251
|
Martinelli M, Giorgiutti C, Fessard T, Lefebvre Q. Introducing covalent warheads on spirocyclic sp 2-sp 3 fragments by innate C-H functionalization. Org Biomol Chem 2023; 21:9230-9235. [PMID: 37965862 DOI: 10.1039/d3ob01746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sp2-sp3 fragments play a vital role in fragment-based drug design (FBDD). Strategies to chemically modify them and efficiently access libraries of these compounds have been goals of the highest priority in the last decades. In this work, a series of sp2-sp3 fragments was synthesized and validated for that purpose, based on their measured physical-chemical properties. Selective C-H cyanation and allylation of these fragments was demonstrated by simple heating in presence of an appropriate hydrogen-atom transfer reagent and a radical acceptor. These conditions enabled a streamlined access to covalent fragments in a single step, by direct introduction of the desired covalent binder. Preliminary results on vinylation, as well as late-stage functionalization of a drug analogue were disclosed.
Collapse
Affiliation(s)
- Matteo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli, Pavia 27100, Italy
- SpiroChem AG, Mattenstrasse 22, 4058 Basel, Switzerland.
| | | | - Thomas Fessard
- SpiroChem AG, Mattenstrasse 22, 4058 Basel, Switzerland.
| | | |
Collapse
|
252
|
Cosgrove B, Grant EK, Bertrand S, Down KD, Somers DO, P Evans J, Tomkinson NCO, Barker MD. Covalent targeting of non-cysteine residues in PI4KIIIβ. RSC Chem Biol 2023; 4:1111-1122. [PMID: 38033723 PMCID: PMC10685791 DOI: 10.1039/d3cb00142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
The synthesis and characterisation of fluorosulfate covalent inhibitors of the lipid kinase PI4KIIIβ is described. The conserved lysine residue located within the ATP binding site was targeted, and optimised compounds based upon reversible inhibitors with good activity and physicochemical profile showed strong reversible interactions and slow onset times for the covalent inhibition, resulting in an excellent selectivity profile for the lipid kinase target. X-Ray crystallography demonstrated a distal tyrosine residue could also be targeted using a fluorosulfate strategy. Combination of this knowledge showed that a dual covalent inhibitor could be developed which reveals potential in addressing the challenges associated with drug resistant mutations.
Collapse
Affiliation(s)
- Brett Cosgrove
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Emma K Grant
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Sophie Bertrand
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Kenneth D Down
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - Don O Somers
- Structural and Biophysical Science, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | - John P Evans
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| | | | - Michael D Barker
- Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre Stevenage SG1 2NY UK
| |
Collapse
|
253
|
Luo Q, Ma Y, Liang H, Feng Y, Liu N, Lian C, Zhu L, Ye Y, Liu Z, Hou Z, Chen S, Wang Y, Dai C, Song C, Zhang M, He Z, Xing Y, Zhong W, Li S, Wu J, Lu F, Yin F, Li Z. Covalent Peptide LSD1 Inhibitor Specifically Recognizes Cys360 in the Enzyme-Active Region. J Med Chem 2023; 66:15409-15423. [PMID: 37922441 DOI: 10.1021/acs.jmedchem.3c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target, especially in cancer treatment. Despite several LSD1 inhibitors being discovered for the cofactor pocket, none are FDA-approved. We aimed to develop stabilized peptides for irreversible LSD1 binding, focusing on unique cysteine residue Cys360 in LSD1 and SNAIL1. We created LSD1 C360-targeting peptides, like cyclic peptide S9-CMC1, using our Cysteine-Methionine cyclization strategy. S9-CMC1 effectively inhibited LSD1 at the protein level, as confirmed by MS analysis showing covalent bonding to Cys360. In cells, S9-CMC1 inhibited LSD1 activity, increasing H3K4me1 and H3K4me2 levels, leading to G1 cell cycle arrest and apoptosis and inhibiting cell proliferation. Remarkably, S9-CMC1 showed therapeutic potential in A549 xenograft animal models, regulating LSD1 activity and significantly inhibiting tumor growth with minimal organ damage. These findings suggest LSD1 C360 as a promising site for covalent LSD1 inhibitors' development.
Collapse
Affiliation(s)
- Qinhong Luo
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huiting Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuan Feng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Lizhi Zhu
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sijin Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yaqi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chuan Dai
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Chunli Song
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Min Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhipeng He
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yun Xing
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Wanjin Zhong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianlong Wu
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
254
|
Jiang L, Liu S, Jia X, Gong Q, Wen X, Lu W, Yang J, Wu X, Wang X, Suo Y, Li Y, Uesugi M, Qu ZB, Tan M, Lu X, Zhou L. ABPP-CoDEL: Activity-Based Proteome Profiling-Guided Discovery of Tyrosine-Targeting Covalent Inhibitors from DNA-Encoded Libraries. J Am Chem Soc 2023; 145:25283-25292. [PMID: 37857329 DOI: 10.1021/jacs.3c08852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
DNA-encoded chemical library (DEL) has been extensively used for lead compound discovery for decades in academia and industry. Incorporating an electrophile warhead into DNA-encoded compounds recently permitted the discovery of covalent ligands that selectively react with a particular cysteine residue. However, noncysteine residues remain underexplored as modification sites of covalent DELs. Herein, we report the design and utility of tyrosine-targeting DELs of 67 million compounds. Proteome-wide reactivity analysis of tyrosine-reactive sulfonyl fluoride (SF) covalent probes suggested three enzymes (phosphoglycerate mutase 1, glutathione s-transferase 1, and dipeptidyl peptidase 3) as models of tyrosine-targetable proteins. Enrichment with SF-functionalized DELs led to the identification of a series of tyrosine-targeting covalent inhibitors of the model enzymes. In-depth mechanistic investigation revealed their novel modes of action and reactive ligand-accessible hotspots of the enzymes. Our strategy of combining activity-based proteome profiling and covalent DEL enrichment (ABPP-CoDEL), which generated selective covalent binders against a variety of target proteins, illustrates the potential use of this methodology in further covalent drug discovery.
Collapse
Affiliation(s)
- Lulu Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinglong Jia
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinting Gong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jintong Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Motonari Uesugi
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhi-Bei Qu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
255
|
Harnish MT, Lopez D, Morrison CT, Narayanan R, Fernandez EJ, Shen T. Novel Covalent Modifier-Induced Local Conformational Changes within the Intrinsically Disordered Region of the Androgen Receptor. BIOLOGY 2023; 12:1442. [PMID: 37998041 PMCID: PMC10669190 DOI: 10.3390/biology12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), certain covalent ligands induce important changes, such as the neutralization of the condensate. To understand the specificity of ligand-IDR interaction and potential implications for the mechanism of neutralizing liquid-liquid phase separation (LLPS), we modeled and performed computer simulations of ligand-bound peptide segments obtained from the human AR. We analyzed how different covalent ligands affect local secondary structure, protein contact map, and protein-ligand contacts for these protein systems. We find that effective neutralizers make specific interactions (such as those between cyanopyrazole and tryptophan) that alter the helical propensity of the peptide segments. These findings on the mechanism of action can be useful for designing molecules that influence IDR structure and condensate of the AR in the future.
