251
|
Yan Y, Cui H, Guo C, Wei J, Huang Y, Li L, Qin Q. Singapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses. J Gen Virol 2014; 95:1144-1155. [PMID: 24535211 DOI: 10.1099/vir.0.060608-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Semaphorins are a large, phylogenetically conserved family of proteins that are involved in a wide range of biological processes including axonal steering, organogenesis, neoplastic transformation, as well as immune responses. In this study, a novel semaphorin homologue gene belonging to the Singapore grouper iridovirus (SGIV), ORF155R (termed SGIV-sema), was cloned and characterized. The coding region of SGIV-sema is 1728 bp in length, encoding a predicted protein with 575 aa. SGIV-sema contains a ~370 aa N-terminal Sema domain, a conserved plexin-semaphorin-integrin (PSI) domain, and an immunoglobulin (Ig)-like domain near the C terminus. SGIV-sema is an early gene product during viral infection and predominantly distributed in the cytoplasm with a speckled and clubbed pattern of appearance. Functionally, SGIV-sema could promote viral replication during SGIV infection in vitro, with no effect on the proliferation of host cells. Intriguingly, ectopically expressed SGIV-sema could alter the cytoskeletal structure of fish cells, characterized by a circumferential ring of microtubules near the nucleus and a disrupted microfilament organization. Furthermore, SGIV-sema was able to attenuate the cellular immune response, as demonstrated by decreased expression of inflammation/immune-related genes such as IL-8, IL-15, TNF-α and mediator of IRF3 activation (MITA), in SGIV-sema-expressing cells before and after SGIV infection. Ultimately, our study identified a novel, functional SGIV gene that could regulate cytoskeletal structure, immune responses and facilitate viral replication.
Collapse
Affiliation(s)
- Yang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Huachun Cui
- Department of Medicine, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35294, USA
| | - Chuanyu Guo
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Lili Li
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| |
Collapse
|
252
|
Yi X, Shi X, Gao H. A universal law for cell uptake of one-dimensional nanomaterials. NANO LETTERS 2014; 14:1049-55. [PMID: 24459994 DOI: 10.1021/nl404727m] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Understanding cell interaction with one-dimensional nanomaterials, including nanotubes, nanowires, nanofibers, filamentous bacteria, and certain nanoparticle chains, has fundamental importance to many applications such as biomedical diagnostics, therapeutics, and nanotoxicity. Here we show that cell uptake of one-dimensional nanomaterials via receptor-mediated endocytosis is dominated by a single dimensionless parameter that scales with the membrane tension and radius of the nanomaterial and inversely with the membrane bending stiffness. It is shown that as cell membrane internalizes one-dimensional nanomaterials the uptake follows a near-perpendicular entry mode at small membrane tension but it switches to a near-parallel interaction mode at large membrane tension.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University , Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
253
|
Bi J, Pellenz CD, Krendel M. Visualization of cytoskeletal dynamics in podocytes using adenoviral vectors. Cytoskeleton (Hoboken) 2014; 71:145-56. [PMID: 24415679 DOI: 10.1002/cm.21162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/03/2014] [Indexed: 02/01/2023]
Abstract
Glomerular visceral epithelial cells (podocytes) play a key role in maintaining selective protein filtration in the kidney. Podocytes have a complex cell shape characterized by the presence of numerous actin-rich processes, which cover the surface of glomerular capillaries and are connected by specialized cell-cell adhesion complexes (slit diaphragms). Human genetic studies and experiments in knockout mouse models show that actin filaments and actin-associated proteins are indispensable for the maintenance of podocyte shape, slit diaphragm integrity, and normal glomerular filtration. The ability to examine cytoskeletal protein organization and dynamics in podocytes and to test the effects of disease-associated mutations on protein localization provides valuable information for researchers aiming to dissect the molecular mechanisms of podocyte dysfunction. We describe how adenovirus-mediated transduction of cultured podocytes with DNA constructs can be used to reliably introduce fluorescently tagged cytoskeletal markers for live cell imaging with high efficiency and low toxicity. This technique can be used to study the dynamic reorganization of the podocyte cytoskeleton and to test the effects of novel mutations on podocyte cytoskeletal dynamics.
Collapse
Affiliation(s)
- Jing Bi
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | |
Collapse
|
254
|
Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 2014; 5:e00958-13. [PMID: 24425731 PMCID: PMC3903278 DOI: 10.1128/mbio.00958-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) establishes latency in neurons and can cause severe disseminated infection with neurological impairment and high mortality. This neurodegeneration is thought to be tightly associated with virus-induced cytoskeleton disruption. Currently, the regulation pattern of the actin cytoskeleton and the involved molecular mechanisms during HSV-1 entry into neurons remain unclear. Here, we demonstrate that the entry of HSV-1 into neuronal cells induces biphasic remodeling of the actin cytoskeleton and an initial inactivation followed by the subsequent activation of cofilin, a member of the actin depolymerizing factor family that is critical for actin reorganization. The disruption of F-actin dynamics or the modulation of cofilin activity by mutation, knockdown, or overexpression affects HSV-1 entry efficacy and virus-mediated cell ruffle formation. Binding of the HSV-1 envelope initiates the epidermal growth factor receptor (EGFR)-phosphatidylinositide 3-kinase (PI3K) signaling pathway, which leads to virus-induced early cofilin phosphorylation and F-actin polymerization. Moreover, the extracellular signal-regulated kinase (ERK) kinase and Rho-associated, coiled-coil-containing protein kinase 1 (ROCK) are recruited as downstream mediators of the HSV-1-induced cofilin inactivation pathway. Inhibitors specific for those kinases significantly reduce the virus infectivity without affecting virus binding to the target cells. Additionally, lipid rafts are clustered to promote EGFR-associated signaling cascade transduction. We propose that HSV-1 hijacks cofilin to initiate infection. These results could promote a better understanding of the pathogenesis of HSV-1-induced neurological diseases. The actin cytoskeleton is involved in many crucial cellular processes and acts as an obstacle to pathogen entry into host cells. Because HSV-1 establishes lifelong latency in neurons and because neuronal cytoskeletal disruption is thought to be the main cause of HSV-1-induced neurodegeneration, understanding the F-actin remodeling pattern by HSV-1 infection and the molecular interactions that facilitate HSV-1 entry into neurons is important. In this study, we showed that HSV-1 infection induces the rearrangement of the cytoskeleton as well as the initial inactivation and subsequent activation of cofilin. Then, we determined that activation of the EGFR-PI3K-Erk1/2 signaling pathway inactivates cofilin and promotes F-actin polymerization. We postulate that by regulating actin cytoskeleton dynamics, cofilin biphasic activation could represent the specific cellular machinery usurped by pathogen infection, and these results will greatly contribute to the understanding of HSV-1-induced early and complex changes in host cells that are closely linked to HSV-1 pathogenesis.
