-0449, Genentech, USA), a small molecule inhibitor of the Hedgehog signalling pathway, has potent anti-tumour activity in advanced basal cell carcinoma (BCC). We report a case of a 67-year-old Australian man with metastatic BCC including pulmonary disease with malignant effusion who showed a dramatic complete response to vismodegib but subsequently experienced a recurrence of pulmonary disease, indicative of chemoresistance to vismodegib. This case is the first to illustrate chemoresistance in a patient with metastatic BCC, and demonstrates the need for closely monitoring metastatic BCC patients even after an apparently complete response.
Collapse
Affiliation(s)
- Rowena E Meani
- Victorian Melanoma Service, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
254
|
HPIP promotes non-small cell lung cancer cell proliferation, migration and invasion through regulation of the Sonic hedgehog signaling pathway. Biomed Pharmacother 2016; 77:176-81. [DOI: 10.1016/j.biopha.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
|
255
|
Protein arginine methyltransferase 1 interacts with Gli1 and regulates its transcriptional activity. Tumour Biol 2016; 37:9071-6. [PMID: 26762411 DOI: 10.1007/s13277-015-4754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/29/2015] [Indexed: 01/20/2023] Open
Abstract
Protein arginine methylation, which is mediated by the protein arginine methyltransferases (PRMTs), is associated with numerous fundamental cellular processes. Our previous studies have shown that PRMT1 activated Hedgehog signaling in the esophageal squamous cell carcinoma (ESCC) cells and promoted the growth and migration of cancer cells. However, the detailed mechanisms are unknown. In this study, it was found that PRMT1 interacted with the transcriptional factor Gli1 (glioma-associated oncogene homolog 1) in ESCC cells. The DNA-binding domain (DBD) of Gli1 is responsible for its interaction with PRMT1. Moreover, PRMT1 promoted the methylation of Gli1, and knocking down the expression of PRMT1 impaired the transcriptional activity as well as the biological functions of Gli1. Taken together, our study demonstrated that PRMT1 is a positive regulator of Hedgehog signaling, and PRMT1 might be a therapeutic target for ESCC.
Collapse
|
256
|
Podolski-Renić A, Milošević Z, Dinić J, Stanković T, Banković J, Pešić M. Mutual regulation and targeting of multidrug resistance and cancer stem phenotype. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00391e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeting stemness mechanisms leads to the suppression of ABC transporter activity and elimination of CSCs.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Zorica Milošević
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Tijana Stanković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jasna Banković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| |
Collapse
|
257
|
Hu J, Markowitz GJ, Wang X. Noncoding RNAs Regulating Cancer Signaling Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:297-315. [DOI: 10.1007/978-981-10-1498-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
258
|
Zhang N, Liu S, Wang N, Deng S, Song L, Wu Q, Liu L, Su W, Wei Y, Xie Y, Gong C. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway. NANOSCALE 2015; 7:2609-24. [PMID: 25581613 DOI: 10.1039/c4nr06300g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Gibert B, Mehlen P. Dependence Receptors and Cancer: Addiction to Trophic Ligands. Cancer Res 2015; 75:5171-5. [DOI: 10.1158/0008-5472.can-14-3652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/16/2022]
|
260
|
Lanyon-Hogg T, Masumoto N, Bodakh G, Konitsiotis AD, Thinon E, Rodgers UR, Owens RJ, Magee AI, Tate EW. Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase. Anal Biochem 2015; 490:66-72. [PMID: 26334609 PMCID: PMC4615133 DOI: 10.1016/j.ab.2015.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl β-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Naoko Masumoto
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - George Bodakh
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Antonio D Konitsiotis
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington SW7 2AZ, UK
| | - Emmanuelle Thinon
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK
| | - Ursula R Rodgers
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington SW7 2AZ, UK
| | - Raymond J Owens
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK; OPPF-UK, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK
| | - Anthony I Magee
- Molecular Medicine Section, National Heart & Lung Institute, Imperial College London, South Kensington SW7 2AZ, UK.
| | - Edward W Tate
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington SW7 2AZ, UK.
| |
Collapse
|
261
|
Rudnick EW, Thareja S, Cherpelis B. Oral therapy for nonmelanoma skin cancer in patients with advanced disease and large tumor burden: a review of the literature with focus on a new generation of targeted therapies. Int J Dermatol 2015; 55:249-58; quiz 256, 258. [PMID: 26566923 DOI: 10.1111/ijd.12961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/26/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer in patients and includes basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Treatments useful for SCC and BCC include surgical, topical, and in advanced cases systemic chemo-radiation. This review of the literature aims to describe previous and current treatment options for oral therapy in locally advanced and metastatic NMSC otherwise unamenable to standard treatment. Oral Smoothened (Smo) inhibitors Vismodegib, Sonidegib, and Taladegib have shown to be effective in several trials. Oral tyrosine kinase inhibitors Erlotinib and Gefitinib, which target epidermal growth factor receptor (EGFR), have early supporting data and are currently undergoing large multicenter trials. Other less studied oral therapies which have shown at least partial efficacy include 5-Fluorouracil, capecitabine, and picropodophyllin. In vitro studies have elucidated new targets for dual combination oral therapy targeting both EGFR and insulin-like growth factor 1 receptor (IGF-1R). It is important to stratify treatment options based on patient risk of advanced disease, failure of conservative treatment, and ill-tolerated intravenous chemotherapy adverse events. Oral therapy in NMSC is useful in high risk patients with recurrent and aggressive disease who may not tolerate other systemic therapies.