Collapse
Affiliation(s)
- Michael T. Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Corbin T. Morrison
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| | - Elias J. Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| |
Collapse
|
256
|
Ye X, Zhang P, Tao J, Wang JCK, Mafi A, Grob NM, Quartararo AJ, Baddock HT, Chan LJG, McAllister FE, Foe I, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Discovery of reactive peptide inhibitors of human papillomavirus oncoprotein E6. Chem Sci 2023; 14:12484-12497. [PMID: 38020382 PMCID: PMC10646941 DOI: 10.1039/d3sc02782a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023] Open
Abstract
Human papillomavirus (HPV) infections account for nearly all cervical cancer cases, which is the fourth most common cancer in women worldwide. High-risk variants, including HPV16, drive tumorigenesis in part by promoting the degradation of the tumor suppressor p53. This degradation is mediated by the HPV early protein 6 (E6), which recruits the E3 ubiquitin ligase E6AP and redirects its activity towards ubiquitinating p53. Targeting the protein interaction interface between HPV E6 and E6AP is a promising modality to mitigate HPV-mediated degradation of p53. In this study, we designed a covalent peptide inhibitor, termed reactide, that mimics the E6AP LXXLL binding motif by selectively targeting cysteine 58 in HPV16 E6 with quantitative conversion. This reactide provides a starting point in the development of covalent peptidomimetic inhibitors for intervention against HPV-driven cancers.
Collapse
Affiliation(s)
- Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - John C K Wang
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Amirhossein Mafi
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Nathalie M Grob
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anthony J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Hannah T Baddock
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Leanne J G Chan
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Fiona E McAllister
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Ian Foe
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Dan L Eaton
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Qi Hao
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Aaron H Nile
- Calico Life Sciences LLC 1170 Veterans Boulevard South San Francisco CA 94080 USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
257
|
Hocking B, Armstrong A, Mann DJ. Covalent fragment libraries in drug discovery-Design, synthesis, and screening methods. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:105-146. [PMID: 37981350 DOI: 10.1016/bs.pmch.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
As the development of drugs with a covalent mode of action is becoming increasingly popular, well-validated covalent fragment-based drug discovery (FBDD) methods have been comparatively slow to keep up with the demand. In this chapter the principles of covalent fragment reactivity, library design, synthesis, and screening methods are explored in depth, focussing on literature examples with direct applications to practical covalent fragment library design and screening. Further, questions about the future of the field are explored and potential useful advances are proposed.
Collapse
Affiliation(s)
- Brad Hocking
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alan Armstrong
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - David J Mann
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
258
|
Gowans FA, Forte N, Hatcher J, Huang OW, Wang Y, Poblano BEA, Wertz IE, Nomura DK. Covalent Degrader of the Oncogenic Transcription Factor β-Catenin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565018. [PMID: 37961622 PMCID: PMC10635039 DOI: 10.1101/2023.10.31.565018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
β-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drives the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging deeming this transcription factor as "undruggable." Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify a monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 through targeting four distinct cysteines within the armadillo repeat domain-C439, C466, C520, and C619-leading to a destabilization of CTNNB1. Using covalent chemoproteomic approaches, we show that EN83 directly engages CTNNB1 in cells with a moderate degree of selectivity. We further demonstrate that direct covalent targeting of three of these four cysteines--C466, C520, and C619--in cells contributes to CTNNB1 degradation in cells. We also demonstrate that EN83 can be further optimized to yield more potent CTNNB1 binders and degraders. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through a destabilization-mediated degradation.
Collapse
Affiliation(s)
- Flor A. Gowans
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Nafsika Forte
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Justin Hatcher
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | | | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Belen E. Altamirano Poblano
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | | | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
259
|
de Munnik M, Lithgow J, Brewitz L, Christensen KE, Bates RH, Rodriguez-Miquel B, Schofield CJ. αβ,α'β'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chem Commun (Camb) 2023; 59:12859-12862. [PMID: 37815791 PMCID: PMC10601815 DOI: 10.1039/d3cc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
Epoxides are an established class of electrophilic alkylating agents that react with nucleophilic protein residues. We report αβ,α'β'-diepoxyketones (DEKs) as a new type of mechanism-based inhibitors of nucleophilic cysteine enzymes. Studies with the L,D-transpeptidase LdtMt2 from Mycobacterium tuberculosis and the main protease from SARS-CoV-2 (Mpro) reveal that following epoxide ring opening by a nucleophilic cysteine, further reactions can occur, leading to irreversible alkylation.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jasper Lithgow
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Beatriz Rodriguez-Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Calle Severo Ochoa 2, Tres Cantos, Madrid, Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
260
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
261
|
Tian Y, Zhang M, Heng P, Hou H, Wang B. Computational Investigations on Reaction Mechanisms of the Covalent Inhibitors Ponatinib and Analogs Targeting the Extracellular Signal-Regulated Kinases. Int J Mol Sci 2023; 24:15223. [PMID: 37894903 PMCID: PMC10607051 DOI: 10.3390/ijms242015223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
As an important cancer therapeutic target, extracellular signal-regulated kinases (ERK) are involved in triggering various cellular responses in tumors. Regulation of the ERK signaling pathway by the small molecular inhibitors is highly desired for the sake of cancer therapy. In contrast to the routine inhibitors targeting ERKs through long-range non-bonding interactions, Ponatinib, a covalent inhibitor to ERK2 with a macrocyclic structure characterized by the α,β-C=C unsaturated ketone, can form the stable -C(S)-C(H)-type complex via the four-center barrier due to the nucleophilic addition reaction of the thiol group of the Cys166 residue of ERK2 with the C=C double bond of Ponatinib with reaction free-energy barrier of 47.2 kcal/mol. Reaction mechanisms for the covalent binding were calculated using QM/MM methods and molecular dynamics simulations. The interaction modes and the corresponding binding free energies were obtained for the non-covalent and covalent complexation. The binding free energies of the non-covalent and covalent inhibitions are 14.8 kcal/mol and 33.4 kcal/mol, respectively. The mechanistic study stimulated a rational design on the modified Ponatinib structure by substituting the C=C bond with the C=N bond. It was demonstrated that the new compound exhibits better inhibition activity toward ERK2 in term of both thermodynamic and kinetic aspects through the covalent binding with a lower reaction free-energy barrier of 23.1 kcal/mol. The present theoretical work sheds new light on the development of the covalent inhibitors for the regulation of ERKs.
