251
|
Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung MY, Degeest G, David G, Zimmermann P. Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J 2005; 24:2556-65. [PMID: 15961997 PMCID: PMC1176451 DOI: 10.1038/sj.emboj.7600722] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 05/30/2005] [Indexed: 01/20/2023] Open
Abstract
PDZ (Postsynaptic density protein, Disc large, Zona occludens) domains are protein-protein interaction modules that predominate in submembranous scaffolding proteins. Recently, we showed that the PDZ domains of syntenin-1 also interact with phosphatidylinositol 4,5-bisphosphate (PIP2) and that this interaction controls the recruitment of the protein to the plasma membrane. Here we evaluate the general importance of PIP2-PDZ domain interactions. We report that most PDZ proteins bind weakly to PIP2, but that syntenin-2, the closest homolog of syntenin-1, binds with high affinity to PIP2 via its PDZ domains. Surprisingly, these domains target syntenin-2 to nuclear PIP2 pools, in nuclear speckles and nucleoli. Targeting to these sites is abolished by treatments known to affect these PIP2 pools. Mutational and domain-swapping experiments indicate that high-affinity binding to PIP2 requires both PDZ domains of syntenin-2, but that its first PDZ domain contains the nuclear PIP2 targeting determinants. Depletion of syntenin-2 disrupts the nuclear speckles-PIP2 pattern and affects cell survival and cell division. These findings show that PIP2-PDZ domain interactions can directly contribute to subnuclear assembly processes.
Collapse
Affiliation(s)
- Eva Mortier
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Gunther Wuytens
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Iris Leenaerts
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Femke Hannes
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Man Y Heung
- Department of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gisèle Degeest
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Guido David
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | - Pascale Zimmermann
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Herestraat 49 (0&N), 3000 Leuven, Belgium. Tel.: +32 16 34 72 10; Fax: +32 16 34 71 66; E-mail:
| |
Collapse
|
252
|
Sone Y, Ito M, Shirakawa H, Shikano T, Takeuchi H, Kinoshita K, Miyazaki S. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development. Biochem Biophys Res Commun 2005; 330:690-4. [PMID: 15809052 DOI: 10.1016/j.bbrc.2005.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 11/28/2022]
Abstract
Phospholipase C-zeta (PLCzeta), a strong candidate of the egg-activating sperm factor, causes intracellular Ca2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCzeta. Changes in the localization of expressed PLCzeta were investigated by tagging with a fluorescent protein. PLCzeta began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCzeta in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCzeta was recognized in every embryo up to blastocyst. Thus, PLCzeta exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca2+ oscillations in early embryogenesis.
Collapse
Affiliation(s)
- Yoshie Sone
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | | | | | | | | | | | | |
Collapse
|
253
|
Stallings JD, Tall EG, Pentyala S, Rebecchi MJ. Nuclear Translocation of Phospholipase C-δ1 Is Linked to the Cell Cycle and Nuclear Phosphatidylinositol 4,5-Bisphosphate. J Biol Chem 2005; 280:22060-9. [PMID: 15809301 DOI: 10.1074/jbc.m413813200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-delta(1) accumulates in the nucleus at the G(1)/S boundary and in G(0) phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3-5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-delta(1), which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G(1)/S and in G(0). These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-delta(1) and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Western
- Cell Cycle
- Cell Differentiation
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Proliferation
- Chromatography, Thin Layer
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Detergents/pharmacology
- Fibroblasts/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- G1 Phase
- Glioma/metabolism
- Green Fluorescent Proteins/metabolism
- Humans
- Image Processing, Computer-Assisted
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Lipid Metabolism
- Mice
- Microscopy, Fluorescence
- Models, Biological
- NIH 3T3 Cells
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phospholipase C delta
- Point Mutation
- Protein Structure, Tertiary
- Protein Transport
- Resting Phase, Cell Cycle
- S Phase
- Subcellular Fractions
- Time Factors
- Transfection
- Type C Phospholipases/chemistry
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jonathan D Stallings
- Department of Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
254
|
Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 2005; 118:2093-104. [PMID: 15890985 DOI: 10.1242/jcs.02387] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inositol lipids have emerged as universal lipid regulators of protein signaling complexes in defined membrane compartments. The number of protein modules that are known to recognise these membrane lipids is rapidly increasing. Pleckstrin homology domains, FYVE domains, PX domains, ENTH domains, CALM domains, PDZ domains, PTB domains and FERM domains are all inositide-recognition modules. The latest additions to this list are members of the clathrin adaptor protein and arrestin families. Initially, inositol lipids were believed to recruit signaling molecules to specific membrane compartments, but many of the domains clearly do not possess high enough affinity to act alone as localisation signals. Another important notion is that some (and probably most) of these protein modules also have protein binding partners, and their protein- and lipid-binding activities might influence one another through allosteric mechanisms. Comparison of the structural features of these domains not only reveals a high degree of conservation of their lipid interaction sites but also highlights their evolutionary link to protein modules known for protein-protein interactions. Protein-protein interactions involving lipid-binding domains could serve as the basis for phosphoinositide-induced conformational regulation of target proteins at biological membranes. Therefore, these modules function as crucially important signal integrators, which explains their involvement in a broad range of regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