Collapse
Affiliation(s)
- Eric W Rudnick
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sumeet Thareja
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Basil Cherpelis
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
262
|
Mishra P, Panda A, Bandyopadhyay A, Kumar H, Mohiddin G. Sonic Hedgehog Signalling Pathway and Ameloblastoma - A Review. J Clin Diagn Res 2015; 9:ZE10-3. [PMID: 26674664 DOI: 10.7860/jcdr/2015/15443.6750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Ameloblastoma is a benign but aggressive odontogenic neoplasm arising from odontogenic epithelium. Many theories have been proposed to explain the pathogenesis of ameloblatoma. Numerous signalling pathways have been implicated to be associated in the development and progression of this neoplasm. Studies have found association of various signalling molecules of Sonic Hedgehog Pathway, namely SHH, PTCH1, SMO, Gli 1, Gli 2, Gli 3, with ameloblastoma. Knowledge about this pathway will help us to understand the nature and behaviour of this neoplasm. This will open the door towards new treatment modalities.
Collapse
Affiliation(s)
- Pallavi Mishra
- Postgraduate Trainee, Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental sciences, KIIT , Bhubaneswar, Odisha, India
| | - Abikshyeet Panda
- Reader, Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, KIIT , Bhubaneswar, Odisha. India
| | - Alokenath Bandyopadhyay
- Professor and Head of the Department, Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, KIIT , Bhubaneswar. Odisha. India
| | - Harish Kumar
- Professor, Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, KIIT , Bhubaneswar, Odisha, India
| | - Gouse Mohiddin
- Reader, Department of Oral and Maxillofacial Pathology, Kalinga Institute of Dental Sciences, KIIT , Bhubaneswar, Odisha, India
| |
Collapse
|
263
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
264
|
Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O'Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YYI, Gershon TR. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development 2015; 142:3921-32. [PMID: 26450969 DOI: 10.1242/dev.124271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023]
Abstract
Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma.
Collapse
Affiliation(s)
- Scott E Williams
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shiyi Li
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Alyssa Stewart
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Hedi Liu
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Sean O'Neill
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Veleta
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Esteban A Oyarzabal
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph R Merrill
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
265
|
Abstract
Cancer stem cells (CSCs) have been shown to be markedly resistant to conventional cancer treatments such as chemotherapy and radiation therapy. Therefore, therapeutic strategies that selectively target CSCs will ultimately lead to better cancer treatments. Currently, accessible conventional therapeutic agents mainly eliminate the bulk tumor but do not eliminate CSCs. Therefore, the discovery and improvement of CSC-targeting therapeutic agents are necessary. Nanoparticles effectively inhibit multiple types of CSCs by targeting specific signaling pathways (Wnt/β-catenin, Notch, transforming growth factor-β, and hedgehog signaling) and/or specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) critically involved in CSC function and maintenance. In this review article, we summarized a number of findings to provide current information about their therapeutic potential of nanoparticles in various cancer cell types and CSCs.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea ; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Gyu-Beom Jang
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea ; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea
| | - Jeong-Seok Nam
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea ; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
266
|
Bhattacharjee V, Zhou Y, Yen TJ. A synthetic lethal screen identifies the Vitamin D receptor as a novel gemcitabine sensitizer in pancreatic cancer cells. Cell Cycle 2015; 13:3839-56. [PMID: 25558828 DOI: 10.4161/15384101.2014.967070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells' ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.
Collapse
Affiliation(s)
- V Bhattacharjee
- a Fox Chase Cancer Center ; Institute for Cancer Research ; Philadelphia , PA USA
| | | | | |
Collapse
|
267
|
Network fingerprint: a knowledge-based characterization of biomedical networks. Sci Rep 2015; 5:13286. [PMID: 26307246 PMCID: PMC4549786 DOI: 10.1038/srep13286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022] Open
Abstract
It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerprint”, which contains similarities to basic networks. This knowledge-based multidimensional characterization provides a more intuitive way to decipher molecular networks, especially for large-scale network comparisons and clustering analyses. As an example, we extracted network fingerprints of 44 disease networks in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The comparisons among the network fingerprints of disease networks revealed informative disease-disease and disease-signaling pathway associations, illustrating that the network fingerprinting framework will lead to new approaches for better understanding of biomedical networks.
Collapse
|
268
|
Sheng C, Dong G, Miao Z, Zhang W, Wang W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 2015; 44:8238-59. [PMID: 26248294 DOI: 10.1039/c5cs00252d] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeting protein-protein interactions (PPIs) has emerged as a viable approach in modern drug discovery. However, the identification of small molecules enabling us to effectively interrupt their interactions presents significant challenges. In the recent past, significant advances have been made in the development of new biological and chemical strategies to facilitate the discovery process of small-molecule PPI inhibitors. This review aims to highlight the state-of-the-art technologies and the achievements made recently in this field. The "hot spots" of PPIs have been proved to be critical for small molecules to bind. Three strategies including screening, designing, and synthetic approaches have been explored for discovering PPI inhibitors by targeting the "hot spots". Although the classic high throughput screening approach can be used, fragment screening, fragment-based drug design and newly improved virtual screening are demonstrated to be more effective in the discovery of PPI inhibitors. In addition to screening approaches, design strategies including anchor-based and small molecule mimetics of secondary structures involved in PPIs have become powerful tools as well. Finally, constructing new chemically spaced libraries with high diversity and complexity is becoming an important area of interest for PPI inhibitors. The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Collapse
Affiliation(s)
- Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China.
| | | | | | | | | |
Collapse
|
269
|
Sun L, Chua CYX, Tian W, Zhang Z, Chiao PJ, Zhang W. MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma. J Genet Genomics 2015; 42:563-577. [PMID: 26554910 DOI: 10.1016/j.jgg.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be the most lethal and aggressive malignancy with high mortality and poor prognosis. Their responses to current multimodal therapeutic regimens are limited. It is urgently needed to identify the molecular mechanism underlying pancreatic oncogenesis. Twelve core signaling cascades have been established critical in PDAC tumorigenesis by governing a wide variety of cellular processes. MicroRNAs (miRNAs) are aberrantly expressed in different types of tumors and play pivotal roles as post-transcriptional regulators of gene expression. Here, we will describe how miRNAs regulate different signaling pathways that contribute to pancreatic oncogenesis and progression.
