251
|
Lee J, Kim SR, Lee C, Jun YI, Bae S, Yoon YJ, Kim OY, Gho YS. Extracellular vesicles from in vivo liver tissue accelerate recovery of liver necrosis induced by carbon tetrachloride. J Extracell Vesicles 2021; 10:e12133. [PMID: 34401049 PMCID: PMC8357636 DOI: 10.1002/jev2.12133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles composed of proteolipid bilayers carrying various molecular signatures of the cells. As mediators of intercellular communications, EVs have gained great attention as new therapeutic agents in the field of nanomedicine. Therefore, many studies have explored the roles of cell-derived EVs isolated from cultured hepatocytes or stem cells as inducer of liver proliferation and regeneration under various pathological circumstances. However, study investigating the role of EVs directly isolated from liver tissue has not been performed. Herein, to understand the pathophysiological role and to investigate the therapeutic potential of in vivo liver EVs, we isolated EVs from both normal and carbon tetrachloride (CCl4)-induced damaged in vivo liver tissues. The in vivo EVs purified from liver tissues display typical features of EVs including spherical morphology, nano-size, and enrichment of tetraspanins. Interestingly, administration of both normal and damaged liver EVs significantly accelerated the recovery of liver tissue from CCl4-induced hepatic necrosis. This restorative action was through the induction of hepatocyte growth factor at the site of the injury. These results suggest that not only normal liver EVs but also damaged liver EVs play important pathophysiological roles of maintaining homeostasis after tissue damage. Our study, therefore, provides new insight into potentially developing in vivo EV-based therapeutics for preventing and treating liver diseases.
Collapse
Affiliation(s)
- Jaemin Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Sae Rom Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Changjin Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Ye In Jun
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Seoyoon Bae
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yae Jin Yoon
- Genome Editing Research CentreKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Oh Youn Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- Department of MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
252
|
Špilak A, Brachner A, Kegler U, Neuhaus W, Noehammer C. Implications and pitfalls for cancer diagnostics exploiting extracellular vesicles. Adv Drug Deliv Rev 2021; 175:113819. [PMID: 34087328 DOI: 10.1016/j.addr.2021.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Early detection of cancer in order to facilitate timely therapeutic interventions is an unsolved problem in today's clinical diagnostics. Tumors are detected so far mostly after pathological symptoms have emerged (usually already in progressed disease states), within preventive screenings, or occasionally as incidental finding. The emergence of extracellular vesicle (EV) analytics in combination with liquid biopsy sampling opened a plethora of new possibilities for the detection of tumors (and other diseases). This review gives an overview of the diversity of currently known EV species and the relevant cargo molecules representing potential biomarkers to detect, identify and characterize tumor cells. A number of molecules reported in recent years to be valuable targets for different aspects of cancer diagnostics, are presented. Furthermore, we discuss (technical) challenges and pitfalls related to the various potential applications (screening, diagnosis, prognosis, monitoring) of liquid biopsy based EV analytics, and give an outlook to possible future directions of this emerging field in oncology.
Collapse
Affiliation(s)
- Ana Špilak
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Andreas Brachner
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Ulrike Kegler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Christa Noehammer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria.
| |
Collapse
|
253
|
Yuan C, Li Z, Zhao Y, Wang X, Chen L, Zhao Z, Cao M, Chen T, Iqbal T, Zhang B, Fan W, Wei Y, Li C, Zhou X. Follicular fluid exosomes: Important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J 2021; 35:e21610. [PMID: 33908671 DOI: 10.1096/fj.202100030rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Granulosa cells (GCs) are regulated by various factors during ovarian development. However, there are few reports on the role of follicular fluid exosomes in ovarian GCs. In this study, porcine ovarian GCs were used to explore the effects of follicular fluid exosomes on GCs. GCs were treated with in vitro, and the changes in cell proliferation, steroid synthesis, and associated signal pathways were detected. The results showed that exosomes increased cell viability and altered the gene expression profile of GCs. Exosomes also increased the level of gene expression associated with both proliferation and progesterone synthesis, in which the MAPK/ERK and WNT/B-CATENIN pathways were involved. In addition, exosome-carried microRNAs were identified by high-throughput sequencing, and exosomal miR-31-5p was found to promote the proliferation of GCs and progesterone synthesis via the WNT/B-CATENIN pathway by targeting the SFRP4 follicle growth inhibitor. In conclusion, this study has demonstrated that exosomes are essential substances involved in regulating the physiological function of GCs.