Collapse
|
255
|
Irwin CR, Favis NA, Agopsowicz KC, Hitt MM, Evans DH. Myxoma virus oncolytic efficiency can be enhanced through chemical or genetic disruption of the actin cytoskeleton. PLoS One 2013; 8:e84134. [PMID: 24391902 PMCID: PMC3877188 DOI: 10.1371/journal.pone.0084134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/12/2013] [Indexed: 12/29/2022] Open
Abstract
Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L+) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L+ MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies.
Collapse
Affiliation(s)
- Chad R. Irwin
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
| | - Nicole A. Favis
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
| | | | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton Alberta, Canada
- Li Ka-Shing Institute of Virology, University of Alberta, Edmonton Alberta, Canada
| | - David H. Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton Alberta, Canada
- Li Ka-Shing Institute of Virology, University of Alberta, Edmonton Alberta, Canada
- * E-mail:
| |
Collapse
|
256
|
Słońska A, Cymerys J, Godlewski MM, Dzieciątkowski T, Tucholska A, Chmielewska A, Golke A, Bańbura MW. Equine herpesvirus type 1 (EHV-1)-induced rearrangements of actin filaments in productively infected primary murine neurons. Arch Virol 2013; 159:1341-9. [PMID: 24352436 PMCID: PMC4042010 DOI: 10.1007/s00705-013-1949-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/09/2013] [Indexed: 01/02/2023]
Abstract
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. In the present study, we investigated reorganization of the cytoskeleton in neurons infected with two EHV-1 strains: Jan-E (wild-type strain) and Rac-H (attenuated strain). The studies were performed on primary murine neurons, which are an excellent model for studying neurotropism and neurovirulence of EHV-1. We have demonstrated for the first time that EHV-1 infection causes rearrangements in the actin network of neurons that are dependent on the virus strain and its adaptation to cell culture in vitro. Immunofluorescent labeling and confocal microscopy revealed the formation of long, thin projections in neurons infected with the Jan-E strain, which was probably associated with enhanced intracellular spread of the virus. The EHV-1 Rac-H strain caused disruption of the microfilaments system and general depolymerization of actin, but treatment of neurons with cytochalasin D or latrunculin A resulted in limitation of viral replication. It can therefore be assumed that actin filaments are required only at the early stages of infection. Our results allow us to suggest that the actin cytoskeleton participates in EHV-1 infection of primary murine neurons but is not essential, and that other components of the cytoskeleton and/or cellular mechanisms may be also involved during EHV-1 infection.
Collapse
Affiliation(s)
- A Słońska
- Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Landry MC, Champagne C, Boulanger MC, Jetté A, Fuchs M, Dziengelewski C, Lavoie JN. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 2013; 289:2230-49. [PMID: 24302731 DOI: 10.1074/jbc.m113.516351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.
Collapse
Affiliation(s)
- Marie-Claude Landry
- From the Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Axe Oncologie, Québec G1R 3S3 and
| | | | | | | | | | | | | |
Collapse
|
258
|
Xiang Y, Zheng K, Zhong M, Chen J, Wang X, Wang Q, Wang S, Ren Z, Fan J, Wang Y. Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology 2013; 449:88-95. [PMID: 24418541 DOI: 10.1016/j.virol.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/09/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Actin and its regulators are critical for neuronal function. Infection with herpes simplex virus 1 (HSV-1) remodels neuronal cell actin dynamics, which may relate virus-induced pathological processes in the nervous system. We previously demonstrated that cofilin is an actin regulator that participates in HSV-1-induced actin dynamics in neuronal cells, but how HSV-1 regulates cofilin has remained unclear. In the present study, we demonstrated the HSV-1-induced the inactivation of cofilin and the accumulation of phosphorylated cofilin in the nucleus, which together benefited viral replication. This consistent cofilin inactivation was achieved by the downregulation of slingshot 1 (SSH1). Notably, virus-induced SSH1 downregulation depended on the ubiquitin-proteasome system. Cofilin inactivation is therefore critical for HSV-1 replication during neuronal infection and is maintained by SSH1 downregulation. Moreover, these results provide new insight into the HSV-1-induced neurological pathogenesis and suggest potential new strategies to inhibit HSV-1 replication.