Collapse
Affiliation(s)
- Longhao Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Corrine Ying Xuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA
| | - Weijun Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston 77030, USA; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
270
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
271
|
Ono YJ, Tanabe A, Tanaka T, Tanaka Y, Hayashi M, Terai Y, Ohmichi M. Met Signaling Cascade Is Amplified by the Recruitment of Phosphorylated Met to Lipid Rafts via CD24 and Leads to Drug Resistance in Endometrial Cancer Cell Lines. Mol Cancer Ther 2015; 14:2353-63. [PMID: 26227486 DOI: 10.1158/1535-7163.mct-15-0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
Abstract
Endometrial cancer is the most prevalent gynecologic cancer in the Western world, and the number of advanced chemotherapy-resistant cancers is increasing with the absolute increase in patients. The development of resistance to chemotherapeutic drugs by cancer cells represents a major challenge in the clinical cure of advanced and metastatic cancers. CD24 has been reported to be a marker for a poor prognosis in several tumors, and we herein examined the functions of CD24 in human endometrioid adenocarcinoma cell lines and evaluated how it contributes to cancer drug resistance. We demonstrated that CD24 was responsible for the recruitment of phosphorylated Met to the lipid raft domain of the cell membrane, resulting in amplification of the Met signaling cascade, ultimately leading endometrial cancer cells to express higher levels of ATP-binding cassette (ABC) transporters. Our findings suggest that CD24-mediated amplification of the Met cascade may contribute to the drug resistance of endometrial cancer.
Collapse
Affiliation(s)
| | - Akiko Tanabe
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshimichi Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
272
|
Zhao X, Ponomaryov T, Ornell KJ, Zhou P, Dabral SK, Pak E, Li W, Atwood SX, Whitson RJ, Chang ALS, Li J, Oro AE, Chan JA, Kelleher JF, Segal RA. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res 2015; 75:3623-35. [PMID: 26130651 DOI: 10.1158/0008-5472.can-14-2999-t] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors.
Collapse
Affiliation(s)
- Xuesong Zhao
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Tatyana Ponomaryov
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts. University of Birmingham, Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Kimberly J Ornell
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Pengcheng Zhou
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Sukriti K Dabral
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Ekaterina Pak
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Ramon J Whitson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anne Lynn S Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jennifer A Chan
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Kelleher
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Rosalind A Segal
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
273
|
Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K, Huang S. Forkhead Box M1 Is Essential for Nuclear Localization of Glioma-associated Oncogene Homolog 1 in Glioblastoma Multiforme Cells by Promoting Importin-7 Expression. J Biol Chem 2015; 290:18662-70. [PMID: 26085085 DOI: 10.1074/jbc.m115.662882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
The transcription factors glioma-associated oncogene homolog 1 (GLI1), a primary marker of Hedgehog pathway activation, and Forkhead box M1 (FOXM1) are aberrantly activated in a wide range of malignancies, including glioma. However, the mechanism of nuclear localization of GLI1 and whether FOXM1 regulates the Hedgehog signaling pathway are poorly understood. Here we found that FOXM1 promotes nuclear import of GLI1 in glioblastoma multiforme cells and thus increases the expression of its target genes. Conversely, knockdown of FOXM1 expression with FOXM1 siRNA abrogated its nuclear import and inhibited the expression of its target genes. Also, genetic deletion of FOXM1 in mouse embryonic fibroblasts abolished nuclear localization of GLI1. We observed that FOXM1 directly binds to the importin-7 (IPO7) promoter and increases its promoter activity. IPO7 interacted with GLI1, leading to enhanced nuclear import of GLI1. Depletion of IPO7 by IPO7 siRNA reduced nuclear accumulation of GLI1. In addition, FOXM1 induced nuclear import of GLI1 by promoting IPO7 expression. Moreover, the FOXM1/IPO7/GLI1 axis promoted cell proliferation, migration, and invasion in vitro. Finally, expression of FOXM1 was markedly correlated with that of GLI1 in human glioblastoma specimens. These data suggest that FOXM1 and GLI1 form a positive feedback loop that contributes to glioblastoma development. Furthermore, our study revealed a mechanism that controls nuclear import of GLI1 in glioblastoma multiforme cells.
Collapse
Affiliation(s)
- Jianfei Xue
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| | - Aidong Zhou
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Christina Tan
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yamei Wu
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hsueh-Te Lee
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Wenliang Li
- the Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and the Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China, and
| | - Keping Xie
- the Departments of Gastroenterology, Hepatology & Nutrition and Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Suyun Huang
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
274
|
|
275
|
The Impact of Neoadjuvant Hedgehog Inhibitor Therapy on the Surgical Treatment of Extensive Basal Cell Carcinoma. Ann Plast Surg 2015; 74 Suppl 4:S193-7. [DOI: 10.1097/sap.0000000000000452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
276
|
Soura E, Chasapi V, Stratigos AJ. Pharmacologic treatment options for advanced epithelial skin cancer. Expert Opin Pharmacother 2015; 16:1479-93. [DOI: 10.1517/14656566.2015.1052743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
277
|
Lee J, Jeong S, Lee CR, Ku CR, Kang SW, Jeong JJ, Nam KH, Shin DY, Chung WY, Lee EJ, Jo YS. GLI1 Transcription Factor Affects Tumor Aggressiveness in Patients With Papillary Thyroid Cancers. Medicine (Baltimore) 2015; 94:e998. [PMID: 26107686 PMCID: PMC4504527 DOI: 10.1097/md.0000000000000998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A significant proportion of patients with papillary thyroid cancer (PTC) present with extrathyroidal extension (ETE) and lymph node metastasis (LNM). However, the molecular mechanism of tumor invasiveness in PTC remains to be elucidated. The aim of this study is to understand the role of Hedgehog (Hh) signaling in tumor aggressiveness in patients with PTC. Subjects were patients who underwent thyroidectomy from 2012 to 2013 in a single institution. Frozen or paraffin-embedded tumor tissues with contralateral-matched normal thyroid tissues were collected. Hh signaling activity was analyzed by quantitative RT-PCR (qRT-PCR) and immunohistochemical (IHC) staining. Datasets from Gene Expression Omnibus (GEO) (National Center for Biotechnology Information) were subjected to Gene Set Enrichment Analysis (GSEA). BRAFT1799A and telomerase reverse transcriptase promoter mutation C228T were analyzed by direct sequencing. Among 137 patients with PTC, glioma-associated oncogene homolog 1 (GLI1) group III (patients in whom the ratio of GLI1 messenger ribonucleic acid (mRNA) level in tumor tissue to GLI1 mRNA level in matched normal tissue was in the upper third of the subject population) had elevated risk for ETE (odds ratio [OR] 4.381, 95% confidence interval [CI] 1.414-13.569, P = 0.01) and LNM (OR 5.627, 95% CI 1.674-18.913, P = 0.005). Glioma-associated oncogene homolog 2 (GLI2) group III also had elevated risk for ETE (OR 4.152, 95% CI 1.292-13.342, P = 0.017) and LNM (OR 3.924, 95% CI 1.097-14.042, P = 0.036). GSEA suggested that higher GLI1 expression is associated with expression of the KEGG gene set related to axon guidance (P = 0.031, false discovery rate < 0.05), as verified by qRT-PCR and IHC staining in our subjects.GLI1 and GLI2 expressions were clearly related to aggressive clinicopathological features and aberrant activation of GLI1 involved in the axon guidance pathway. These results may contribute to development of new prognostic markers, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Jandee Lee