255
|
Abstract
When viewing the changes in our understanding of inositides over the last 20 years, it is difficult to know whether to be more impressed by the proliferation in the number of inositides themselves (e.g. seven polyphosphoinositol lipids, more than 30 inositol phosphates), or by the number of functions for each. This review will focus on two specific aspects of this diversity: the evolution of the polyphosphoinositides, and the synthesis and functions of the higher inositol phosphates.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
256
|
Fiume R, Faenza I, Matteucci A, Astolfi A, Vitale M, Martelli AM, Cocco L. Nuclear phospholipase C beta1 (PLCbeta1) affects CD24 expression in murine erythroleukemia cells. J Biol Chem 2005; 280:24221-6. [PMID: 15849202 DOI: 10.1074/jbc.m411833200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositide-specific phospholipase C (PLC) beta1 is a key enzyme in nuclear lipid signal transduction affecting cell cycle progression and may be directly involved in regulation of gene expression and hematopoiesis. By microarrays, we compared the effect of nuclear PLCbeta1 overexpression with that of PLC M2b cytoplasmatic mutant, which is exclusively located in the cytoplasm, in murine erythroleukemia cells. Out of 9000 genes analyzed, the CD24 gene, coding for an antigen involved in differentiation and hematopoiesis as well, was up-regulated in cells overexpressing nuclear PLCbeta1 as compared with both cells overexpressing the M2b cytoplasmatic mutant and the wild type cells. Here we show that nuclear PLCbeta1 up-regulated the expression of CD24. The correlation was strengthened by the observation that when PLCbeta1 expression was silenced by means of small interfering RNA, CD24 expression was down-regulated. We also demonstrated that PLCbeta1-dependent up-modulation of CD24 was mediated, at least in part, at the transcriptional level, in that PLCbeta1 affected the CD24 promoter activity. Moreover, the up-regulation of CD24 was higher during erythroid differentiation of murine erythroleukemia cells. Altogether our findings, obtained by combining microarrays, phenotypic analysis, and small interfering RNA technology, identify CD24 as an molecular effector of nuclear PLCbeta1 signaling pathway in murine erythroleukemia cells and strengthen the contention that nuclear PLCbeta1 constitutes a key step in erythroid differentiation in vitro.
Collapse
Affiliation(s)
- Roberta Fiume
- Department of Anatomical Sciences, Cellular Signaling Laboratory, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
257
|
Hunt AN, Alb JG, Koster G, Postle AD, Bankaitis VA. Use of mass spectrometry-based lipidomics to probe PITPalpha (phosphatidylinositol transfer protein alpha) function inside the nuclei of PITPalpha+/+ and PITPalpha-/- cells. Biochem Soc Trans 2005; 32:1063-5. [PMID: 15506964 DOI: 10.1042/bst0321063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian phospholipid exchange protein PITPalpha (phosphatidylinositol transfer protein alpha), found in both extranuclear and endonuclear compartments, is thought in part to facilitate nuclear import of the PtdIns (phosphatidylinositol) consumed in the generation of proliferation-associated endonuclear diacylglycerol accumulations. Unlike phosphatidylcholine, endonuclear PtdIns is not synthesized in situ. However, despite progressive postnatal lethality of PITPalpha ablation in mice, PITPalpha(-/-) MEF (mouse embryonic fibroblasts) lack an obviously impaired proliferative capacity. We used ESI-MS (tandem electrospray ionization-MS) to monitor incorporation of the deuterated phospholipid precursors, choline-d(9) and inositol-d(6), into molecular species of whole cell and endonuclear phosphatidylcholine and PtdIns over 24 h to assess the contribution of PITPalpha to the nuclear import of PtdIns into MEF cells. In cells labelled for 1, 3, 6, 12 and 24 h fractional inositol-d(6) incorporation into whole-cell PtdIns species was consistently higher in PITPalpha(-/-) MEF implying greater flux through its biosynthetic pathway. Moreover, endonuclear accumulation of PtdIns-d(6) was apparent in the PITPalpha(-/-) cells and mirrored that in PITPalpha(+/+) cells. Together, these results suggest that the essential endonuclear PtdIns import via PITPalpha can be accommodated by other mechanisms.
Collapse
Affiliation(s)
- A N Hunt
- Division of Infection, Inflammation and Repair, School of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
258
|
Michaut MA, Williams CJ, Schultz RM. Phosphorylated MARCKS: A novel centrosome component that also defines a peripheral subdomain of the cortical actin cap in mouse eggs. Dev Biol 2005; 280:26-37. [PMID: 15766745 DOI: 10.1016/j.ydbio.2005.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/23/2004] [Accepted: 01/04/2005] [Indexed: 01/13/2023]
Abstract
MARCKS (myristoylated alanine-rich C-kinase substrate) is a major substrate for protein kinase C (PKC), a kinase that has multiple functions during oocyte maturation and egg activation, for example, spindle function and cytoskeleton reorganization. We examined temporal and spatial changes in p-MARCKS localization during maturation of mouse oocytes and found that p-MARCKS is a novel centrosome component based its co-localization with pericentrin and gamma-tubulin within microtubule organizing centers (MTOCs). Like pericentrin, p-MARCKS staining at the MI spindle poles was asymmetric. Based on this asymmetry, we found that one end of the spindle was preferentially extruded with the first polar body. At MII, however, the spindle poles had symmetrical p-MARCKS staining. p-MARCKS also was enriched in the periphery of the actin cap overlying the MI or MII spindle to form a ring-shaped subdomain. Because phosphorylation of MARCKS modulates its actin crosslinking function, this localization suggests p-MARCKS functions as part of the contractile apparatus during polar body emission. Our finding that an activator of conventional and novel PKC isoforms did not increase the amount of p-MARCKS suggested that an atypical isoform was responsible for MARCKS phosphorylation. Consistent with this idea, immunostaining revealed that the staining patterns of p-MARCKS and the active form of the atypical PKC zeta/lambda isoform(s) were very similar. These results show that p-MARCKS is a novel centrosome component and also defines a previously unrecognized subdomain of the actin cap overlying the spindle.