Collapse
Affiliation(s)
| | | | | | | | - Baoshan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (Y.T.); (M.Z.); (P.H.); (H.H.)
| |
Collapse
|
262
|
Jiang X, Su H, Shang W, Zhou F, Zhang Y, Zhao W, Zhang Q, Xie H, Jiang L, Nie T, Yang F, Xiong M, Huang X, Li M, Chen P, Peng S, Xiao G, Jiang H, Tang R, Zhang L, Shen J, Xu Y. Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Nat Commun 2023; 14:6463. [PMID: 37833261 PMCID: PMC10575921 DOI: 10.1038/s41467-023-42102-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The persistent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants accentuates the great demand for developing effective therapeutic agents. Here, we report the development of an orally bioavailable SARS-CoV-2 3C-like protease (3CLpro) inhibitor, namely simnotrelvir, and its preclinical evaluation, which lay the foundation for clinical trials studies as well as the conditional approval of simnotrelvir in combination with ritonavir for the treatment of COVID-19. The structure-based optimization of boceprevir, an approved HCV protease inhibitor, leads to identification of simnotrelvir that covalently inhibits SARS-CoV-2 3CLpro with an enthalpy-driven thermodynamic binding signature. Multiple enzymatic assays reveal that simnotrelvir is a potent pan-CoV 3CLpro inhibitor but has high selectivity. It effectively blocks replications of SARS-CoV-2 variants in cell-based assays and exhibits good pharmacokinetic and safety profiles in male and female rats and monkeys, leading to robust oral efficacy in a male mouse model of SARS-CoV-2 Delta infection in which it not only significantly reduces lung viral loads but also eliminates the virus from brains. The discovery of simnotrelvir thereby highlights the utility of structure-based development of marked protease inhibitors for providing a small molecule therapeutic effectively combatting human coronaviruses.
Collapse
Affiliation(s)
- Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Feng Zhou
- State Key Laboratory of Neurology and Oncology Drug Development, 210023, Nanjing, China
- Simcere Zaiming Pharmaceutical Co., Ltd, 200000, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Wenfeng Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qiumeng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hang Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Lei Jiang
- Simcere Zaiming Pharmaceutical Co., Ltd, 200000, Shanghai, China
| | - Tianqing Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Feipu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoxing Huang
- Simcere Zaiming Pharmaceutical Co., Ltd, 200000, Shanghai, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Ping Chen
- Jiangsu Simcere Pharmaceutical Co., Ltd, 210023, Nanjing, China
| | - Shaoping Peng
- State Key Laboratory of Neurology and Oncology Drug Development, 210023, Nanjing, China
- Jiangsu Simcere Pharmaceutical Co., Ltd, 210023, Nanjing, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, 210023, Nanjing, China.
- Simcere Zaiming Pharmaceutical Co., Ltd, 200000, Shanghai, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.
- Hubei jiangxia Laboratory, 430200, Wuhan, China.
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
263
|
Miao Q, Kadam VD, Mukherjee A, Tan Z, Teng M. Unlocking DCAFs To Catalyze Degrader Development: An Arena for Innovative Approaches. J Med Chem 2023; 66:13369-13383. [PMID: 37738232 DOI: 10.1021/acs.jmedchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.
Collapse
Affiliation(s)
- Qi Miao
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vilas D Kadam
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ayan Mukherjee
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
264
|
Stuart DD, Guzman-Perez A, Brooijmans N, Jackson EL, Kryukov GV, Friedman AA, Hoos A. Precision Oncology Comes of Age: Designing Best-in-Class Small Molecules by Integrating Two Decades of Advances in Chemistry, Target Biology, and Data Science. Cancer Discov 2023; 13:2131-2149. [PMID: 37712571 PMCID: PMC10551669 DOI: 10.1158/2159-8290.cd-23-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Small-molecule drugs have enabled the practice of precision oncology for genetically defined patient populations since the first approval of imatinib in 2001. Scientific and technology advances over this 20-year period have driven the evolution of cancer biology, medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer targets. The integration of these tools and their customization in the hands of skilled drug hunters will be necessary to enable the discovery of transformational therapies for patients across a wider spectrum of cancers. SIGNIFICANCE Target-centric small-molecule drug discovery necessitates the consideration of multiple approaches to identify chemical matter that can be optimized into drug candidates. To do this successfully and consistently, drug hunters require a comprehensive toolbox to avoid following the "law of instrument" or Maslow's hammer concept where only one tool is applied regardless of the requirements of the task. Combining our ever-increasing understanding of cancer and cancer targets with the technological advances in drug discovery described below will accelerate the next generation of small-molecule drugs in oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Axel Hoos
- Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|
265
|
Souza BGD, Choudhary S, Vilela GG, Passos GFS, Costa CACB, Freitas JDD, Coelho GL, Brandão JDA, Anderson L, Bassi ÊJ, Araújo-Júnior JXD, Tomar S, Silva-Júnior EFD. Design, synthesis, antiviral evaluation, and In silico studies of acrylamides targeting nsP2 from Chikungunya virus. Eur J Med Chem 2023; 258:115572. [PMID: 37364511 DOI: 10.1016/j.ejmech.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 μM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 μM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 μM. Even at 50 μM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 μM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 μM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/μL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.
Collapse
Affiliation(s)
- Beatriz Gois de Souza
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gabriel Gomes Vilela
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Gabriel Felipe Silva Passos
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió Campus, Mizael Domingues Street, 57020-600, Alagoas, Maceió, Brazil
| | - Grazielle Lobo Coelho
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Júlia de Andrade Brandão
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Leticia Anderson
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; CESMAC University Center, 57051-160, Alagoas, Maceió, Brazil
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil; Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil.
| |
Collapse
|
266
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
267
|
van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet 2023; 62:1333-1364. [PMID: 37584840 PMCID: PMC10519871 DOI: 10.1007/s40262-023-01293-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although kinase inhibitors (KI) frequently portray large interpatient variability, a 'one size fits all' regimen is still often used. In the meantime, relationships between exposure-response and exposure-toxicity have been established for several KIs, so this regimen could lead to unnecessary toxicity and suboptimal efficacy. Dose adjustments based on measured systemic pharmacokinetic levels-i.e., therapeutic drug monitoring (TDM)-could therefore improve treatment efficacy and reduce the incidence of toxicities. Therefore, the aim of this comprehensive review is to give an overview of the available evidence for TDM for the 77 FDA/EMA kinase inhibitors currently approved (as of July 1st, 2023) used in hematology and oncology. We elaborate on exposure-response and exposure-toxicity relationships for these kinase inhibitors and provide practical recommendations for TDM and discuss corresponding pharmacokinetic targets when possible.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
268
|
Zhang J, Gao W, Wang Y, Chang J, Yu B. Targeted covalent inhibitors for novel therapeutics. Future Med Chem 2023; 15:1739-1741. [PMID: 37791528 DOI: 10.4155/fmc-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
- Jingya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshuo Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
269
|
Barr J, Colpaert G, Cadoni E, Madder A. Furan-based (photo)oxidation reactions and their application in nucleic acid and protein targeting. Methods 2023; 218:189-197. [PMID: 37597698 DOI: 10.1016/j.ymeth.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Oligonucleotides (ODNs) find applications as diagnostic and therapeutic tools due to their unique ability to interact, thanks to Watson-Crick base pairing, with a specific DNA or RNA target strand. Although most of the tools available today rely on mere hydrogen bond formation, chemical modifications to enable covalent interstrand-crosslinking (ICL) have been reported, and are gaining a place under the spotlight as they potentially offer a series of advantages over the state of the art, including a higher potency and selectivity. This methodological paper focuses on the use of a pro-reactive furan moiety and its subsequent oxidation for applications in ODN targeting. The design of effective capture and targeting probes to ensure high ICL yields is discussed and the mechanisms underlying the (photo)chemical oxidation of furan are explained. Furthermore, examples of furan-containing DNAs designed for different applications, including DNA-DNA or DNA-RNA ICL and DNA-peptide/protein targeting, are provided. The paper highlights the advantages of using different oxidative chemical triggers, such as N-bromosuccinimide or singlet oxygen, to offer additional selectivity control over the ICL reaction.