- From the Department of Surgery (JL, CRL, S-WK, JJJ, K-HN, WYC); and Department of Internal Medicine (SJ, CRK, DYS, EJL, YSJ), Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Pietanza MC, Byers LA, Minna JD, Rudin CM. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res 2015; 21:2244-55. [PMID: 25979931 PMCID: PMC4497796 DOI: 10.1158/1078-0432.ccr-14-2958] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with a unique natural history characterized by a short doubling time, high growth fraction, and early development of widespread metastases. Although a chemotherapy- and radiation-sensitive disease, SCLC typically recurs rapidly after primary treatment, with only 6% of patients surviving 5 years from diagnosis. This disease has been notable for the absence of major improvements in its treatment: Nearly four decades after the introduction of a platinum-etoposide doublet, therapeutic options have remained virtually unchanged, with correspondingly little improvement in survival rates. Here, we summarize specific barriers and challenges inherent to SCLC research and care that have limited progress in novel therapeutic development to date. We discuss recent progress in basic and translational research, especially in the development of mouse models, which will provide insights into the patterns of metastasis and resistance in SCLC. Opportunities in clinical research aimed at exploiting SCLC biology are reviewed, with an emphasis on ongoing trials. SCLC has been described as a recalcitrant cancer, for which there is an urgent need for accelerated progress. The NCI convened a panel of laboratory and clinical investigators interested in SCLC with a goal of defining consensus recommendations to accelerate progress in the treatment of SCLC, which we summarize here.
Collapse
Affiliation(s)
- M Catherine Pietanza
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Charles M Rudin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
279
|
Kumar RMR, Fuchs B. Hedgehog signaling inhibitors as anti-cancer agents in osteosarcoma. Cancers (Basel) 2015; 7:784-94. [PMID: 25985215 PMCID: PMC4491684 DOI: 10.3390/cancers7020784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008, Switzerland.
| | - Bruno Fuchs
- Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008, Switzerland.
| |
Collapse
|
280
|
Damhofer H, Ebbing EA, Steins A, Welling L, Tol JA, Krishnadath KK, van Leusden T, van de Vijver MJ, Besselink MG, Busch OR, van Berge Henegouwen MI, van Delden O, Meijer SL, Dijk F, Medema JP, van Laarhoven HW, Bijlsma MF. Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. J Transl Med 2015; 13:115. [PMID: 25884700 PMCID: PMC4419410 DOI: 10.1186/s12967-015-0469-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background The upper gastrointestinal tract is home to some of most notorious cancers like esophagogastric and pancreatic cancer. Several factors contribute to the lethality of these tumors, but one that stands out for both tumor types is the strong inter- as well as intratumor heterogeneity. Unfortunately, genetic tumor models do not match this heterogeneity, and for esophageal cancer no adequate genetic models exist. To allow for an improved understanding of these diseases, tissue banks with sufficient amount of samples to cover the extent of diversity of human cancers are required. Additionally, xenograft models that faithfully mimic and span the breadth of human disease are essential to perform meaningful functional experiments. Methods We describe here the establishment of a tissue biobank, patient derived xenografts (PDXs) and cell line models of esophagogastric and pancreatic cancer patients. Biopsy material was grafted into immunocompromised mice and PDXs were used to establish primary cell cultures to perform functional studies. Expression of Hedgehog ligands in patient tumor and matching PDX was assessed by immunohistochemical staining, and quantitative real-time PCR as well as flow cytometry was used for cultured cells. Cocultures with Hedgehog reporter cells were performed to study paracrine signaling potency. Furthermore, SHH expression was modulated in primary cultures using lentiviral mediated knockdown. Results We have established a panel of 29 PDXs from esophagogastric and pancreatic cancers, and demonstrate that these PDXs mirror several of the (immuno)histological and biochemical characteristics of the original tumors. Derived cell lines can be genetically manipulated and used to further study tumor biology and signaling capacity. In addition, we demonstrate an active (paracrine) Hedgehog signaling mode by both tumor types, the magnitude of which has not been compared directly in previous studies. Conclusions Our established PDXs and their matching primary cell lines retain important characteristics seen in the original tumors, and this should enable future studies to address the responses of these tumors to different treatment modalities, but also help in gaining mechanistic insight in how some tumors respond to certain regimens and others do not. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0469-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Eva A Ebbing
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Lieke Welling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, The Netherlands.
| | - Johanna A Tol
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Kausilia K Krishnadath
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Tom van Leusden
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Olivier R Busch
- Department of Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | | | - Otto van Delden
- Department of Radiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Sybren L Meijer
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Frederike Dijk
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Hanneke W van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands. .,Department of Medical Oncology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands.
| |
Collapse
|
281
|
Abstract
Most skin cancers of the head and neck are nonmelanoma skin cancers (NMSCs). Basal cell carcinoma and squamous cell carcinoma are the most frequent types of NMSCs. Treatment options including wide local excision, Mohs surgery, sentinel lymph node biopsy, and cervical lymphadenectomy and adjuvant radiation when warranted offer a high cure rate, while balancing excellent functional and cosmetic outcomes. Evaluation by a multidisciplinary team is highly recommended with advanced and aggressive lesions. Avoidance of sunburns and acute sun damage, sunscreen protection, and early identification and evaluation of suspicious lesions remain the first line of defense against skin cancers.