Collapse
Affiliation(s)
- Yangfei Xiang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kai Zheng
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Meigong Zhong
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jia Chen
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiaoli Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Shaoxiang Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe Ren
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo-City 409-3898, Japan
| | - Yifei Wang
- Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
259
|
Agbeci M, Grangeon R, Nelson RS, Zheng H, Laliberté JF. Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathog 2013; 9:e1003683. [PMID: 24098128 PMCID: PMC3789768 DOI: 10.1371/journal.ppat.1003683] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
The contribution of different host cell transport systems in the intercellular movement of turnip mosaic virus (TuMV) was investigated. To discriminate between primary infections and secondary infections associated with the virus intercellular movement, a gene cassette expressing GFP-HDEL was inserted adjacent to a TuMV infectious cassette expressing 6K₂:mCherry, both within the T-DNA borders of the binary vector pCambia. In this system, both gene cassettes were delivered to the same cell by a single binary vector and primary infection foci emitted green and red fluorescence while secondarily infected cells emitted only red fluorescence. Intercellular movement was measured at 72 hours post infiltration and was estimated to proceed at an average rate of one cell being infected every three hours over an observation period of 17 hours. To determine if the secretory pathway were important for TuMV intercellular movement, chemical and protein inhibitors that blocked both early and late secretory pathways were used. Treatment with Brefeldin A or Concanamycin A or expression of ARF1 or RAB-E1d dominant negative mutants, all of which inhibit pre- or post-Golgi transport, reduced intercellular movement by the virus. These treatments, however, did not inhibit virus replication in primary infected cells. Pharmacological interference assays using Tyrphostin A23 or Wortmannin showed that endocytosis was not important for TuMV intercellular movement. Lack of co-localization by endocytosed FM4-64 and Ara7 (AtRabF2b) with TuMV-induced 6K₂-tagged vesicles further supported this conclusion. Microfilament depolymerizing drugs and silencing expression of myosin XI-2 gene, but not myosin VIII genes, also inhibited TuMV intercellular movement. Expression of dominant negative myosin mutants confirmed the role played by myosin XI-2 as well as by myosin XI-K in TuMV intercellular movement. Using this dual gene cassette expression system and transport inhibitors, components of the secretory and actomyosin machinery were shown to be important for TuMV intercellular spread.
Collapse
Affiliation(s)
- Maxime Agbeci
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Richard S. Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma, United States of America
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
260
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
261
|
Abstract
Intracellular pathogens have developed elaborate mechanisms to exploit the different cellular systems of their unwilling hosts to facilitate their entry, replication, and survival. In particular, a diverse range of bacteria and viruses have evolved unique strategies to harness the power of Arp2/3-mediated actin polymerization to enhance their cell-to-cell spread. In this review, we discuss how studying these pathogens has revolutionized our molecular understanding of Arp2/3-dependent actin assembly and revealed key signaling pathways regulating actin assembly in cells. Future analyses of microbe-host interactions are likely to continue uncovering new mechanisms regulating actin assembly and dynamics, as well as unexpected cellular functions for actin. Further, studies with known and newly emerging pathogens will also undoubtedly continue to enhance our understanding of the role of the actin cytoskeleton during pathogenesis and potentially highlight future therapeutic approaches.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
262
|
Dietzel E, Kolesnikova L, Maisner A. Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J 2013; 10:249. [PMID: 23914985 PMCID: PMC3750272 DOI: 10.1186/1743-422x-10-249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 12/20/2022] Open
Abstract
Background Cytoskeletal proteins are often involved in the virus life cycle, either at early steps during virus entry or at later steps during formation of new virus particles. Though actin filaments have been shown to play a role in the production of measles virus (MV), the importance of actin dynamics for virus assembly and budding steps is not known yet. Aim of this work was thus to analyze the distinctive consequences of F-actin stabilization or disruption for MV protein trafficking, particle assembly and virus release. Results MV infection studies in the presence of inhibitors differently affecting the actin cytoskeleton revealed that not only actin disruption but also stabilization of actin filaments interfered with MV particle release. While overall viral protein synthesis, surface expression levels of the MV glycoproteins, and cell-associated infectivity was not altered, cell-free virus titers were decreased. Interestingly, the underlying mechanisms of interference with late MV maturation steps differed principally after F-actin disruption by Cytochalasin D (CD) and F-actin stabilization by Jasplakinolide (Jaspla). While intact actin filaments were shown to be required for transport of nucleocapsids and matrix proteins (M-RNPs) from inclusions to the plasma membrane, actin dynamics at the cytocortex that are blocked by Jaspla are necessary for final steps in virus assembly, in particular for the formation of viral buds and the pinching-off at the plasma membrane. Supporting our finding that F-actin disruption blocks M-RNP transport to the plasma membrane, cell-to-cell spread of MV infection was enhanced upon CD treatment. Due to the lack of M-glycoprotein-interactions at the cell surface, M-mediated fusion downregulation was hindered and a more rapid syncytia formation was observed. Conclusion While stable actin filaments are needed for intracellular trafficking of viral RNPs to the plasma membrane, and consequently for assembly at the cell surface and prevention of an overexerted fusion by the viral surface glycoproteins, actin dynamics are required for the final steps of budding at the plasma membrane.
Collapse
Affiliation(s)
- Erik Dietzel
- Institute of Virology, Philipps University of Marburg, Hans-Meerwein-Str 2, Marburg, D-35043, Germany
| | | | | |
Collapse
|
263
|
Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551-60. [PMID: 24020073 DOI: 10.1038/nrmicro3072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
264
|
Handa Y, Durkin CH, Dodding MP, Way M. Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 2013; 14:51-62. [PMID: 23870313 DOI: 10.1016/j.chom.2013.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
The vaccinia F11 protein promotes viral spread by modulating the cortical actin cytoskeleton by inhibiting RhoA signaling via an unknown mechanism. PDZ domains are widely conserved protein interaction modules whose occurrence in viral proteins is unprecedented. We found that F11 contains a central PDZ-like domain that is required to downregulate RhoA signaling and enhance viral spread. The PDZ-like domain interacts with the PDZ binding motif of the Rho GTPase-activating protein (GAP) Myosin-9A. In the absence of Myosin-9A, RhoA signaling is not inhibited, resulting in fewer actin tails and reduced virus release concomitant with less viral spread. The loss of Myosin-9A GAP activity or its ability to bind F11 also reduces actin tail formation. Furthermore, the ability of Myosin-9A to promote viral spread depends on F11 binding RhoA. Thus, F11 acts as a functional PDZ-containing scaffolding protein to inhibit RhoA signaling by binding Myosin-9A.