Collapse
Affiliation(s)
- Jack Barr
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium.
| |
Collapse
|
270
|
Kikuchi F, Ikeda Z, Kakegawa K, Nishikawa Y, Sasaki S, Fukuda K, Takami K, Banno Y, Nishikawa H, Taya N, Nakahata T, Itono S, Yashiro H, Tsuchimori K, Hiyoshi H, Sasaki M, Tohyama K, Matsumiya K, Ishihara Y, Kawamoto T, Kamaura M, Watanabe M, Kitazaki T, Maekawa T, Sasaki M. Discovery of a novel series of medium-sized cyclic enteropeptidase inhibitors. Bioorg Med Chem 2023; 93:117462. [PMID: 37683572 DOI: 10.1016/j.bmc.2023.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Enteropeptidase is located in the duodenum that involved in intestinal protein digestion. We have reported enteropeptidase inhibitors with low systemic exposure. The aim of this study was to discover novel enteropeptidase inhibitors showing more potent in vivo efficacy while retaining low systemic exposure. Inhibitory mechanism-based drug design led us to cyclize ester 2 to medium-sized lactones, showing potent enteropeptidase inhibitory activity and improving the ester stability, thus increasing fecal protein output in vivo. Optimization on the linker between two benzene rings resulted in discovery of ether lactone 6b, exhibiting further enhanced enteropeptidase inhibitory activity and long duration of inhibitory state. Oral administration of 6b in mice significantly elevated fecal protein output compared with the lead 2. In addition, 6b showed low systemic exposure along with low intestinal absorption. Furthermore, we identified the 10-membered lactonization method for scale-up synthesis of 6b, which does not require high-dilution conditions.
Collapse
Affiliation(s)
- Fumiaki Kikuchi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Zenichi Ikeda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Youichi Nishikawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichiro Fukuda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuaki Takami
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiro Banno
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hitoaki Nishikawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naohiro Taya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Nakahata
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroaki Yashiro
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazue Tsuchimori
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Hiyoshi
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kimio Tohyama
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kouta Matsumiya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Youko Ishihara
- Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Watanabe
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoyuki Kitazaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
271
|
Sharma S, Joshi S, Kalidindi T, Digwal CS, Panchal P, Lee SG, Zanzonico P, Pillarsetty N, Chiosis G. Unraveling the Mechanism of Epichaperome Modulation by Zelavespib: Biochemical Insights on Target Occupancy and Extended Residence Time at the Site of Action. Biomedicines 2023; 11:2599. [PMID: 37892973 PMCID: PMC10604720 DOI: 10.3390/biomedicines11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drugs with a long residence time at their target sites are often more efficacious in disease treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance, minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to pathologically rewire protein-protein interactions. To investigate their impact on epichaperomes in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome disassembly, with no change in the expression level of epichaperome constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target residence time observed for this agent in clinical settings. Zelavespib's residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank drug-target unbinding kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems. This research sheds light on the underlying processes that make epichaperome agents effective in the treatment of certain diseases.
Collapse
Affiliation(s)
- Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Chander S. Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
| | - Sang-Gyu Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Pat Zanzonico
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Nagavarakishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (T.K.); (S.-G.L.); (P.Z.)
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (S.J.); (C.S.D.); (P.P.)
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
272
|
Berta D, Gehrke S, Nyíri K, Vértessy BG, Rosta E. Mechanism-Based Redesign of GAP to Activate Oncogenic Ras. J Am Chem Soc 2023; 145:20302-20310. [PMID: 37682266 PMCID: PMC10515638 DOI: 10.1021/jacs.3c04330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 09/09/2023]
Abstract
Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.
Collapse
Affiliation(s)
- Dénes Berta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Kinga Nyíri
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Beáta G. Vértessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest 1117, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budafoki út 6-8, Budapest 1111, Hungary
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| |
Collapse
|
273
|
Konstantinidou M, Visser EJ, Vandenboorn E, Chen S, Jaishankar P, Overmans M, Dutta S, Neitz RJ, Renslo AR, Ottmann C, Brunsveld L, Arkin MR. Structure-Based Optimization of Covalent, Small-Molecule Stabilizers of the 14-3-3σ/ERα Protein-Protein Interaction from Nonselective Fragments. J Am Chem Soc 2023; 145:20328-20343. [PMID: 37676236 PMCID: PMC10515640 DOI: 10.1021/jacs.3c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 09/08/2023]
Abstract
The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 μM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Edmee Vandenboorn
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sheng Chen
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Maurits Overmans
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shubhankar Dutta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| |
Collapse
|
274
|
Gao F, Chang M, Meng X, Xu H, Gnawali G, Dong Y, Lopez B, Wang W. Site-Selective Modification of Secondary Amine Moieties on Native Peptides, Proteins, and Natural Products with Ynones. Bioconjug Chem 2023; 34:1553-1562. [PMID: 37646420 DOI: 10.1021/acs.bioconjchem.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Site-selective modification of biologically relevant secondary amines in peptides, proteins, and natural products has been challenging due to the similar reactivity between primary and secondary amines. Even for the secondary amines, their reactivities are significantly influenced by their structures and environment. Herein, we report a ynone Michael bioconjugation method for selective modification of secondary amines in unprotected peptides and proteins and complex natural products. We show that fine tuning the electronic effect of the ynones enables controlling the Michael acceptor reactivity for the selective reaction with the structurally different secondary amines in densely functionalized complex structures and complicated biological environment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd., Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
| | - Byrdie Lopez
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd., Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, 1703 E Mabel Street, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd., Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, 3838 N. Campbell Avenue, Tucson, Arizona 85719, United States
| |
Collapse
|
275
|
Patil P, Zheng Q, Kurpiewska K, Dömling A. The isocyanide S N2 reaction. Nat Commun 2023; 14:5807. [PMID: 37726293 PMCID: PMC10509164 DOI: 10.1038/s41467-023-41253-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The SN2 nucleophilic substitution reaction is a vital organic transformation used for drug and natural product synthesis. Nucleophiles like cyanide, oxygen, nitrogen, sulfur, or phosphorous replace halogens or sulfonyl esters, forming new bonds. Isocyanides exhibit unique C-centered lone pair σ and π* orbitals, enabling diverse radical and multicomponent reactions. Despite this, their nucleophilic potential in SN2 reactions remains unexplored. We have uncovered that isocyanides act as versatile nucleophiles in SN2 reactions with alkyl halides. This yields highly substituted secondary amides through in situ nitrilium ion hydrolysis introducing an alternative bond break compared to classical amide synthesis. This novel 3-component process accommodates various isocyanide and electrophile structures, functional groups, scalability, late-stage drug modifications, and complex compound synthesis. This reaction greatly expands chemical diversity, nearly doubling the classical amid coupling's chemical space. Notably, the isocyanide nucleophile presents an unconventional Umpolung amide carbanion synthon (R-NHC(-) = O), an alternative to classical amide couplings.