Collapse
Affiliation(s)
- Wojciech K Mydlarz
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael E Kupferman
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
282
|
Erdem GU, Sendur MAN, Ozdemir NY, Yazıcı O, Zengin N. A comprehensive review of the role of the hedgehog pathway and vismodegib in the management of basal cell carcinoma. Curr Med Res Opin 2015; 31:743-56. [PMID: 25690490 DOI: 10.1185/03007995.2015.1018988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common cancer. Most cases of BCCs are treated with only optimal surgical resection. However, unresectable, locally advanced or metastatic tumors might have potential to progress. In this patient group, there is no standardized treatment approach. Vismodegib is a new selective inhibitor of the hedgehog (Hh) pathway. This manuscript is aimed to review the efficacy of the Hh pathway inhibitor vismodegib in BCC patients with locally advanced or metastatic disease. SCOPE Vismodegib showed positive results in clinical studies. A computerized search of the PubMed and American Society of Clinical Oncology Meeting abstracts was performed, by searching for the following keywords: 'vismodegib', 'pathway', 'inhibitor', and 'targeted therapies for BCC'. The last search was done on 1 September 2014. Most of the vismodegib data depend on phase I and II trials. FINDINGS Preclinical and clinical studies have shown that Hh pathway activation occurs in BCC. In BCC patients the role of chemotherapy is not completely known. Although conventional chemotherapies like cisplatins increase the response rate in BCC, improvement in overall survival and progression free survival were not demonstrated. Results of both phase I and phase II studies have shown that vismodegib is a potential new treatment strategy for patients with locally advanced and metastatic BCC. As in previously published phase I trials, in the ERIVANCE BCC study the primary endpoint, objective response rate, significantly increased by 43% and 30% in patients with locally advanced and metastatic BCC, respectively. Because of the promising results in phase I and II trials, vismodegib was approved by the Food and Drug Administration (FDA) in the treatment of patients with BCC who are not suitable for surgery or radiotherapy or with relapsed locally advanced disease following surgery or metastatic disease. CONCLUSION Recent trials have shown that vismodegib has produced promising activity in patients with locally advanced and metastatic BCC. The ongoing studies with vismodegib in other solid tumors and BCC will shed light on more certain treatment pathways.
Collapse
Affiliation(s)
- Gökmen Umut Erdem
- Ankara Numune Education and Research Hospital, Department of Medical Oncology , Ankara , Turkey
| | | | | | | | | |
Collapse
|
283
|
Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters. PLoS One 2015; 10:e0116390. [PMID: 25775002 PMCID: PMC4361547 DOI: 10.1371/journal.pone.0116390] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/08/2014] [Indexed: 11/19/2022] Open
Abstract
Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.
Collapse
|
284
|
|
285
|
Jeng KS, Chang CF, Jeng WJ, Sheen IS, Jeng CJ. Heterogeneity of hepatocellular carcinoma contributes to cancer progression. Crit Rev Oncol Hematol 2015; 94:337-47. [PMID: 25680939 DOI: 10.1016/j.critrevonc.2015.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease displaying differences in angiogenesis, extracellular matrix proteins, the immune microenvironment and tumor cell populations. Additionally, genetic variations and epigenetic changes of HCC cells could lead to aberrant signaling pathways, induce cancer stem cells and enhance tumor progression. Thus, the heterogeneity in HCC contributes to disease progression and a better understanding of its heterogeneity will greatly aid in the development of strategies for the HCC treatment.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Chiung-Fang Chang
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang Gung University, Taiwan
| | - I-Shyan Sheen
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, LinKou Medical Center, Chang Gung University, Taiwan
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
286
|
Petrova E, Matevossian A, Resh MD. Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. Oncogene 2015; 34:263-8. [PMID: 24469057 PMCID: PMC4513646 DOI: 10.1038/onc.2013.575] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 11/20/2013] [Accepted: 11/29/2013] [Indexed: 12/24/2022]
Abstract
Sonic Hedgehog (Shh) is abnormally expressed in pancreatic cancer and is associated with disease onset and progression. Inhibition of Shh signaling is thus an attractive clinical target for therapeutic intervention. Most efforts to block Shh signaling have focused on inhibitors of Smoothened, which target the canonical Shh signaling pathway. These approaches have met with limited success, in part due to development of resistance-conferring mutations and contributions from non-canonical signaling pathways. Here, we show that Hedgehog acyltransferase (Hhat), the enzyme responsible for the attachment of palmitate onto Shh, is a novel target for inhibition of Shh signaling in pancreatic cancer cells. Depletion of Hhat with lentivirally delivered small hairpin RNA decreased both anchorage-dependent and independent proliferation of human pancreatic cancer cells. In vivo, Hhat knockdown led to reduction of tumor growth in a mouse xenograft model of pancreatic cancer. RU-SKI 43, a small molecule inhibitor of Hhat recently developed by our group, reduced pancreatic cancer cell proliferation and Gli-1 activation through Smoothened-independent non-canonical signaling. In addition, RU-SKI 43 treatment inhibited two key proliferative pathways regulated by Akt and mTOR. This work demonstrates that Hhat has a critical role in pancreatic cancer and that a small molecule inhibitor of Hhat can successfully block pancreatic cancer cell proliferation. It also highlights the importance of developing optimized Hhat inhibitors to be used as therapeutics in pancreatic cancer, as well as in other malignancies characterized by Shh overexpression.