Collapse
Affiliation(s)
- Yutaka Handa
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | |
Collapse
|
265
|
Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One 2013; 8:e68318. [PMID: 23874584 PMCID: PMC3707916 DOI: 10.1371/journal.pone.0068318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/25/2023] Open
Abstract
Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Collapse
|
266
|
Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci U S A 2013; 110:12313-8. [PMID: 23836667 DOI: 10.1073/pnas.1311524110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During evolution, viruses have optimized the interaction with host factors to increase the efficiency of fundamental processes such as DNA replication. Bacteriophage 29 protein p1 is a membrane-associated protein that forms large protofilament sheets that resemble eukaryotic tubulin and bacterial filamenting temperature-sensitive mutant Z protein (FtsZ) polymers. In the absence of protein p1, phage 29 DNA replication is impaired. Here we show that a functional fusion of protein p1 to YFP localizes at the medial region of Bacillus subtilis cells independently of other phage-encoded proteins. We also show that 29 protein p1 colocalizes with the B. subtilis cell division protein FtsZ and provide evidence that FtsZ and protein p1 are associated. Importantly, the midcell localization of YFP-p1 was disrupted in a strain that does not express FtsZ, and the fluorescent signal was distributed all over the cell. Depletion of penicillin-binding protein 2B (PBP2B) in B. subtilis cells did not affect the subcellular localization of YFP-p1, indicating that its distribution does not depend on septal wall synthesis. Interestingly, when 29 protein p1 was expressed, B. subtilis cells were about 1.5-fold longer than control cells, and the accumulation of 29 DNA was higher in mutant B. subtilis cells with increased length. We discuss the biological role of p1 and FtsZ in the 29 growth cycle.
Collapse
|
267
|
Sanz-Sánchez L, Risco C. Multilamellar structures and filament bundles are found on the cell surface during bunyavirus egress. PLoS One 2013; 8:e65526. [PMID: 23799021 PMCID: PMC3683019 DOI: 10.1371/journal.pone.0065526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/29/2013] [Indexed: 01/12/2023] Open
Abstract
Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS) and extracellular filament bundles with attached viruses. Correlative light and electron microscopy confirmed that both MLS and filaments proliferated during the maximum egress of new viruses. MLS dimensions and structure were reminiscent of those reported for the nanostructures on gecko fingertips, which are responsible for the extraordinary attachment capacity of these lizards. As infected cells with MLS were more resistant to detachment than control cells, we propose an adhesive function for these structures, which would compensate for the loss of adherence during release of new virus progeny.
Collapse
Affiliation(s)
- Laura Sanz-Sánchez
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
268
|
Affiliation(s)
- Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
269
|
Shaikh FY, Crowe JE. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol 2013; 8:123-31. [PMID: 23252497 DOI: 10.2217/fmb.12.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus is a single-stranded RNA virus in the Paramyxoviridae family that preferentially assembles and buds from the apical surface of polarized epithelial cells, forming filamentous structures that contain both viral proteins and the genomic RNA. Recent studies have described both viral and host factors that are involved in ribonucleoprotein assembly and trafficking of viral proteins to the cell surface. At the cell surface, viral proteins assemble into filaments that probably require interactions between viral proteins, host proteins and the cell membrane. Finally, a membrane scission event must occur to release the free virion. This article will review the recent literature describing the mechanisms that drive respiratory syncytial virus assembly and budding.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
270
|
Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A 2013; 110:10270-5. [PMID: 23733942 DOI: 10.1073/pnas.1304932110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rotavirus (RV) is the major cause of childhood gastroenteritis worldwide. This study presents a functional genome-scale analysis of cellular proteins and pathways relevant for RV infection using RNAi. Among the 522 proteins selected in the screen for their ability to affect viral infectivity, an enriched group that participates in endocytic processes was identified. Within these proteins, subunits of the vacuolar ATPase, small GTPases, actinin 4, and, of special interest, components of the endosomal sorting complex required for transport (ESCRT) machinery were found. Here we provide evidence for a role of the ESCRT complex in the entry of simian and human RV strains in both monkey and human epithelial cells. In addition, the ESCRT-associated ATPase VPS4A and phospholipid lysobisphosphatidic acid, both crucial for the formation of intralumenal vesicles in multivesicular bodies, were also found to be required for cell entry. Interestingly, it seems that regardless of the molecules that rhesus RV and human RV strains use for cell-surface attachment and the distinct endocytic pathway used, all these viruses converge in early endosomes and use multivesicular bodies for cell entry. Furthermore, the small GTPases RHOA and CDC42, which regulate different types of clathrin-independent endocytosis, as well as early endosomal antigen 1 (EEA1), were found to be involved in this process. This work reports the direct involvement of the ESCRT machinery in the life cycle of a nonenveloped virus and highlights the complex mechanism that these viruses use to enter cells. It also illustrates the efficiency of high-throughput RNAi screenings as genetic tools for comprehensively studying the interaction between viruses and their host cells.