Collapse
Affiliation(s)
- Pravin Patil
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Olomouc, Czech Republic
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Qiang Zheng
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Department of Crystal Chemistry and Crystal Physics Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Alexander Dömling
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Olomouc, Czech Republic.
- Department of Drug Design, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
276
|
Aatkar A, Vuorinen A, Longfield OE, Gilbert K, Peltier-Heap R, Wagner CD, Zappacosta F, Rittinger K, Chung CW, House D, Tomkinson NCO, Bush JT. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments. ACS Chem Biol 2023; 18:1926-1937. [PMID: 37084287 PMCID: PMC10510102 DOI: 10.1021/acschembio.3c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.
Collapse
Affiliation(s)
- Arron Aatkar
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Aini Vuorinen
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Oliver E. Longfield
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Katharine Gilbert
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Rachel Peltier-Heap
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Craig D. Wagner
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | | | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David House
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Nicholas C. O. Tomkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Jacob T. Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| |
Collapse
|
277
|
Garcia EM, Lue NZ, Liang JK, Lieberman WK, Hwang DD, Woods J, Liau BB. Base Editor Scanning Reveals Activating Mutations of DNMT3A. ACS Chem Biol 2023; 18:2030-2038. [PMID: 37603861 PMCID: PMC10560492 DOI: 10.1021/acschembio.3c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
DNA methyltransferase 3A (DNMT3A) is a de novo cytosine methyltransferase responsible for establishing proper DNA methylation during mammalian development. Loss-of-function (LOF) mutations to DNMT3A, including the hotspot mutation R882H, frequently occur in developmental growth disorders and hematological diseases, including clonal hematopoiesis and acute myeloid leukemia. Accordingly, identifying mechanisms that activate DNMT3A is of both fundamental and therapeutic interest. Here, we applied a base editor mutational scanning strategy with an improved DNA methylation reporter to systematically identify DNMT3A activating mutations in cells. By integrating an optimized cellular recruitment strategy with paired isogenic cell lines with or without the LOF hotspot R882H mutation, we identify and validate three distinct hyperactivating mutations within or interacting with the regulatory ADD domain of DNMT3A, nominating these regions as potential functional target sites for pharmacological intervention. Notably, these mutations are still activating in the context of a heterozygous R882H mutation. Altogether, we showcase the utility of base editor scanning for discovering functional regions of target proteins.
Collapse
Affiliation(s)
- Emma M. Garcia
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of Harvard and MIT, Cambridge, MA, USA 02142
| | - Nicholas Z. Lue
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of Harvard and MIT, Cambridge, MA, USA 02142
| | - Jessica K. Liang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | - Whitney K. Lieberman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | - Derek D. Hwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
| | - James Woods
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of Harvard and MIT, Cambridge, MA, USA 02142
| | - Brian B. Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 02138
- Broad Institute of Harvard and MIT, Cambridge, MA, USA 02142
| |
Collapse
|
278
|
Rao D, Yang T, Feng H, An Q, Zhang S, Yu J, Ren X, Diao X, Huang H, Tang W, Xu S. Discovery and Structural Optimization of Covalent ZAP-70 Kinase Inhibitors against Psoriasis. J Med Chem 2023; 66:12018-12032. [PMID: 37594408 DOI: 10.1021/acs.jmedchem.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease closely related with T cells, and its management remains a challenge. Novel targets and associated drugs are urgently needed. Zeta-chain-associated protein kinase 70 kDa (ZAP-70) has been recognized as a potential target for treating autoimmune diseases due to its crucial role in T cell receptor signaling. In our previous work, we identified a potent and selective covalent ZAP-70 inhibitor with anti-inflammatory activity in vitro. Herein, we report the structural optimization of covalent ZAP-70 inhibitors. Our efforts led to the discovery of compound 25 (RDN2150), which exhibited potent inhibitory activity against ZAP-70 and favorable selectivity. It also demonstrated promising inhibitory effects on T cell activation and inflammatory cytokine production. Furthermore, a topical application of 25 resulted in significant efficacy in an imiquimod-induced psoriasis mouse model. Overall, these findings present the basis of a promising strategy for the treatment of psoriasis by targeting ZAP-70.
Collapse
Affiliation(s)
- Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaofeng Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
279
|
Wang G, Moitessier N, Mittermaier AK. Computational and biophysical methods for the discovery and optimization of covalent drugs. Chem Commun (Camb) 2023; 59:10866-10882. [PMID: 37609777 DOI: 10.1039/d3cc03285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Drugs that act by covalently attaching to their targets have been used to treat human diseases for over a hundred years. However, the deliberate design of covalent drugs was discouraged due to concerns of toxicity and off-target effects. Recent successes in covalent drug discovery have sparked fresh interest in this field. New screening and testing methods aimed at covalent inhibitors can play pivotal roles in facilitating the discovery process. This feature article focuses on computational and biophysical advances originating from our labs over the past decade and how these approaches have contributed to the design of prolyl oligopeptidase (POP) and SARS-CoV-2 3CLpro covalent inhibitors.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
280
|
Bianco G, Holcomb M, Santos-Martins D, Tillack A, Hansel-Harris A, Forli S. Reactive Docking: A Computational Method for High-Throughput Virtual Screenings of Reactive Species. J Chem Inf Model 2023; 63:5631-5640. [PMID: 37639635 PMCID: PMC10756071 DOI: 10.1021/acs.jcim.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We describe the formalization of the reactive docking protocol, a method developed to model and predict reactions between small molecules and biological macromolecules. The method has been successfully used in a number of applications already, including recapitulating large proteomics data sets, performing structure-reactivity target optimizations, and prospective virtual screenings. By modeling a near-attack conformation-like state, no QM calculations are required to model the ligand and receptor geometries. Here, we present its generalization using a large data set containing more than 400 ligand-target complexes, 8 nucleophilic modifiable residue types, and more than 30 warheads. The method correctly predicts the modified residue in ∼85% of complexes and shows enrichments comparable to standard focused virtual screenings in ranking ligands. This performance supports this approach for the docking and screening of reactive ligands in virtual chemoproteomics and drug design campaigns.