Collapse
Affiliation(s)
- Marcela A Michaut
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
259
|
Lukinovic-Skudar V, Donlagic L, Banfíc H, Visnjic D. Nuclear phospholipase C-β1b activation during G2/M and late G1 phase in nocodazole-synchronized HL-60 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:148-56. [PMID: 15863362 DOI: 10.1016/j.bbalip.2004.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 12/08/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
In this study, the activity of nuclear phosphatidylinositol-specific phosholipase C (PI-PLC) was investigated in HL-60 cells blocked at G(2)/M phase by the addition of nocodazole, and released into medium as synchronously progressing cells. Two peaks of an increase in the nuclear PI-PLC activities were detected; an early peak reached a maximum at 1 h after release from the nocodazole block, and a second increase was detected at 8.5 h after the release. Immunoprecipitation studies indicated that the increase in the activity was due to the activation of the nuclear PI-PLC-beta(1). Western blot analysis demonstrated no changes in the level of both a and b splicing variants of PI-PLC-beta(1) in the nuclei of cells isolated at either 1 h or 8.5 h after the block. However, an increase in the serine-phosphorylation of PI-PLC-beta(1b) was detected in the nuclei of HL-60 cells isolated at 1 and 8.5 h after the block, and the presence of MEK-inhibitor PD98059 completely inhibited both the serine phosphorylation and the increase in the PI-PLC activities in vitro. The presence of PI-PLC inhibitor prevented the progression of HL-60 cells through the G(1) into S phase of the cell cycle. These results demonstrate that two peaks of nuclear PI-PLC activities, which are due to a PD98059-sensitive phosphorylation of nuclear PLC-beta(1b) on serine, occur at the G(2)/M and late G(1) phase and are necessary for the progression of the cells through the cell cycle.
Collapse
Affiliation(s)
- Vesna Lukinovic-Skudar
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Croatia
| | | | | | | |
Collapse
|
260
|
Tabellini G, Billi AM, Falà F, Cappellini A, Evagelisti C, Manzoli L, Cocco L, Martelli AM. Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells. Cell Signal 2005; 16:1263-71. [PMID: 15337525 DOI: 10.1016/j.cellsig.2004.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/17/2004] [Indexed: 11/28/2022]
Abstract
Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università degli Studi di Bologna, via Irnerio 48, 40126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Pattni K, Banting G. Ins(1,4,5)P3 metabolism and the family of IP3-3Kinases. Cell Signal 2005; 16:643-54. [PMID: 15093605 DOI: 10.1016/j.cellsig.2003.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 10/24/2003] [Indexed: 11/17/2022]
Abstract
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.
Collapse
Affiliation(s)
- Krupa Pattni
- Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | |
Collapse
|
262
|
Hunt AN, Postle AD. Phosphatidylcholine biosynthesis inside the nucleus: is it involved in regulating cell proliferation? ACTA ACUST UNITED AC 2005; 44:173-86. [PMID: 15581489 DOI: 10.1016/j.advenzreg.2003.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alan N Hunt
- Division of Infection, Inflammation & Repair, School of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
263
|
Li Y, Choi M, Cavey G, Daugherty J, Suino K, Kovach A, Bingham NC, Kliewer SA, Xu HE. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1. Mol Cell 2005; 17:491-502. [PMID: 15721253 DOI: 10.1016/j.molcel.2005.02.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 01/24/2023]
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 angstroms crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket (approximately 1600 angstroms3), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.
Collapse
Affiliation(s)
- Yong Li
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Gozani O, Field SJ, Ferguson CG, Ewalt M, Mahlke C, Cantley LC, Prestwich GD, Yuan J. Modification of protein sub-nuclear localization by synthetic phosphoinositides: Evidence for nuclear phosphoinositide signaling mechanisms. ACTA ACUST UNITED AC 2005; 45:171-85. [PMID: 16199078 DOI: 10.1016/j.advenzreg.2005.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PtdInsPs are critical signaling molecules that regulate diverse cellular functions. One method to study PtdInsP biology involves using synthetic PtdInsP analogs to activate endogenous PtdInsP-mediated events in living cells. Such methodology has been successfully employed to explore the role of several PtdInsP-biological outcomes in the cytoplasm. However, this strategy has not previously been used to examine the function of PtdInsPs in the nucleus of live cells, primarily because there has not been a well-defined PtdInsP-binding protein to provide functional nuclear readouts. Here we have shown that synthetic PtdIns(5)P analogs access and function in the nucleus. We have found that these molecules modify the sub-nuclear localization of PHD finger-containing proteins in live cells and in real time. This work demonstrates that synthetic PtdInsPs and PtdInsP derivatives may be powerful tools for probing nuclear PtdInsP functions. Finally, our work supports a model that endogenous PtdInsPs regulate sub-nuclear localization and function of endogenous nuclear PtdInsP-binding proteins.