Collapse
Affiliation(s)
- E Petrova
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Graduate Program in Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - A Matevossian
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - MD Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, New York, NY, USA
- Graduate Programs in Cell Biology and Biochemistry, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| |
Collapse
|
287
|
Martinez-Barbera JP, Buslei R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. J Pediatr Endocrinol Metab 2015; 28:7-17. [PMID: 25503464 DOI: 10.1515/jpem-2014-0442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
Adamantinomatous craniopharyngiomas (ACPs) are histologically benign but clinically aggressive epithelial tumours of the sellar region that are associated with high morbidity and occasional mortality. Research from the last 3 years has provided important insights into the molecular and cellular pathogenesis of these tumours. It has become established that mutations in CTNNB1 (encoding β-catenin), leading to the over-activation of the WNT pathway, underlie the molecular aetiology of human ACP. Interestingly, the effect of these mutations is restricted to a small number of tumour cells, mostly forming clusters, which recent research has shown to be critical for tumorigenesis in mice and humans. Several pathways have been found to be activated in these clusters including the epidermal growth factor receptor and the sonic hedgehog pathways, offering potential therapeutic targets. A novel and unexpected role for pituitary stem cells has been proposed, which is fundamentally distinct from the cancer stem cell paradigm. The study of these benign tumours could reveal important insights into general mechanisms underlying the initial steps of tumorigenesis and facilitate novel tools to improve managements of the patients.
Collapse
|
288
|
Pereira J, Johnson WE, O’Brien SJ, Jarvis ED, Zhang G, Gilbert MTP, Vasconcelos V, Antunes A. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 2014; 9:e74132. [PMID: 25549322 PMCID: PMC4280113 DOI: 10.1371/journal.pone.0074132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.
Collapse
Affiliation(s)
- Joana Pereira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Warren E. Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, N. Ocean Drive, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Erich D. Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zoon, Yantian District, Shenzhen, China
| | - M. Thomas P. Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
289
|
House AJ, Daye LR, Tarpley M, Addo K, Lamson DS, Parker MK, Bealer WE, Williams KP. Design and characterization of a photo-activatable hedgehog probe that mimics the natural lipidated form. Arch Biochem Biophys 2014; 567:66-74. [PMID: 25529135 DOI: 10.1016/j.abb.2014.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
We have generated a photoactivatable form of sonic hedgehog protein by modifying the N-terminal cysteine with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (Bzm). The Bzm modification on ShhN imparted a significant increase in activity as assessed in the C3H10T1/2 functional assay with potency comparable to that of the endogenous dual-lipidated form of ShhN (ShhNp). Reversed-phase HPLC analysis indicated that the increase in activity compared to unmodified ShhN may be due in part to the hydrophobic nature of the benzophenone group. In contrast to the fully processed ShhNp, Bzm-ShhN is monomeric as assessed by analytical SEC and does not require detergent to be soluble. Further, we demonstrated that the Bzm-ShhN was able to crosslink in vitro in the presence of a known binding partner, heparin. We suggest that Bzm-ShhN can serve as a relatively facile and preferred source of ShhNp for in vitro assays and as a probe to identify novel Hh protein interactions.
Collapse
Affiliation(s)
- Alan J House
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Laura R Daye
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kezia Addo
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - David S Lamson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Margie K Parker
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Warren E Bealer
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
290
|
Shou Y, Robinson DM, Amakye DD, Rose KL, Cho YJ, Ligon KL, Sharp T, Haider AS, Bandaru R, Ando Y, Geoerger B, Doz F, Ashley DM, Hargrave DR, Casanova M, Tawbi HA, Rodon J, Thomas AL, Mita AC, MacDonald TJ, Kieran MW. A five-gene hedgehog signature developed as a patient preselection tool for hedgehog inhibitor therapy in medulloblastoma. Clin Cancer Res 2014; 21:585-93. [PMID: 25473003 DOI: 10.1158/1078-0432.ccr-13-1711] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Distinct molecular subgroups of medulloblastoma, including hedgehog (Hh) pathway-activated disease, have been reported. We identified and clinically validated a five-gene Hh signature assay that can be used to preselect patients with Hh pathway-activated medulloblastoma. EXPERIMENTAL DESIGN Gene characteristics of the Hh medulloblastoma subgroup were identified through published bioinformatic analyses. Thirty-two genes shown to be differentially expressed in fresh-frozen and formalin-fixed paraffin-embedded tumor samples and reproducibly analyzed by RT-PCR were measured in matched samples. These data formed the basis for building a multi-gene logistic regression model derived through elastic net methods from which the five-gene Hh signature emerged after multiple iterations. On the basis of signature gene expression levels, the model computed a propensity score to determine Hh activation using a threshold set a priori. The association between Hh activation status and tumor response to the Hh pathway inhibitor sonidegib (LDE225) was analyzed. RESULTS Five differentially expressed genes in medulloblastoma (GLI1, SPHK1, SHROOM2, PDLIM3, and OTX2) were found to associate with Hh pathway activation status. In an independent validation study, Hh activation status of 25 medulloblastoma samples showed 100% concordance between the five-gene signature and Affymetrix profiling. Further, in medulloblastoma samples from 50 patients treated with sonidegib, all 6 patients who responded were found to have Hh-activated tumors. Three patients with Hh-activated tumors had stable or progressive disease. No patients with Hh-nonactivated tumors responded. CONCLUSIONS This five-gene Hh signature can robustly identify Hh-activated medulloblastoma and may be used to preselect patients who might benefit from sonidegib treatment.