Collapse
Affiliation(s)
- Giulia Bianco
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Andreas Tillack
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037-1000, USA
| |
Collapse
|
281
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
282
|
Liu LY, Ma TZ, Zeng YL, Liu W, Zhang H, Mao ZW. Organic-Platinum Hybrids for Covalent Binding of G-Quadruplexes: Structural Basis and Application to Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202305645. [PMID: 37464955 DOI: 10.1002/anie.202305645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
G-quadruplexes (G4s) have been revived as promising therapeutic targets with the development of immunotherapy, but the G4-mediated immune response remains unclear. We designed a novel class of G4-binding organic-platinum hybrids, L1 -cispt and L1 -transpt, with spatial matching for G4 binding and G4 DNA reactivity for binding site locking. The solution structure of L1 -transpt-MYT1L G4 demonstrated the effectiveness of the covalent binding and revealed the covalent binding-guided dynamic balance, accompanied by the destruction of the A5-T17 base pairs to achieve the covalent binding of the platinum unit to N7 of the G6 residue. Furthermore, L1 -cispt- and L1 -transpt-mediated genomic dysfunction could activate the retinoic acid-induced gene I (RIG-I) pathway and induce immunogenic cell death (ICD). The use of L1 -cispt/L1 -transpt-treated dying cells as therapeutic vaccines stimulated a robust immune response and effectively inhibited tumor growth in vivo. Our findings highlight the importance of the rational combination of specific spatial recognition and covalent locking in G4-trageting drug design and their potential in immunotherapy.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
283
|
Cirillo D, Diceglie M, Nazaré M. Isoform-selective targeting of PI3K: time to consider new opportunities? Trends Pharmacol Sci 2023; 44:601-621. [PMID: 37438206 DOI: 10.1016/j.tips.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
Phosphoinositide-3-kinases (PI3Ks) are central to several cellular signaling pathways in human physiology and are potential pharmacological targets for many pathologies including cancer, thrombosis, and pulmonary diseases. Tremendous efforts to develop isoform-selective inhibitors have culminated in the approval of several drugs, validating PI3K as a tractable and therapeutically relevant target. Although successful therapeutic validation has focused on isoform-selective class I orthosteric inhibitors, recent clinical findings have indicated challenges regarding poor drug tolerance owing to sustained on-target inhibition. Hence, additional approaches are warranted to increase the clinical benefits of specific clinical treatment options, which may involve the employment of so far underexploited targeting modalities or the development of inhibitors for currently underexplored PI3K class II isoforms. We review recent key discoveries in the development of isoform-selective inhibitors, focusing particularly on PI3K class II isoforms, and highlight the emerging importance of developing a broader arsenal of pharmacological tools.
Collapse
Affiliation(s)
- Davide Cirillo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marta Diceglie
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany.
| |
Collapse
|
284
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
285
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
286
|
Wang X, Zhang Y, Wang C. Discovery of cisplatin-binding proteins by competitive cysteinome profiling. RSC Chem Biol 2023; 4:670-674. [PMID: 37654507 PMCID: PMC10467758 DOI: 10.1039/d3cb00042g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/22/2023] [Indexed: 09/02/2023] Open
Abstract
Cisplatin is a widely used cancer metallodrug that induces cytotoxicity by targeting DNA and chelating cysteines in proteins. Here we applied a competitive activity-based protein profiling strategy to identify cisplatin-binding cysteines in cancer proteomes. A novel cisplatin target, MetAP1, was identified and functionally validated to contribute to cisplatin's cytotoxicity.
Collapse
Affiliation(s)
- Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
| |
Collapse
|
287
|
Xue L, Liu W, Li S, Duchemin N, Lou M, Yuan J, Zhang H, Chen J, Yu W, Yang K, Hu YJ. On-DNA Morita-Baylis-Hillman Reaction: Accessing Targeted Covalent Inhibitor Motifs in DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1366-1373. [PMID: 37418679 DOI: 10.1021/acs.bioconjchem.3c00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
We herein present the first application of the on-DNA Morita-Baylis-Hillman (MBH) reaction for the creation of pharmaceutically relevant targeted covalent inhibitors (TCIs) with an α-hydroxyl Michael acceptor motif. Adapting a DNA-compatible organocatalytic process, this MBH reaction for covalent selection-capable DNA encoded library (DEL) synthesis grants access to densely functionalized and versatile precursors to explore novel chemical space for molecule recognition in drug discovery. Most importantly, this methodology sheds light on potentially unexpected reaction outcomes of the MBH reaction.
Collapse
Affiliation(s)
- Lijun Xue
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Weijie Liu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Shu Li
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Nicolas Duchemin
- Pharmaron U.K., Ltd., Innovation Park, West Cl, Hertford Rd, Hoddesdon EN11 9FH, United Kingdom
| | - Mengjia Lou
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Jingyu Yuan
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Huanqing Zhang
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Junyun Chen
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Weina Yu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| | - Kexin Yang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P.R. China
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Co., Ltd. No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo, 315336, P.R. China
| |
Collapse
|
288
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
289
|
Meyers M, Cismoski S, Panidapu A, Chie-Leon B, Nomura DK. Targeted Protein Degradation through Recruitment of the CUL4A Complex Adaptor Protein DDB1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553046. [PMID: 37614621 PMCID: PMC10443223 DOI: 10.1101/2023.08.11.553046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional Proteolysis Targeting Chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4A adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.