Collapse
Affiliation(s)
- Or Gozani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Pendaries C, Tronchère H, Racaud-Sultan C, Gaits-Iacovoni F, Coronas S, Manenti S, Gratacap MP, Plantavid M, Payrastre B. Emerging roles of phosphatidylinositol monophosphates in cellular signaling and trafficking. ACTA ACUST UNITED AC 2005; 45:201-14. [PMID: 16023705 DOI: 10.1016/j.advenzreg.2005.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phosphoinositide metabolism that is highly controlled by a set of kinases, phosphatases and phospholipases leads to the production of several second messengers playing critical roles in intracellular signal transduction mechanisms. Recent discoveries have unraveled unexpected roles for the three phosphatidylinositol monophosphates, PtdIns(3)P, PtdIns(4)P and PtdIns(5)P, that appear now as important lipid messengers able to specifically interact with proteins. The formation of functionally distinct and independently regulated pools of phosphatidylinositol monophosphates probably contributes to the specificity of the interactions with their targets. The relative enrichment of organelles in a particular species of phosphoinositides (i.e. PtdIns(3)P in endosomes, PtdIns(4)P in Golgi and PtdIns(4,5)P2 in plasma membrane) suggests the notion of lipid-defined organelle identity. PtdIns(3)P is now clearly involved in vesicular trafficking by interaction with a set of FYVE domain-containing proteins both in yeast and in mammals. PtdIns(4)P, which until now was only considered as a precursor for PtdIns(4,5)P2, appears as a regulator on its own, by recruiting a set of proteins to the trans-Golgi network. PtdIns(5)P, the most recently discovered inositol lipid, is also emerging as a potentially important signaling molecule.
Collapse
Affiliation(s)
- Caroline Pendaries
- Inserm U563-CPTP, IFR 30, Department of Oncogenesis and signaling in haematopoïetic cells, CHU Purpan, 31024 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
We analyzed the influence of lamins on nuclear envelope growth in cultured Xenopus A6 cells by the overexpression of human lamin A, Xenopus and zebrafish lamins B2 and Drosophila lamins Dm0 and C as GFP fusion proteins. Lamins containing a CxxM motif in their primary sequence (lamins A, B2, Dm0) induced the formation of lobulated nuclei with multi-membrane-layered, highly folded nuclear membranes and intranuclear membrane assemblies, as observed by electron microscopy. Such morphological alterations were not observed with Drosophila lamin C, a lamin without this motif or with a lamin B2 mutant (B2-SxxM) where the cysteine of the CxxM motif is replaced by a serine. Drosophila lamin C mutants containing a CxxM motif behaved like B-type lamins thus confirming that this tetrapeptide is directly involved in the morphological changes we observed. Nuclear membrane proliferation could also be induced by lamin B2 in COS-7 cells and in zebrafish embryos but not by human lamin A in COS-7 cells. We speculate that the human lamin A is incompletely processed in Xenopus A6 cells and therefore behaves in this cell line like a B-type lamin. Our results indicate that the CxxM motif of B-type lamins has a dual function: it mediates lamin targeting to the inner nuclear membrane thereby promoting nuclear membrane growth.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
267
|
Khan ZU, Gutierrez A. Distribution of C-terminal splice variant of G alpha i2 in rat and monkey brain. Neuroscience 2004; 127:833-43. [PMID: 15312896 DOI: 10.1016/j.neuroscience.2004.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 11/22/2022]
Abstract
The significance of Galphai2 in neural signal transmission is well defined. However, the function of its alternative splice variant named sGi2 is unknown. Therefore here, we have studied the localization of sGi2 protein in rat and monkey brain at light and electron microscopy level. We found that this novel protein is widely expressed in rat and monkey brain regions, which are known to play crucial role in brain functions. Hippocampus, cerebral cortex, amygdala, thalamus, striatum, nucleus accumbens, olfactory tubercle and dopaminergic cell groups of substantia nigra, hypothalamus and olfactory bulb showed strong labeling with anti-sGi2. At subcellular level, sGi2 protein was localized in intracellular compartments, including endoplasmic reticulum, Golgi complex, mitochondria and nucleus. This protein was also found localized extra-synaptically in both axons and spines, which were making excitatory as well as inhibitory synaptic contacts. Moreover, the frequent localization of sGi2 protein in neck of spines further suggests that this protein may not engage directly in neuronal signal transmission but could influence other participating proteins of this process.
Collapse
Affiliation(s)
- Z U Khan
- Departamento de Medicina, Facultad de Medicina y Centro de Investigaciones Medico Sanitarias, Universidad de Malaga, Campus Teatinos, 29071 Malaga, Spain.