Collapse
|
271
|
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J 2013; 10:172. [PMID: 23724961 PMCID: PMC3679988 DOI: 10.1186/1743-422x-10-172] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature.Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Sydney Australia
| | | | | |
Collapse
|
272
|
Swaminathan S, Hu X, Zheng X, Kriga Y, Shetty J, Zhao Y, Stephens R, Tran B, Baseler MW, Yang J, Lempicki RA, Huang D, Lane HC, Imamichi T. Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties. Biochem Biophys Res Commun 2013; 434:228-34. [PMID: 23535375 PMCID: PMC3700531 DOI: 10.1016/j.bbrc.2013.03.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
Interleukin-27 (IL-27) is a pleiotropic cytokine which plays important and diverse roles in the immune system. We have previously demonstrated that IL-27 induces potent anti-viral effects against HIV-1, HIV-2, SIV, HSV-2, KSHV and influenza viruses in macrophages. This induction occurred in an interferon (IFN) independent manner and involved down regulation of SPTBN1. MicroRNAs (miRNAs) are critical regulators of mRNA translation and turnover. There have been reports that some miRNAs inhibit viral replication. In this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity and primary monocytes were differentiated into macrophages using either M-CSF (M-Mac) or a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in these macrophages. Four of which were preferentially expressed in I-Mac (miR-SX1, -SX2, -SX3 and -SX6) whilst three were detected in both M-Mac and I-Mac (miR-SX4, -SX5 and -SX7). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs. Finally, several of these novel miRNAs (miR-SX1, -SX4, -SX5, -SX6 and -SX7) were shown to target the open reading frames of a number of viruses (including HSV-1, HSV-2 and HHV-8) which may partially explain the anti-viral properties observed.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Xiaojun Hu
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Xin Zheng
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Yuliya Kriga
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., FNLCR, Frederick, MD, 21702
| | - Jyoti Shetty
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., FNLCR, Frederick, MD, 21702
| | - Yongmei Zhao
- Information Systems Program Directorate, SAIC-Frederick, Inc., FNLCR, Frederick, MD, 21702
| | - Robert Stephens
- Information Systems Program Directorate, SAIC-Frederick, Inc., FNLCR, Frederick, MD, 21702
| | - Bao Tran
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., FNLCR, Frederick, MD, 21702
| | - Michael W. Baseler
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Jun Yang
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Richard A. Lempicki
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Dawei Huang
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| |
Collapse
|
273
|
Yang J, Zou L, Hu Z, Chen W, Zhang J, Zhu J, Fang X, Yuan W, Hu X, Hu F, Rao X. Identification and characterization of a 43 kDa actin protein involved in the DENV-2 binding and infection of ECV304 cells. Microbes Infect 2013; 15:310-8. [DOI: 10.1016/j.micinf.2013.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/24/2012] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
|
274
|
Horsington J, Lynn H, Turnbull L, Cheng D, Braet F, Diefenbach RJ, Whitchurch CB, Karupiah G, Newsome TP. A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathog 2013; 9:e1003239. [PMID: 23555252 PMCID: PMC3605287 DOI: 10.1371/journal.ppat.1003239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 01/28/2013] [Indexed: 12/27/2022] Open
Abstract
Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF) virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF) infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF) extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5(P189S) mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.
Collapse
Affiliation(s)
- Jacquelyn Horsington
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Helena Lynn
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology), The Bosch Institute, The University of Sydney, New South Wales, Australia
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology), The Bosch Institute, The University of Sydney, New South Wales, Australia
- Australian Centre for Microscopy & Microanalysis, University of Sydney, Sydney, New South Wales, Australia
| | - Russell J. Diefenbach
- Centre for Virus Research, Westmead Millennium Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Cynthia B. Whitchurch
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Guna Karupiah
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Timothy P. Newsome
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: .
| |
Collapse
|
275
|
Li S, Zhang X, Sun Z, Li F, Xiang J. Transcriptome analysis on Chinese shrimp Fenneropenaeus chinensis during WSSV acute infection. PLoS One 2013; 8:e58627. [PMID: 23527000 PMCID: PMC3602427 DOI: 10.1371/journal.pone.0058627] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/05/2013] [Indexed: 12/26/2022] Open
Abstract
Previous studies have discovered a lot of immune-related genes responding to white spot syndrome virus (WSSV) infection in crustacean. However, little information is available in relation to underlying mechanisms of host responses during the WSSV acute infection stage in naturally infected shrimp. In this study, we employed next-generation sequencing and bioinformatic techniques to observe the transcriptome differences of the shrimp between latent infection stage and acute infection stage. A total of 64,188,426 Illumina reads, including 31,685,758 reads from the latent infection group and 32,502,668 reads from the acute infection group, were generated and assembled into 46,676 unigenes (mean length: 676 bp; range: 200-15,094 bp). Approximately 24,000 peptides were predicted and classified based on homology searches, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Among which, 805 differentially expressed genes were identified and categorized into 11 groups based on their possible function. Genes in the Toll and IMD pathways, the Ras-activated endocytosis process, the RNA interference pathway, anti-lipopolysaccharide factors and many other genes, were found to be activated in shrimp from latent infection stage to acute infection stage. The anti-bacterially proPO-activating cascade was firstly uncovered to be probably participated in antiviral process. These genes contain not only members playing function in host defense against WSSV, but also genes utilized by WSSV for its rapid proliferation. In addition, the transcriptome data provides detail information for identifying novel genes in absence of the genome database of shrimp.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
276
|
Jia KT, Liu ZY, Guo CJ, Xia Q, Mi S, Li XD, Weng SP, He JG. The potential role of microfilaments in host cells for infection with infectious spleen and kidney necrosis virus infection. Virol J 2013; 10:77. [PMID: 23497248 PMCID: PMC3599308 DOI: 10.1186/1743-422x-10-77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/27/2013] [Indexed: 01/16/2023] Open
Abstract
Background Infectious spleen and kidney necrosis virus (ISKNV) belongs to the genus Megalocytivirus from the family Iridoviridae. Megalocytivirus causes severe economic losses to tropical freshwater and marine culture industry in Asian countries and is devastating to the mandarin fish farm industry in China particularly. Methods We investigated the involvement of microfilaments in the early and late stages of ISKNV infection in MFF-1 cells by selectively perturbing their architecture using well-characterized inhibitors of actin dynamics. The effect of disruption of actin cytoskeleton on ISKNV infection was evaluated by indirect immunofluorescence analysis or real-time quantitative PCR. Results The depolymerization of the actin filaments with cytochalasin D, cytochalasin B, or latrunculin A reduced ISKNV infection. Furthermore, depolymerization of filamentous actin by inhibitors did not inhibit binding of the virus but affected virus internalization in the early stages of infection. In addition, the depolymerization of actin filaments reduced total ISKNV production in the late stages of ISKNV. Conclusions This study demonstrated that ISKNV required an intact actin network during infection. The findings will help us to better understand how iridoviruses exploit the cytoskeleton to facilitate their infection and subsequent disease.