Collapse
Affiliation(s)
- Margot Meyers
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Sabine Cismoski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Barbara Chie-Leon
- Novartis-Berkeley Translational Chemical Biology Institute
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
290
|
Kimishima A, Negami S, Tsuruoka I, Tsutsumi H, Matsui H, Sugamata M, Kondo N, Honsho M, Sakai K, Honma S, Naher K, Watanabe Y, Iwatsuki M, Inahashi Y, Hanaki H, Asami Y. Re-evaluation and a Structure-Activity Relationship Study for the Selective Anti-anaerobic Bacterial Activity of Luminamicin toward Target Identification. ACS Infect Dis 2023; 9:1602-1609. [PMID: 37418000 DOI: 10.1021/acsinfecdis.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Luminamicin (1) isolated in 1985, is a macrodiolide compound exhibiting selective antibacterial activity against anaerobes. However, the antibacterial activity of 1 was not fully examined. In this research, re-evaluation of the antibacterial activity of 1 revealed that 1 is a narrow spectrum and potent antibiotic againstClostridioides difficile(C. difficile) and effective against fidaxomicin resistantC. difficilestrain. This prompted us to obtain luminamicin resistantC. difficilestrains for the determination of the molecular target of 1 inC. difficile. Sequence analysis of 1-resistantC. difficileindicated that the mode of action of 1 differs from that of fidaxomicin. This is because no mutation was observed in RNA polymerase and mutations were observed in a hypothetical protein and cell wall protein. Furthermore, we synthesized derivatives from 1 to study the structure-activity relationship. This research indicated that the maleic anhydride and the enol ether moieties seem to be pivotal functional groups to maintain the antibacterial activity againstC. difficileand the 14-membered lactone may contribute to taking an appropriate molecular conformation.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sota Negami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Iori Tsuruoka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayama Tsutsumi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidehito Matsui
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miho Sugamata
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naozumi Kondo
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazunari Sakai
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kamrun Naher
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- O̅mura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
291
|
Jin J, Luo Q, Shi F. Identification of intestinal metabolic activation of loganin generated dialdehyde reactive intermediates improves intestinal bile salt hydrolase activities. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123861. [PMID: 37639995 DOI: 10.1016/j.jchromb.2023.123861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Loganin is an iridoid with potent pharmacological effects. Loganin contains a hemiacetal structure and can convert to dialdehyde intermediates after deglycosylation. We hypothesized that the metabolites of loganin with hemiacetal can generate reactive dialdehyde intermediates. This study aims to characterize the metabolic profiling of loganin and especially for the unstable dialdehyde intermediates by using ultra-performance liquid chromatograph-quadrupole orbitrap mass spectrometry. In this study, a total of 26 stable metabolites were identified in loganin-treated rats. Loganin underwent different metabolism in the intestine and liver, which was confirmed mainly by the metabolites in the hepatic portal vein. In the intestine, the major metabolic pathways were ester hydrolysis and deglycosylation, followed by methylation and dehydrogenation. The hepatic metabolism pathways were hydrogenation, hydroxylation, glucuronidation, and sulfonation. The circulating metabolites with high abundance were mainly derived from intestinal metabolism. Importantly, 11 unstable dialdehyde intermediates of loganin were identified and described for the first time. The dialdehyde intermediates were identified by their dihydropyridine conjugates with amino acids. The dialdehyde intermediates were mainly produced in the intestine. The dialdehyde intermediates enable covalent modification of intestinal proteins. Loganin can up-regulate the activity of intestinal bile salt hydrolase (BSH), catalyzing bile acid metabolism. The level of protein adducts was positively associated with BSH activity, indicating dialdehyde intermediates played a key role in the up-regulation of BSH activities. In conclusion, this study not only demonstrates the characteristic metabolic fate of loganin but also facilitates the understanding of the pharmacologic effects of dialdehyde intermediates.
Collapse
Affiliation(s)
- Junli Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qi Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
292
|
Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo‐Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García‐Sastre A, Shoichet BK, Craik CS. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Protein Sci 2023; 32:e4712. [PMID: 37354015 PMCID: PMC10364469 DOI: 10.1002/pro.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.
Collapse
Affiliation(s)
- Elissa A. Fink
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in BiophysicsUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Conner Bardine
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in Chemistry and Chemical BiologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Stefan Gahbauer
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isha Singh
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Tyler C. Detomasi
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Kris White
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shuo Gu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Xiaobo Wan
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Jun Chen
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Beatrice Ary
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isabella Glenn
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Joseph O'Connell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Henry O'Donnell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Jiankun Lyu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Seth Vigneron
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Nicholas J. Young
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Ivan S. Kondratov
- Enamine Ltd.KyïvUkraine
- V.P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyïvUkraine
| | - Arghavan Alisoltani
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ramon Lorenzo‐Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Egon A. Ozer
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Yurii S. Moroz
- National Taras Shevchenko University of KyïvKyïvUkraine
- Chemspace LLCKyïvUkraine
| | - Jack Taunton
- Department of Cellular and Molecular PharmacologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Renslo
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - John J. Irwin
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Division of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| |
Collapse
|
293
|
Xerxa E, Laufkötter O, Bajorath J. Systematic Analysis of Covalent and Allosteric Protein Kinase Inhibitors. Molecules 2023; 28:5805. [PMID: 37570774 PMCID: PMC10420927 DOI: 10.3390/molecules28155805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In drug discovery, protein kinase inhibitors (PKIs) are intensely investigated as drug candidates in different therapeutic areas. While ATP site-directed, non-covalent PKIs have long been a focal point in protein kinase (PK) drug discovery, in recent years, there has been increasing interest in allosteric PKIs (APKIs), which are expected to have high kinase selectivity. In addition, as compounds acting by covalent mechanisms experience a renaissance in drug discovery, there is also increasing interest in covalent PKIs (CPKIs). There are various reasons for this increasing interest such as the anticipated high potency, prolonged residence times compared to non-competitive PKIs, and other favorable pharmacokinetic properties. Due to the popularity of PKIs for therapeutic intervention, large numbers of PKIs and large volumes of activity data have accumulated in the public domain, providing a basis for large-scale computational analysis. We have systematically searched for CPKIs containing different reactive groups (warheads) and investigated their potency and promiscuity (multi-PK activity) on the basis of carefully curated activity data. For seven different warheads, sufficiently large numbers of CPKIs were available for detailed follow-up analysis. For only three warheads, the median potency of corresponding CPKIs was significantly higher than of non-covalent PKIs. However, for CKPIs with five of seven warheads, there was a significant increase in the median potency of at least 100-fold compared to PKI analogues without warheads. However, in the analysis of multi-PK activity, there was no general increase in the promiscuity of CPKIs compared to non-covalent PKIs. In addition, we have identified 29 new APKIs in X-ray structures of PK-PKI complexes. Among structurally characterized APKIs, 13 covalent APKIs in complexes with five PKs are currently available, enabling structure-based investigation of PK inhibition by covalent-allosteric mechanisms.
Collapse
Affiliation(s)
| | | | - Jürgen Bajorath
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany
| |
Collapse
|
294
|
Hartung IV, Rudolph J, Mader MM, Mulder MPC, Workman P. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. J Med Chem 2023; 66:9297-9312. [PMID: 37403870 PMCID: PMC10388296 DOI: 10.1021/acs.jmedchem.3c00550] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 07/06/2023]
Abstract
Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.