| | | |
Collapse
|
268
|
Oude Weernink PA, Schmidt M, Jakobs KH. Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol 2004; 500:87-99. [PMID: 15464023 DOI: 10.1016/j.ejphar.2004.07.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/18/2022]
Abstract
The membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), plays a critical role in various, apparently very different cellular processes. As precursor for second messengers generated by phospholipase C isoforms and class I phosphoinositide 3-kinases, PIP(2) is indispensable for cellular signaling by membrane receptors. In addition, PIP(2) directly affects the localization and activity of many cellular proteins via specific interaction with unique phosphoinositide-binding domains and thereby regulates actin cytoskeletal dynamics, vesicle trafficking, ion channel activity, gene expression and cell survival. The activity and subcellular localization of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms, which catalyze the formation of PIP(2), are actively regulated by membrane receptors, by phosphorylation and by small GTPases of the Rho and ARF families. Spatially and temporally organized regulation of PIP(2) synthesis by PIP5K enables dynamic and versatile PIP(2) signaling and represents an important link in the execution of cellular tasks by Rho and ARF GTPases.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
269
|
Xu TR, Rumsby MG. Phorbol ester-induced translocation of PKC epsilon to the nucleus in fibroblasts: identification of nuclear PKC epsilon-associating proteins. FEBS Lett 2004; 570:20-4. [PMID: 15251432 DOI: 10.1016/j.febslet.2004.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/21/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
We show that phorbol ester treatment of NIH 3T3 fibroblasts induces rapid translocation of PKC from a perinuclear site to the nucleus, extending findings in PC12 and NG108-15 cells and in myocytes. We have immunoprecipitated the PKC from nuclei isolated from phorbol ester-treated fibroblasts and identified six proteins which associate with nuclear PKC. These have been characterised as matrin 3, transferrin, Rac GTPase activating protein 1, vimentin, beta-actin and annexin II by MALDI-TOF-MS. We have confirmed that these proteins associate with PKC by gel overlay and/or dot blotting assays. The role of these PKC-associating proteins in the nucleus and their interaction with PKC are considered.
Collapse
Affiliation(s)
- Tian-Rui Xu
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
270
|
Irino Y, Cho H, Nakamura Y, Nakahara M, Furutani M, Suh PG, Takenawa T, Fukami K. Phospholipase C delta-type consists of three isozymes: bovine PLCdelta2 is a homologue of human/mouse PLCdelta4. Biochem Biophys Res Commun 2004; 320:537-43. [PMID: 15219862 DOI: 10.1016/j.bbrc.2004.05.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Indexed: 10/26/2022]
Abstract
To date, 12 phospholipase C (PLC) isozymes have been identified in mammals, and they are divided into five classes, beta-, gamma-, delta-, epsilon-, and zeta-type. PLCdelta-type is reported to be composed of four isozymes, PLCdelta1-delta4. Here we report that a screening for mouse PLCdelta2 from a BAC library with primers that amplify a specific region of bovine PLCdelta2 resulted in isolation of one clone containing the mouse PLCdelta4 gene. Furthermore, a database search revealed that there is only one gene corresponding to PLCdelta2 and PLCdelta4 in the mouse and human genomes, indicating that bovine PLCdelta2 is a homologue of human and mouse PLCdelta4. However, PLCdelta2 Western blot analysis with a widely used commercial anti-PLCdelta2 antibody showed an expression pattern distinct from that of PLCdelta4 in wild-type mice. In addition, an 80-kDa band, which was recognized by antibody against PLCdelta2, was smaller than an 85-kDa band detected by anti-PLCdelta4 antibody, and the 80-kDa band was detectable in lysates of brain, testis, and spleen from PLCdelta4-deficient mice. We also found that immunoprecipitates from brain lysates with this PLCdelta2 antibody contained no PLC activity. From these data, we conclude that bovine PLCdelta2 is a homologue of human and mouse PLCdelta4, and that three isozymes (delta1, delta3, and delta4) exist in the PLCdelta family.
Collapse
Affiliation(s)
- Yasuhiro Irino
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
271
|
van Leeuwen W, Okrész L, Bögre L, Munnik T. Learning the lipid language of plant signalling. TRENDS IN PLANT SCIENCE 2004; 9:378-84. [PMID: 15358268 DOI: 10.1016/j.tplants.2004.06.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant cells respond to different biotic and abiotic stresses by producing various uncommon phospholipids that are believed to play key roles in cell signalling. We can predict how they work because animal and yeast proteins have been shown to have specific lipid-binding domains, which act as docking sites. When such proteins are recruited to the membrane locations where these phospholipids are synthesized, the phospholipids activate them directly, by inducing a conformational change, or indirectly, by juxtaposing them with an activator protein. The same lipid-binding domains are present in Arabidopsis proteins. We believe that they represent an untapped well of information about plant lipid signalling.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
272
|
Giudici ML, Emson PC, Irvine RF. A novel neuronal-specific splice variant of Type I phosphatidylinositol 4-phosphate 5-kinase isoform gamma. Biochem J 2004; 379:489-96. [PMID: 14741049 PMCID: PMC1224090 DOI: 10.1042/bj20031394] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/19/2003] [Accepted: 01/23/2004] [Indexed: 12/11/2022]
Abstract
Type I PIPkins (phosphatidylinositol 4-phosphate 5-kinases) are the enzymes that catalyse the major cellular route of synthesis of PtdIns(4,5) P2, and three isoforms (alpha, beta and gamma) with several splice variants have been found to date. In the present paper, we describe the discovery of a novel splice variant of the gamma isoform, which we call PIPkin Igammac, and which is characterized by the inclusion of a 26-amino-acid insert near the C-terminus. Its transcript appears to be selectively expressed in brain, where it locates in the neurons of restricted regions, such as cerebellum, hippocampus, cortex and olfactory bulb, as indicated by in situ hybridization studies. Overexpression of two different catalytically inactive constructs of PIPkin Igammac in rat cerebellar granule cells causes a progressive loss of their neuronal processes, whereas equivalent kinase-dead versions of PIPkin Igammaa did not induce any such effect, suggesting the possible existence of a specific PtdIns(4,5) P2 pool synthesized by PIPkin Igammac, which is involved in the maintenance of some neuronal cellular processes.