Collapse
Affiliation(s)
- Yaping Shou
- Novartis Institutes for BioMedical Research, Inc, Cambridge, Massachusetts
| | - Douglas M Robinson
- Novartis Institutes for BioMedical Research, Inc, Cambridge, Massachusetts
| | - Dereck D Amakye
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Kristine L Rose
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Yoon-Jae Cho
- Departments of Neurology and Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Keith L Ligon
- Pediatric Neuro-Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts. Department of Pathology, Children's Hospital Boston, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thad Sharp
- Novartis Institutes for BioMedical Research, Inc, Cambridge, Massachusetts
| | - Asifa S Haider
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Raj Bandaru
- Novartis Institutes for BioMedical Research, Inc, Cambridge, Massachusetts
| | | | - Birgit Geoerger
- Institut Gustave Roussy, University Paris-Sud, Villejuif, France
| | - François Doz
- Institut Curie and University Paris Descartes, Sorbonne Paris Cité, France
| | | | | | | | - Hussein A Tawbi
- University of Pittsburgh Cancer Institute and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jordi Rodon
- Vall d'Hebron Institut d'Oncologia, and Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Alain C Mita
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas
| | - Tobey J MacDonald
- Children's Healthcare of Atlanta, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, Georgia
| | - Mark W Kieran
- Pediatric Neuro-Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
291
|
Owen TS, Xie XJ, Laraway B, Ngoje G, Wang C, Callahan BP. Active site targeting of hedgehog precursor protein with phenylarsine oxide. Chembiochem 2014; 16:55-8. [PMID: 25418613 DOI: 10.1002/cbic.201402421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 01/19/2023]
Abstract
Hedgehog proteins, signaling molecules implicated in human embryo development and cancer, can be inhibited at the stage of autoprocessing by the trivalent arsenical phenyl arsine oxide (PhAs(III) ). The interaction (apparent Ki , 4 × 10(-7) M) is characterized by an optical binding assay and by NMR spectroscopy. PhAs(III) appears to be the first validated inhibitor of hedgehog autoprocessing, which is unique to hedgehog proteins and essential for biological activity.
Collapse
Affiliation(s)
- Timothy S Owen
- Chemistry Department, Binghamton University, 4400 Vestal Parkway East, Binghamton, New York (USA)
| | | | | | | | | | | |
Collapse
|
292
|
Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, Park PK, Qin L, Wei Y, Hawke DH, Hung MC, Lin C, Yang L. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 2014; 159:1110-1125. [PMID: 25416949 DOI: 10.1016/j.cell.2014.10.013] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/07/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022]
Abstract
lncRNAs are known to regulate a number of different developmental and tumorigenic processes. Here, we report a role for lncRNA BCAR4 in breast cancer metastasis that is mediated by chemokine-induced binding of BCAR4 to two transcription factors with extended regulatory consequences. BCAR4 binding of SNIP1 and PNUTS in response to CCL21 releases the SNIP1's inhibition of p300-dependent histone acetylation, which in turn enables the BCAR4-recruited PNUTS to bind H3K18ac and relieve inhibition of RNA Pol II via activation of the PP1 phosphatase. This mechanism activates a noncanonical Hedgehog/GLI2 transcriptional program that promotes cell migration. BCAR4 expression correlates with advanced breast cancers, and therapeutic delivery of locked nucleic acids (LNAs) targeting BCAR4 strongly suppresses breast cancer metastasis in mouse models. The findings reveal a disease-relevant lncRNA mechanism consisting of both direct coordinated protein recruitment and indirect regulation of transcription factors.
Collapse
Affiliation(s)
- Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aifu Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shouyu Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
293
|
Saito T, Mitomi H, Imamhasan A, Hayashi T, Kurisaki-Arakawa A, Mitani K, Takahashi M, Kajiyama Y, Yao T. PTCH1 mutation is a frequent event in oesophageal basaloid squamous cell carcinoma. Mutagenesis 2014; 30:297-301. [PMID: 25395299 DOI: 10.1093/mutage/geu072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Basaloid squamous cell carcinoma (BSCC) is a rare and poorly differentiated variant of typical squamous cell carcinoma, and is characterised in part by activation of the Wnt signalling pathway. We previously demonstrated that constitutive activation of the Wnt signalling pathway by epigenetic silencing of secreted frizzled-related protein 4 (SFRP4) is observed in this tumour. Increasing evidence shows that the Wnt signalling pathway cross-talks with other developmental pathways, including the Hedgehog (HH) pathway. The HH pathway is stimulated by inactivating mutations of PTCH1, which have a well-described oncogenic role in basal cell carcinoma (BCC) of the skin. We employed polymerase chain reaction followed by direct sequencing to detect inactivating mutations of PTCH1 using archival tissue samples of 30 oesophageal BSCCs. The frequency of PTCH1 mutation was compared to that of Wnt component genes that we reported previously. We found PTCH1 mutations in 53.3% (16/30) of cases, revealing T1195S as a hotspot mutation. This frequency is quite high for cancers other than BCC of the skin, and PTCH1 mutations were almost mutually exclusive with mutations in APC, Axin1 and Axin2. Considering the fact that activation of Wnt signalling via down-regulation of APC and SFRP5 due to promoter methylation is observed in BCC of the skin, Wnt signalling activation in oesophageal BSCC might be a secondary effect of the PTCH1-inactivating mutations. These findings suggest that the HH and Wnt pathways coordinately contribute to tumourigenesis in oesophageal BSCC. Furthermore, this study provides a potential therapeutic application for HH pathway inhibitors in oesophageal BSCC with highly malignant potential.