Collapse
Affiliation(s)
- Ingo V. Hartung
- Medicinal
Chemistry, Global Research & Development, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Joachim Rudolph
- Discovery
Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Mary M. Mader
- Molecular
Innovation, Indiana Biosciences Research
Institute, Indianapolis, Indiana 64202, United States
| | - Monique P. C. Mulder
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Workman
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London, Sutton SM2 5NG, United Kingdom
- Chemical
Probes Portal, https://www.chemicalprobes.org/
| |
Collapse
|
295
|
Tallon AM, Xu Y, West GM, am Ende CW, Fox JM. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be "Switched Off" via Bioorthogonal Chemistry Inside Live Cells. J Am Chem Soc 2023; 145:16069-16080. [PMID: 37450839 PMCID: PMC10530612 DOI: 10.1021/jacs.3c04444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Electrophilic small molecules that can reversibly modify proteins are of growing interest in drug discovery. However, the ability to study reversible covalent probes in live cells can be limited by their reversible reactivity after cell lysis and in proteomic workflows, leading to scrambling and signal loss. We describe how thiomethyltetrazines function as reversible covalent warheads for cysteine modification, and this dynamic labeling behavior can be "switched off" via bioorthogonal chemistry inside live cells. Simultaneously, the tetrazine serves as a bioorthogonal reporter enabling the introduction of tags for fluorescent imaging or affinity purification. Thiomethyltetrazines can label isolated proteins, proteins in cellular lysates, and proteins in live cells with second-order rate constants spanning 2 orders of magnitude (k2, 1-100 M-1 s-1). Reversible modification by thiomethyltetrazines can be switched off upon the addition of trans-cyclooctene in live cells, converting the dynamic thiomethyltetrazine tag into a Diels-Alder adduct which is stable to lysis and proteomic workflows. Time-course quenching experiments were used to demonstrate temporal control over electrophilic modification. Moreover, it is shown that "locking in" the tag through Diels-Alder chemistry enables the identification of protein targets that are otherwise lost during sample processing. Three probes were further evaluated to identify unique pathways in a live-cell proteomic study. We anticipate that discovery efforts will be enabled by the trifold function of thiomethyltetrazines as electrophilic warheads, bioorthogonal reporters, and switches for "locking in" stability.
Collapse
Affiliation(s)
- Amanda M. Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yingrong Xu
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
296
|
Iskandar SE, Chiou LF, Leisner TM, Shell DJ, Norris-Drouin JL, Vaziri C, Pearce KH, Bowers AA. Identification of Covalent Cyclic Peptide Inhibitors in mRNA Display. J Am Chem Soc 2023; 145:15065-15070. [PMID: 37395736 PMCID: PMC11246720 DOI: 10.1021/jacs.3c04833] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Peptides have historically been underutilized for covalent inhibitor discovery, despite their unique abilities to interact with protein surfaces and interfaces. This is in part due to a lack of methods for screening and identifying covalent peptide ligands. Here, we report a method to identify covalent cyclic peptide inhibitors in mRNA display. We combine co- and post-translational library diversification strategies to create cyclic libraries with reactive dehydroalanines (Dhas), which we employ in selections against two model targets. The most potent hits exhibit low nanomolar inhibitory activities and disrupt known protein-protein interactions with their selected targets. Overall, we establish Dhas as electrophiles for covalent inhibition and showcase how separate library diversification methods can work synergistically to dispose mRNA display to novel applications like covalent inhibitor discovery.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lilly F Chiou
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Tina M Leisner
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Devan J Shell
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L Norris-Drouin
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Cyrus Vaziri
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
297
|
de Munnik M, Lang PA, De Dios Anton F, Cacho M, Bates RH, Brem J, Rodríguez Miquel B, Schofield CJ. High-throughput screen with the l,d-transpeptidase Ldt Mt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem Sci 2023; 14:7262-7278. [PMID: 37416715 PMCID: PMC10321483 DOI: 10.1039/d2sc06858c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Disruption of bacterial cell wall biosynthesis in Mycobacterium tuberculosis is a promising target for treating tuberculosis. The l,d-transpeptidase LdtMt2, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for M. tuberculosis virulence. We optimised a high-throughput assay for LdtMt2, and screened a targeted library of ∼10 000 electrophilic compounds. Potent inhibitor classes were identified, including established (e.g., β-lactams) and unexplored covalently reacting electrophilic groups (e.g., cyanamides). Protein-observed mass spectrometric studies reveal most classes to react covalently and irreversibly with the LdtMt2 catalytic cysteine (Cys354). Crystallographic analyses of seven representative inhibitors reveal induced fit involving a loop enclosing the LdtMt2 active site. Several of the identified compounds have a bactericidal effect on M. tuberculosis within macrophages, one with an MIC50 value of ∼1 μM. The results provide leads for the development of new covalently reaction inhibitors of LdtMt2 and other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Francisco De Dios Anton
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Mónica Cacho
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Beatriz Rodríguez Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
298
|
Yamane D, Tetsukawa R, Zenmyo N, Tabata K, Yoshida Y, Matsunaga N, Shindo N, Ojida A. Expanding the Chemistry of Dihaloacetamides as Tunable Electrophiles for Reversible Covalent Targeting of Cysteines. J Med Chem 2023. [PMID: 37393576 DOI: 10.1021/acs.jmedchem.3c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The choice of an appropriate electrophile is crucial in the design of targeted covalent inhibitors (TCIs). In this report, we systematically investigated the glutathione (GSH) reactivity of various haloacetamides and the aqueous stability of their thiol adducts. Our findings revealed that dihaloacetamides cover a broad range of GSH reactivity depending on the combination of the halogen atoms and the structure of the amine scaffold. Among the dihaloacetamides, dichloroacetamide (DCA) exhibited slightly lower GSH reactivity than chlorofluoroacetamide (CFA). The DCA-thiol adduct is readily hydrolyzed under aqueous conditions, but it can stably exist in the solvent-sequestered binding pocket of the protein. These reactivity profiles of DCA were successfully exploited in the design of TCIs targeting noncatalytic cysteines of KRASG12C and EGFRL858R/T790M. These inhibitors exhibited strong antiproliferative activities against cancer cells. Our findings provide valuable insights for designing dihaloacetamide-based reversible covalent inhibitors.
Collapse
Affiliation(s)
- Daiki Yamane
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Tetsukawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Zenmyo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kaori Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuya Yoshida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
299
|
Lucero B, Francisco KR, Liu LJ, Caffrey CR, Ballatore C. Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol Sci 2023; 44:474-488. [PMID: 37263826 PMCID: PMC11003449 DOI: 10.1016/j.tips.2023.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.
Collapse
Affiliation(s)
- Bobby Lucero
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
300
|
Kottur J, White KM, Rodriguez ML, Rechkoblit O, Quintana-Feliciano R, Nayar A, García-Sastre A, Aggarwal AK. Structures of SARS-CoV-2 N7-methyltransferase with DOT1L and PRMT7 inhibitors provide a platform for new antivirals. PLoS Pathog 2023; 19:e1011546. [PMID: 37523415 PMCID: PMC10414583 DOI: 10.1371/journal.ppat.1011546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/10/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2's nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5' end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - M. Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Richard Quintana-Feliciano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ahana Nayar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|