Collapse
Affiliation(s)
- Kun-tong Jia
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Han B, Zhang L, Feng M, Fang Y, Li J. An Integrated Proteomics Reveals Pathological Mechanism of Honeybee (Apis cerena) Sacbrood Disease. J Proteome Res 2013; 12:1881-97. [DOI: 10.1021/pr301226d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lan Zhang
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
278
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
279
|
Zhang X, Chen M, Ma X, Zhao X, Wang J, Shao H, Song Q, Stanley D. Suppression of AcMNPV replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:158-171. [PMID: 23315790 DOI: 10.1002/arch.21082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Host cytoskeletons facilitate the entry, replication, and egress of viruses because cytoskeletons are essential for viral survival. One mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these changes in cytoskeleton to suppress viral replication remain unclear. We established a cell line (named Ha-shl-t) from the pupal testis of Helicoverpa armigera (Lepidoptera: Noctuidae). The new testis cell line suppresses Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) replication via disassembly of cytoskeleton. Up-regulation of thymosin (actin disassembling factor) and adf (actin depolymerizing factor) reduces F-actin. Silencing thymosin or adf or treating cells with the F-actin stabilizer phalloidin led to increased AcMNPV replication, while treating cells with an F-actin assembly inhibitor cytochalasin B decreased viral replication. We infer that Ha-shl-t cells utilize F-actin depolymerization to suppress AcMNPV replication by up-regulating thymosin and adf. We propose Ha-shl-t as a model system for investigating cytoskeletal regulation in antiviral action and testicular biology generally.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Bao YY, Chen LB, Wu WJ, Zhao D, Wang Y, Qin X, Zhang CX. Direct interactions between bidensovirus BmDNV-Z proteins and midgut proteins from the virus target Bombyx mori. FEBS J 2013; 280:939-49. [PMID: 23216561 DOI: 10.1111/febs.12088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 11/26/2022]
Abstract
In this study we aimed to identify the protein-protein interactions between Bombyx mori midgut and the bidensovirus BmDNV-Z via a yeast two-hybrid (Y2H) system. To achieve this we constructed a Gal4 activation domain fusion library that expresses the host genes and Gal4 DNA binding domain fusion bait vectors that express BmDNV-Z genes. Y2H assay revealed 15 potential interactions between host and viral proteins. To verify the interactions, we modified and reconstructed a pair of bimolecular fluorescence complementation (BiFC) vectors and achieved the co-expressions of the candidate host genes and viral genes in insect culture cells. The BiFC assay confirmed the specificity of the interactions including B. mori 35 kDa protease and two BmDNV-Z proteins encoded by VD1-ORF2 and VD2-ORF1; B. mori transgelin and BmDNV-Z protein encoded by VD2-ORF3; and B. mori serine protease precursor and BmDNV-Z encoded by VD2-ORF3 in vitro. Our findings revealed that the specific host midgut proteins are involved in the interactions between B. mori and BmDNV-Z, which will facilitate our understanding of the molecular mechanisms of BmDNV-Z infection.
Collapse
Affiliation(s)
- Yan-Yuan Bao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
281
|
Abstract
Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both primary and systemic infection phases. NiV entry and spread from polarized epithelial cells therefore determine virus entry and dissemination within a new host and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were detected only after infection with high virus doses, at time points when the integrity of the cell monolayer was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein, M. Studies with stably M-expressing and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal.
Collapse
|
282
|
Abstract
Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1 (HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV). Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune response. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Furthermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-κB via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in terms of defined functional activities.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
283
|
Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BIOMED RESEARCH INTERNATIONAL 2012; 2013:374395. [PMID: 23509714 PMCID: PMC3591105 DOI: 10.1155/2013/374395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.
Collapse
|
284
|
Staphylococcus aureus enterotoxins A- and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic. Histochem Cell Biol 2012. [PMID: 23180309 DOI: 10.1007/s00418-012-1055-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enterotoxins of Staphylococcus aureus are among the most common causes of food poisoning. Acting as superantigens they intoxicate the organism by causing a massive uncontrolled T cell activation that ultimately may lead to toxic shock and death. In contrast to our detailed knowledge regarding their interaction with the immune system, little is known about how they penetrate the epithelial barrier to gain access to their targets. We therefore studied the uptake of two staphylococcal enterotoxins (SEs), SEA and SEB, using organ cultured porcine jejunal explants as model system. Attachment of both toxins to the villus surface was scarce and patchy compared with that of cholera toxin B (CTB). SEA and SEB also bound to microvillus membrane vesicles in vitro, but less efficiently than CTB, and the binding was sensitive to treatment with endoglycoceramidase II, indicating that a glycolipid, possibly digalactosylceramide, acts as cell surface receptor at the brush border. Both SEs partitioned poorly with detergent resistant membranes (DRMs) of the microvillus, suggesting a weak association with lipid raft microdomains. Where attachment occurred, cellular uptake of SEA and SEB was also observed. In enterocytes, constitutive apical endocytosis normally proceeds only to subapical early endosomes present in the actomyosin-rich "terminal web" region. But, like CTB, both SEA and SEB penetrated deep into the cytoplasm. In conclusion, the data show that after binding to the enterocyte brush border SEA and SEB perturb the apical membrane trafficking, enabling them to engage in transcytosis to reach their target cells in the subepithelial lamina propria.