Collapse
Affiliation(s)
- Maria-Luisa Giudici
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | |
Collapse
|
273
|
Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. ACTA ACUST UNITED AC 2004; 45:179-95. [PMID: 15210303 DOI: 10.1016/j.brainresrev.2004.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Retinoic acid modulates a wide variety of biological processes including proliferation, differentiation, and apoptosis. It interacts with specific receptors in the nucleus, the retinoic acid receptors (RARs). The molecular mechanism by which retinoic acid mediates cellular differentiation and growth suppression in neural cells remains unknown. However, retinoic acid-induced release of arachidonic acid and its metabolites may play an important role in cell proliferation, differentiation, and apoptosis. In brain tissue, arachidonic acid is mainly released by the action of phospholipase A2 (PLA2) and phospholipase C (PLC)/diacylglycerol lipase pathways. We have used the model of differentiation in LA-N-1 cells induced by retinoic acid. The treatment of LA-N-1 cells with retinoic acid produces an increase in phospholipase A2 activity in the nuclear fraction. The pan retinoic acid receptor antagonist, BMS493, can prevent this increase in phospholipase A2 activity. This suggests that retinoic acid-induced stimulation of phospholipase A2 activity is a retinoic acid receptor-mediated process. LA-N-1 cell nuclei also have phospholipase C and phospholipase D (PLD) activities that are stimulated by retinoic acid. Selective phospholipase C and phospholipase D inhibitors block the stimulation of phospholipase C and phospholipase D activities. Thus, both direct and indirect mechanisms of arachidonic acid release exist in LA-N-1 cell nuclei. Arachidonic acid and its metabolites markedly affect the neurite outgrowth and neurotransmitter release in cells of neuronal and glial origin. We propose that retinoic acid receptors coupled with phospholipases A2, C and D in the nuclear membrane play an important role in the redistribution of arachidonic acid in neuronal and non-nuclear neuronal membranes during differentiation and growth suppression. Abnormal retinoid metabolism may be involved in the downstream transcriptional regulation of phospholipase A2-mediated signal transduction in schizophrenia and Alzheimer disease (AD). The development of new retinoid analogs with diminished toxicity that can cross the blood-brain barrier without harm and can normalize phospholipase A2-mediated signaling will be important in developing pharmacological interventions for these neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Ave, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
274
|
Gervais V, Lamour V, Jawhari A, Frindel F, Wasielewski E, Dubaele S, Egly JM, Thierry JC, Kieffer B, Poterszman A. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol 2004; 11:616-22. [PMID: 15195146 DOI: 10.1038/nsmb782] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/26/2004] [Indexed: 11/09/2022]
Abstract
The human general transcription factor TFIIH is involved in both transcription and DNA repair. We have identified a structural domain in the core subunit of TFIIH, p62, which is absolutely required for DNA repair activity through the nucleotide excision repair pathway. Using coimmunoprecipitation experiments, we showed that this activity involves the interaction between the N-terminal domain of p62 and the 3' endonuclease XPG, a major component of the nucleotide excision repair machinery. Furthermore, we reconstituted a functional TFIIH particle with a mutant of p62 lacking the N-terminal domain, showing that this domain is not required for assembly of the TFIIH complex and basal transcription. We solved its three-dimensional structure and found an unpredicted pleckstrin homology and phosphotyrosine binding (PH/PTB) domain, uncovering a new class of activity for this fold.
Collapse
Affiliation(s)
- Virginie Gervais
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Weeber EJ, Caldwell KK. Delay fear conditioning modifies phospholipase C-β1a signaling in the hippocampus and frontal cortex. Pharmacol Biochem Behav 2004; 78:155-64. [PMID: 15159145 DOI: 10.1016/j.pbb.2004.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/02/2004] [Accepted: 03/04/2004] [Indexed: 11/30/2022]
Abstract
The use of the single-trial fear conditioning paradigm allows for control over the exact moment when an animal is exposed to a learning event, making it possible to study both the initial neurobiological changes that are associated with learning and changes that take place over long periods of time. In the present study, we performed detailed analyses of the alterations in phosphatidylinositol-specific phospholipase C-beta1a (PLC-beta1a) levels and enzyme activities in subcellular fractions prepared from the hippocampal formation (HPF) and medial frontal cortex (MFC) 1, 3, 5, 7, 24, and 72 h following single-trial fear conditioning. We observed tissue- and time-dependent changes in both PLC-beta1a enzyme activity and anti-PLC-beta1a immunoreactivity in each subcellular fraction. Based on these observations, we hypothesize that changes in PLC-beta1a catalytic activity and subcellular distribution play important roles in neuronal signaling processes that are required for fear-conditioned learning and memory.