Collapse
Affiliation(s)
- Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan,
| | - Hiroyuki Mitomi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan, Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Kitakobayashi 880, Mibumachi, Shimotsugagun, Tochigi, 321-0293, Japan and
| | - Abdukadir Imamhasan
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Aiko Kurisaki-Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keiko Mitani
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Michiko Takahashi
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiaki Kajiyama
- Department of Surgery, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
294
|
Rajurkar M, Huang H, Cotton JL, Brooks JK, Sicklick J, McMahon AP, Mao J. Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene 2014; 33:5370-8. [PMID: 24276242 PMCID: PMC4309268 DOI: 10.1038/onc.2013.480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Dysregulation of the Hedgehog (Hh)-Gli signaling pathway is implicated in a variety of human cancers, including basal cell carcinoma (BCC), medulloblastoma (MB) and embryonal rhabdhomyosarcoma (eRMS), three principle tumors associated with human Gorlin syndrome. However, the cells of origin of these tumors, including eRMS, remain poorly understood. In this study, we explore the cell populations that give rise to Hh-related tumors by specifically activating Smoothened (Smo) in both Hh-producing and -responsive cell lineages in postnatal mice. Interestingly, we find that unlike BCC and MB, eRMS originates from the stem/progenitor populations that do not normally receive active Hh signaling. Furthermore, we find that the myogenic lineage in postnatal mice is largely Hh quiescent and that Pax7-expressing muscle satellite cells are not able to give rise to eRMS upon Smo or Gli1/2 overactivation in vivo, suggesting that Hh-induced skeletal muscle eRMS arises from Hh/Gli quiescent non-myogenic cells. In addition, using the Gli1 null allele and a Gli3 repressor allele, we reveal a specific genetic requirement for Gli proteins in Hh-induced eRMS formation and provide molecular evidence for the involvement of Sox4/11 in eRMS cell survival and differentiation.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - He Huang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jennifer L. Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie K. Brooks
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, WM Keck School of Medicine of the University of Southern California, Los Angeles, CA 90015
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
295
|
Wagner AJ, Messersmith WA, Shaik MN, Li S, Zheng X, McLachlan KR, Cesari R, Courtney R, Levin WJ, El-Khoueiry AB. A Phase I Study of PF-04449913, an Oral Hedgehog Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2014; 21:1044-51. [DOI: 10.1158/1078-0432.ccr-14-1116] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
296
|
Yang H, Cong WN, Yoon JS, Egan JM. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds. Cancer Med 2014; 4:245-52. [PMID: 25354792 PMCID: PMC4329008 DOI: 10.1002/cam4.350] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds.
Collapse
Affiliation(s)
- Hyekyung Yang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | | | | | |
Collapse
|
297
|
Abidi A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol 2014; 46:3-12. [PMID: 24550577 PMCID: PMC3912804 DOI: 10.4103/0253-7613.124884] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.
Collapse
Affiliation(s)
- Afroz Abidi
- Department of Pharmacology, Subharti Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
298
|
Wu D, Sui C, Meng F, Tian X, Fu L, Li Y, Qi X, Cui H, Liu Y, Jiang Y. Stable knockdown of protein kinase CK2-alpha (CK2α) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem 2014; 116:1501-8. [PMID: 24958341 DOI: 10.1016/j.acthis.2014.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Protein kinase CK2-alpha (CK2α), one isoform of the catalytic subunits of serine/threonine kinase CK2, has been indicated to participate in tumorigenesis of various malignancies, including hepatocellular carcinoma (HCC). In the present study, in order to explore the potential role of CK2α in human HCC, we employed short hairpin RNA (shRNA)-mediated RNA interference (RNAi) technology to inhibit the endogenous CK2α expression in HCC cells and established a Hep G2 cell line with stable knockdown of CK2α. Results from wound healing and transwell invasion assays indicated that stable knockdown of CK2α markedly inhibited Hep G2 cell migration and invasion as compared with those transfected with a negative control plasmid. This alteration was accompanied with expression down-regulation of matrix metalloproteinase (MMP)-2, MMP-9, Snail, Slug, Vimentin, and up-regulation of epithelial cadherin (E-cadherin). Moreover, CK2α silencing also induced inactivation of Hedgehog signaling pathway by inhibiting Gli1 and Patched homolog 1 (PTCH1) expressions in HCC cells. Collectively, these results demonstrate that knockdown of CK2α can suppress cell migration and invasion, reduces expression of MMPs, inhibits epithelial-mesenchymal transition (EMT) process and induces inactivation of Hedgehog pathway in HCC cells in vitro. Our study provides in vitro evidence to demonstrate that the pathogenesis of human HCC may be correlated with the high expression of CK2α.
Collapse
|
299
|
Wozney JL, Antonarakis ES. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev 2014; 33:581-94. [PMID: 24402967 PMCID: PMC4090293 DOI: 10.1007/s10555-013-9475-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.
Collapse
Affiliation(s)
- Jocelyn L. Wozney
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Prostate Cancer Research Program, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, CRB1-1 M45, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
300
|
Vincent-Chong VK, Karen-Ng LP, Abdul Rahman ZA, Yang YH, Anwar A, Zakaria Z, Jayaprasad Pradeep P, Kallarakkal TG, Kiong Tay K, Thomas Abraham M, Mazlipah Ismail S, Zain RB. Distinct pattern of chromosomal alterations and pathways in tongue and cheek squamous cell carcinoma. Head Neck 2014; 36:1268-1278. [PMID: 31615169 DOI: 10.1002/hed.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/10/2013] [Accepted: 08/01/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the cause of behavioral difference between tongue and cheek squamous cell carcinomas (SCCs) by verifying the copy number alterations (CNAs). METHODS Array comparative genomic hybridization (aCGH) was used to profile unique deletions and amplifications that are involved with tongue and cheek SCC, respectively. This was followed by pathway analysis relating to CNA genes from both sites. RESULTS The most frequently amplified regions in tongue SCC were 4p16.3, 11q13.4, and 13q34; whereas the most frequently deleted region was 19p12. For cheek SCC, the most frequently amplified region was identified on chromosome 9p24.1-9p23; whereas the most common deleted region was located on chromosome 8p23.1. Further analysis revealed that the most significant unique pathway related to tongue and cheek SCCs was the cytoskeleton remodeling and immune response effect on the macrophage differentiation pathway. CONCLUSION This study has showed the different genetic profiles and biological pathways between tongue and cheek SCCs. © 2013 Wiley Periodicals, Inc. Head Neck 36: 1268-1278, 2014.
Collapse
Affiliation(s)
- Vui King Vincent-Chong
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi-Hsin Yang
- Department of Dental Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung
| | - Arif Anwar
- Sengenics Sdn Bhd, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Zubaidah Zakaria
- Department of Haematology, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Keng Kiong Tay
- Oral Health Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Siti Mazlipah Ismail
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|