Collapse
|
285
|
Mettenleiter TC, Müller F, Granzow H, Klupp BG. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 2012; 15:170-8. [PMID: 23057731 DOI: 10.1111/cmi.12044] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022]
Abstract
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail-anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)-mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | | | | | | |
Collapse
|
286
|
Zhang W, Gao SJ. Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens 2012; 1:102-27. [PMID: 23420076 PMCID: PMC3571711 DOI: 10.3390/pathogens1020102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpes virus (KSHV) is an oncogenicvirus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle.
Collapse
Affiliation(s)
| | - Shou-Jiang Gao
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-323-442-8028; Fax: +1-323-442-1721
| |
Collapse
|
287
|
Sanger JM, Sanger JW. Insights into cell division using Listeria monocytogenes infections of PtK2 renal epithelial cells. Cytoskeleton (Hoboken) 2012; 69:992-9. [PMID: 23027717 DOI: 10.1002/cm.21076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 12/18/2022]
Abstract
The assembly of actin into a cleavage furrow is accompanied by disassembly of the interphase actin cytoskeleton. A variation of this actin filament disassembly/assembly cycle is seen during cell division in PtK2 cells infected with the intracellular pathogen, Listeria monocytogenes, where F-actin associates with the bacteria either as a halo surrounding nonmoving bacteria, or as an array of filaments that encases the sides of moving baceteria and extends behind them like a tail. The moving Listeria are found both in the cytoplasm and in the distal ends of undulating filopodia. When infected cells enter mitosis, the distribution of moving and stationary bacteria changes. In the transition from prophase to metaphase, there is a decrease in the number of bacteria with tails of actin in the cytoplasm. The nonmoving bacteria surrounded with F-actin are excluded from the mitotic spindle and moving bacteria are seldom seen in the cytoplasm during mitosis, although small thin filopodia cluster at the edges of the cells. After completion of cytokinesis, strong tail reformation first becomes obvious in the filopodia with Listeria moving back into the cytoplasm as the daughter cells spread. In summary, the disassembly and reassembly of actin tails extending from Listeria in dividing cells is a variation of the changes in actin organization produced by stress fiber and myofibril disassembly/assembly cycles during cell division. We suggest that the same unknown factors that regulate the disassembly/assembly of stress fibers and myofibrils during mitosis and post cytokinesis also affect the movement of Listeria inside mitotic cells.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
288
|
Rift Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis. J Virol 2012; 86:12954-70. [PMID: 22993156 DOI: 10.1128/jvi.02242-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.
Collapse
|
289
|
Stirnnagel K, Schupp D, Dupont A, Kudryavtsev V, Reh J, Müllers E, Lamb DC, Lindemann D. Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology 2012; 9:71. [PMID: 22935135 PMCID: PMC3495412 DOI: 10.1186/1742-4690-9-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022] Open
Abstract
Background It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. Results N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. Conclusions The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institute of Virology, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Richerioux N, Blondeau C, Wiedemann A, Rémy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus. PLoS One 2012; 7:e44072. [PMID: 22952878 PMCID: PMC3428312 DOI: 10.1371/journal.pone.0044072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023] Open
Abstract
Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.
Collapse
Affiliation(s)
- Nicolas Richerioux
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
291
|
Abstract
Endocytosis includes a number of processes by which cells internalize segments of their plasma membrane, enclosing a wide variety of material from outside the cell. Endocytosis can contribute to uptake of nutrients, regulation of signaling molecules, control of osmotic pressure, and function of synapses. The actin cytoskeleton plays an essential role in several of these processes. Actin assembly can create protrusions that encompass extracellular materials. Actin can also support the processes of invagination of a membrane segment into the cytoplasm, elongation of the invagination, scission of the new vesicle from the plasma membrane, and movement of the vesicle away from the membrane. We briefly discuss various types of endocytosis, including phagocytosis, macropinocytosis, and clathrin-independent endocytosis. We focus mainly on new findings on the relative importance of actin in clathrin-mediated endocytosis (CME) in yeast versus mammalian cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
292
|
Ruiz-Herrero T, Velasco E, Hagan MF. Mechanisms of budding of nanoscale particles through lipid bilayers. J Phys Chem B 2012; 116:9595-603. [PMID: 22803595 PMCID: PMC3428956 DOI: 10.1021/jp301601g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We examine the budding of a nanoscale particle through a lipid bilayer using molecular dynamics simulations, free energy calculations, and an elastic theory, with the aim of determining the extent to which equilibrium elasticity theory can describe the factors that control the mechanism and efficiency of budding. The particle is a smooth sphere which experiences attractive interactions to the lipid head groups. Depending on the parameters, we observe four classes of dynamical trajectories: particle adhesion to the membrane, stalled partially wrapped states, budding followed by scission, and membrane rupture. In most regions of parameter space we find that the elastic theory agrees nearly quantitatively with the simulated phase behavior as a function of adhesion strength, membrane bending rigidity, and particle radius. However, at parameter values near the transition between particle adhesion and budding, we observe long-lived partially wrapped states which are not captured by existing elastic theories. These states could constrain the accessible system parameters for those enveloped viruses or drug delivery vehicles which rely on exo- or endocytosis for membrane transport.