Collapse
Affiliation(s)
- Edwin J Weeber
- Department of Neurosciences, MSC08 4740, University of New Mexico, Albuquerque, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
276
|
Abstract
Lipid signaling by phosphoinositides (PIP(n)s) involves an array of proteins with lipid recognition, kinase, phosphatase, and phospholipase functions. Understanding PIP(n) pathway signaling requires identification and characterization of PIP(n)-interacting proteins. Moreover, spatiotemporal localization and physiological function of PIP(n)-protein complexes must be elucidated in cellular and organismal contexts. For protein discovery to functional elucidation, reporter-linked phosphoinositides or tethered PIP(n)s have been essential. The phosphoinositide 3-kinase (PI 3-K) signaling pathway has recently emerged as an important source of potential "druggable" therapeutic targets in human pathophysiology in both academic and pharmaceutical environments. This review summarizes the chemistry of PIP(n) affinity probes and their use in identifying macromolecular targets. The process of target validation will be described, i.e., the use of tethered PIP(n)s in determining PIP(n) selectivity in vitro and in establishing the function of PIP(n)-protein complexes in living cells.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA.
| |
Collapse
|
277
|
Yoda A, Oda S, Shikano T, Kouchi Z, Awaji T, Shirakawa H, Kinoshita K, Miyazaki S. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev Biol 2004; 268:245-57. [PMID: 15063165 DOI: 10.1016/j.ydbio.2003.12.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 11/23/2022]
Abstract
Sperm-specific phospholipase C zeta (PLC zeta) is known to induce intracellular Ca(2+) oscillations and egg activation when expressed in mouse eggs by injection of RNA encoding PLC zeta. We investigated the expression level and spatial distribution of PLC zeta in the egg in real time and in relation to the initiation and termination of Ca(2+) oscillations by monitoring fluorescence of a yellow fluorescent protein 'Venus' fused with PLC zeta. Ca(2+) oscillations similar to those at fertilization were induced at 40-50 min after RNA injection, when expressed PLC zeta reached 10-40 x 10(-15) g in the egg. PLC zeta-Venus increased up to 3 h and attained a steady level at 4-5 h. Interestingly, PLC zeta-Venus is accumulated to the pronucleus (PN) formed at 5-6 h and continuously increased there. Ca(2+) oscillations stopped in most eggs before initiation of the accumulation. A variant of PLC zeta that lacks three EF hand domains was much less effective in induction of Ca(2+) oscillations and little accumulated in the pronucleus, indicating a critical role of those domains. The ability of the accumulation to the pronucleus qualifies PLC zeta for a strong candidate of the Ca(2+) oscillation-inducing sperm factor, which is introduced into the ooplasm upon sperm-egg fusion and concentrated to the pronucleus after inducing egg activation.
Collapse
Affiliation(s)
- Ayako Yoda
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Abstract
Although the inositol 1,4,5-triphosphate (IP(3))-induced nuclear Ca(2+) release has been shown to play key roles in nuclear functions, the presence of IP(3) receptor (IP(3)R)/Ca(2+) channels in the nucleoplasm has not been found. Recently, the IP(3)R/Ca(2+) channels were reported to exist in the nucleoplasmic reticulum structure, an extension of the nuclear envelope. Here we investigated the potential existence of the IP(3)Rs in the nucleoplasm and found the presence of all three IP(3)R isoforms in neuroendocrine and non-neuroendocrine cells. The IP(3)Rs were widely scattered in the nucleoplasm, localizing in both the heterochromatin and euchromatin regions.
Collapse
Affiliation(s)
- Yang Hoon Huh
- National Creative Research Initiative Center for Secretory Granule Research, and Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, South Korea
| | | |
Collapse
|
279
|
Abstract
Strong evidence has been accumulating over the last 15 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. Several advances have resulted in the discovery that nuclear phosphoinositides are involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Although nuclear inositol lipids generate second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and updated findings about inositol lipid metabolism in the nucleus.
Collapse
Affiliation(s)
- Alberto M Martelli
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | | | | |
Collapse
|
280
|
di Giacomo V, Matteucci A, Stellacci E, Battistini A, Di Baldassarre A, Capitani S, Alfani E, Migliaccio AR, Cocco L, Migliaccio G. Expression of signal transduction proteins during the differentiation of primary human erythroblasts. J Cell Physiol 2004; 202:831-8. [PMID: 15389562 DOI: 10.1002/jcp.20179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The high number (>10(8-10)) of primary human pro-erythroblasts (CD36high/CD235alow) obtainable in HEMA culture (Migliaccio et al., 2002) is exploited here to analyse the expression of proteins implicated in erythropoietin (EPO)-signalling (STATs, PI-3K, and PLCs) during the process of erythroid maturation. Human pro-erythroblasts progressed in 4 days of culture with EPO into basophilic- (CD36high/CD235amedium, 24 h), polychromatic-(CD36high/CD235ahigh, 48 h), and, finally, orthochromatic-(CD36low/CD235ahigh, 72-96 h) erythroblasts. During this maturation, STAT-1 was expressed up to the orthochromatic stage, expression of STAT-5, as well as of its target proteins BclxL and IRF1, remained constant up to 48 h (polychromatic-erythroblasts) but decreased by 96 h (orthochromatic-erythroblasts), while that of STAT-3 decreased constantly from 24 h on and became undetectable by 96 h. Expression of PI-3K rapidly decreased with differentiation since only 50% of original protein levels were detected by 48 h. On the other hand, among the members of PLC families investigated, PLC beta4 was not expressed, PLC beta2, delta1, and gamma2 were expressed at constant levels throughout the maturation process, while expression of PLC beta3 and of PLC gamma1 decreased, as PI-3K, by 24 h and that of PLC beta1 was induced by 6 h and became undetectable by 24 h. In conclusion, these data depict the dynamic signalling scenario associated with the maturation of erythroid cells and provide the first indication that members of PLC families (PLC beta1, beta3, and gamma1) might be involved in the control of erythroid differentiation in humans.