Collapse
|
293
|
Lam V, Bigley T, Terhune SS, Wakatsuki T. A method for quantifying mechanical properties of tissue following viral infection. PLoS One 2012; 7:e42197. [PMID: 22870300 PMCID: PMC3411685 DOI: 10.1371/journal.pone.0042197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/05/2012] [Indexed: 01/01/2023] Open
Abstract
Viral infection and replication involves the reorganization of the actin network within the host cell. Actin plays a central role in the mechanical properties of cells. We have demonstrated a method to quantify changes in mechanical properties of fabricated model three-dimensional (3D) connective tissue following viral infection. Using this method, we have characterized the impact of infection by the human herpesvirus, cytomegalovirus (HCMV). HCMV is a member of the herpesvirus family and infects a variety of cell types including fibroblasts. In the body, fibroblasts are necessary for maintaining connective tissue and function by creating mechanical force. Using this 3D connective tissue model, we observed that infection disrupted the cell’s ability to generate force and reduced the cumulative contractile force of the tissue. The addition of HCMV viral particles in the absence of both viral gene expression and DNA replication was sufficient to disrupt tissue function. We observed that alterations of the mechanical properties are, in part, due to a disruption of the underlying complex actin microfilament network established by the embedded fibroblasts. Finally, we were able to prevent HCMV-mediated disruption of tissue function by the addition of human immune globulin against HCMV. This study demonstrates a method to quantify the impact of viral infection on mechanical properties which are not evident using conventional cell culture systems.
Collapse
Affiliation(s)
- Vy Lam
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Tarin Bigley
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Scott S. Terhune
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Tetsuro Wakatsuki
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- InvivoSciences LLC, Madison, Wisconsin, United States of America
| |
Collapse
|
294
|
Kaczkowski B, Rossing M, Andersen DK, Dreher A, Morevati M, Visser MA, Winther O, Nielsen FC, Norrild B. Integrative analyses reveal novel strategies in HPV11,-16 and -45 early infection. Sci Rep 2012; 2:515. [PMID: 22808421 PMCID: PMC3398386 DOI: 10.1038/srep00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023] Open
Abstract
The interaction between human papillomavirus (HPV) and host cells is not well understood. We investigate the early stage of HPV infections by global expression profiling in a cell model, in which HaCaT cells were transfected with HPV11, HPV16 or HPV45 genomes. We report the differential expression of genes not previously implicated in HPV biology, such as the PSG family and ANKRD1, and of genes implicated in the biology of other viruses, e.g. MX1, IFI44 and DDX60. Carcinogenesis-related genes, e.g. ABL2, MGLL and CYR61, were upregulated by high-risk HPV16 and -45. The integrative analysis revealed the suppression of DNA repair by HPV11 and -16, and downregulation of cytoskeleton genes by all HPV types. Various signalling pathways were affected by the HPVs: IL-2 by HPV11; JAK-STAT by HPV16; and TGF-β, NOTCH and tyrosine kinase signalling by HPV45. This study uncovered novel strategies employed by HPV to establish infection and promote uncontrolled growth.
Collapse
Affiliation(s)
- Bogumil Kaczkowski
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Ditte K. Andersen
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Anita Dreher
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Marya Morevati
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Melissa A. Visser
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole Winther
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, Copenhagen University, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
- DTU Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Finn Cilius Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Blegdamsvej 5, 2100 Copenhagen, Denmark
| | - Bodil Norrild
- Institute of Cellular and Molecular Medicine, DNA Tumor Virus Laboratory, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
295
|
Shaikh FY, Utley TJ, Craven RE, Rogers MC, Lapierre LA, Goldenring JR, Crowe JE. Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins. PLoS One 2012; 7:e40826. [PMID: 22808269 PMCID: PMC3396619 DOI: 10.1371/journal.pone.0040826] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/13/2012] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane.
Collapse
Affiliation(s)
- Fyza Y. Shaikh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas J. Utley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ryan E. Craven
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Meredith C. Rogers
- The Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James R. Goldenring
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
296
|
Lynn H, Horsington J, Ter LK, Han S, Chew YL, Diefenbach RJ, Way M, Chaudhri G, Karupiah G, Newsome TP. Loss of cytoskeletal transport during egress critically attenuates ectromelia virus infection in vivo. J Virol 2012; 86:7427-43. [PMID: 22532690 PMCID: PMC3416336 DOI: 10.1128/jvi.06636-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/30/2012] [Indexed: 12/18/2022] Open
Abstract
Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.
Collapse
Affiliation(s)
- Helena Lynn
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Lee Kuan Ter
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Shuyi Han
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Russell J. Diefenbach
- Centre for Virus Research, The Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Michael Way
- Cancer Research UK, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Geeta Chaudhri
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gunasegaran Karupiah
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Timothy P. Newsome
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
297
|
Zamarin D, Palese P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 2012; 7:347-67. [PMID: 22393889 DOI: 10.2217/fmb.12.4] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus, which has been demonstrated to possess significant oncolytic activity against mammalian cancers. This review summarizes the research leading to the elucidation of the mechanisms of NDV-mediated oncolysis, as well as the development of novel oncolytic agents through the use of genetic engineering. Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand our knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
298
|
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9:45. [PMID: 22640593 PMCID: PMC3416652 DOI: 10.1186/1742-4690-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | | | | |
Collapse
|
299
|
Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 2012; 86:8440-51. [PMID: 22623803 DOI: 10.1128/jvi.00609-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis.
Collapse
|
300
|
Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends Microbiol 2012; 20:282-90. [PMID: 22564250 DOI: 10.1016/j.tim.2012.03.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed.
Collapse
Affiliation(s)
- Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | | |
Collapse
|