Collapse
Affiliation(s)
- Viviana di Giacomo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Cocco L, Manzoli L, Barnabei O, Martelli AM. Significance of subnuclear localization of key players of inositol lipid cycle. ACTA ACUST UNITED AC 2004; 44:51-60. [PMID: 15581482 DOI: 10.1016/j.advenzreg.2003.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lucio Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, Bologna 40126, Italy.
| | | | | | | |
Collapse
|
282
|
Abstract
Lipids have long been recognized as quantitatively minor components of the nucleus, where they were initially thought to have little functional importance; but they now command growing interest, with recognition of their diverse signaling and modulating properties in that organelle. This applies to the lipid-poor compartments of the nucleoplasm as well as the relatively lipid-rich nuclear envelope. Phosphoglycerides and sphingomyelin, as the predominant lipids, have attracted the most interest among researchers, but some of the less-abundant lipids such as gangliosides, sphingosine, and sphingosine phosphate are now becoming recognized as functionally important nuclear constituents. Among recent advances in this emerging field are detailed findings on the metabolic enzymes that synthesize and catabolize nuclear lipids; the fact that these are localized primarily within the nucleus itself indicates considerable autonomy with respect to lipid metabolism. Current studies suggest several key processes involving RNA and DNA reactivity that are dependent on these lipid-initiated events. Neural cell nuclei have been the subject of such investigations, with results that closely parallel the more numerous studies on nuclei of extraneural cells. This review attempts to outline some of the major findings on nuclear lipids of diverse cell types; results with nonneural nuclei will hopefully provide useful guideposts to further studies of neural systems.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Neurology and Neurosciences, New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | |
Collapse
|
283
|
Katoh N. Modulation by Sphingosine of Phosphorylation of Substrate Proteins by Protein Kinase C in Nuclei from Cow Mammary Gland. J Vet Med Sci 2004; 66:1237-42. [PMID: 15528855 DOI: 10.1292/jvms.66.1237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC) is an enzyme activated by diacylglycerols such as 1-oleoyl-2-acetyl-sn-glycerol (OAG), phospholipids (in particular phosphatidylserine; PS) and Ca2+, which regulate a wide variety of intracellular functions by phosphorylating multiple substrate proteins and enzymes. The effect of sphingosine, the backbone moiety of sphingolipids, on PKC activity and phosphorylation of endogenous proteins catalyzed by PKC was investigated in nuclei of cow mammary gland. Sphingosine inhibited nuclear PKC activity when lysine-rich histone was used as the substrate. The sphingosine inhibition of the PKC activity was reversed by the excess addition of PS, but not by OAG or Ca2+. Several nuclear proteins, including 56-kDa, 43-kDa, 38-kDa and 36-kDa proteins, were shown to be substrates for PKC. Of the substrate proteins, the 38-kDa and 36-kDa proteins were identified as annexin I, the Ca2+/phospholipid-binding protein; the 56-kDa and 43-kDa proteins have not yet been identified. Sphingosine inhibited phosphorylation of the 56-kDa protein and the 36-kDa annexin I, whereas it enhanced that of the 43-kDa protein. The 38-kDa annexin I species was unaffected by sphingosine. As with the PKC activity, inhibition by sphingosine of phosphorylation of the 56-kDa protein and 36-kDa annexin I was reversed by the excess addition of PS, but not by OAG or Ca2+. In addition, by the excess addition of PS and not by OAG or Ca2+, the sphingosine-enhanced phosphorylation of the 43-kDa protein was reversed and returned to near the level in the absence of sphingosine. It is suggested that sphingosine is involved in the regulation of PKC-dependent phosphorylation in the nucleus by modulating the association of PKC or its substrates, particularly annexin I, with membrane phospholipids in cow mammary gland.
Collapse
Affiliation(s)
- Norio Katoh
- National Institute of Animal Health, Ibaraki, Japan
| |
Collapse
|
284
|
Abstract
Many physiological targets have been suggested for polyphosphoinositol lipids, but two out of the three monophosphorylated PIPs appeared to be no more than metabolic precursors. Recent work has shown that they also have distinct binding proteins and functions.
Collapse
Affiliation(s)
- Jonathan H Clarke
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| |
Collapse
|
285
|
Abstract
The regulators of G protein signaling (RGS) are an extraordinary class of diverse multifunctional signaling proteins best known for their potent capacity to down-regulate the activity of Galpha subunits at the plasma membrane. In certain circumstances, some RGS proteins undergo translocation to the nucleus or plasma membrane from the cytoplasm. Translocation demonstrates a potentially dynamic alternative mechanism for Galpha subunit or effector regulation. The nuclear localization of the regulators of G protein signaling proteins further suggests these proteins possess even greater functional heterogeneity than that envisioned previously, as regulators of transcription and cell cycle control.
Collapse
Affiliation(s)
- Scott A Burchett
- National Institutes of Health, National Institute of Child Health and Human Development, Laboratory of Neural Connectivity, Bethesda, Maryland 20892, USA.
| |
Collapse
|
286
|
Abstract
This year marks the 20th birthday of the discovery of inositol-1,4,5-trisphosphate as a second messenger. The background to this discovery is a complex story that goes back more than 50 years and involves a large cast of characters, both chemical and human.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|