Collapse
Affiliation(s)
- Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zheng Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tariq Iqbal
- College of Animal Sciences, Jilin University, Changchun, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Wenjing Fan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yameng Wei
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
254
|
Park K, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Lötvall J. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J Extracell Vesicles 2021; 10:e12120. [PMID: 34262675 PMCID: PMC8254025 DOI: 10.1002/jev2.12120] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.
Collapse
Affiliation(s)
- Kyong‐Su Park
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care MedicineInstitute of Clinical ScienceSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Rossella Crescitelli
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Inta Gribonika
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Jan Lötvall
- Krefting Research CentreInstitute of MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
255
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
256
|
Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation. Int J Mol Sci 2021; 22:ijms22094718. [PMID: 33946872 PMCID: PMC8125637 DOI: 10.3390/ijms22094718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identification of biomarkers of disease and can provide a better understanding of cell-to-cell communication in both healthy and diseased tissue. The aim of this study was to apply our previously established tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway inflammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final challenge, and their lungs were removed and sliced into smaller pieces that were incubated in culture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteomes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene ontology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway inflammation. This suggests that the composition of lung-derived EVs is altered in diseases associated with inflammation of the lung, which may have implications in type-2 driven eosinophilic asthma pathogenesis.
Collapse
|
257
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
258
|
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021; 13:pharmaceutics13040498. [PMID: 33917448 PMCID: PMC8067521 DOI: 10.3390/pharmaceutics13040498] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.
Collapse
|
259
|
Beltraminelli T, Perez CR, De Palma M. Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 2021; 35:108960. [PMID: 33826890 DOI: 10.1016/j.celrep.2021.108960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment encompasses an intertwined ensemble of both transformed cancer cells and non-transformed host cells, which together establish a signaling network that regulates tumor progression. By conveying both homo- and heterotypic cell-to-cell communication cues, tumor-derived extracellular vesicles (tEVs) modulate several cancer-associated processes, such as immunosuppression, angiogenesis, invasion, and metastasis. Herein we discuss how recent methodological advances in the isolation and characterization of tEVs may help to broaden our understanding of their functions in tumor biology and, potentially, establish their utility as cancer biomarkers.
Collapse
Affiliation(s)
- Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
260
|
Benecke L, Coray M, Umbricht S, Chiang D, Figueiró F, Muller L. Exosomes: Small EVs with Large Immunomodulatory Effect in Glioblastoma. Int J Mol Sci 2021; 22:3600. [PMID: 33808435 PMCID: PMC8036988 DOI: 10.3390/ijms22073600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are among the most aggressive tumors, and with low survival rates. They are characterized by the ability to create a highly immunosuppressive tumor microenvironment. Exosomes, small extracellular vesicles (EVs), mediate intercellular communication in the tumor microenvironment by transporting various biomolecules (RNA, DNA, proteins, and lipids), therefore playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Exosomes are found in all body fluids and can cross the blood-brain barrier due to their nanoscale size. Recent studies have highlighted the multiple influences of tumor-derived exosomes on immune cells. Owing to their structural and functional properties, exosomes can be an important instrument for gaining a better molecular understanding of tumors. Furthermore, they qualify not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting aggressive tumor cells, like glioblastomas.
Collapse
Affiliation(s)
- Laura Benecke
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| | - Mali Coray
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Sandra Umbricht
- Faculty of Medicine, University of Basel, 4051 Basel, Switzerland;
| | - Dapi Chiang
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil;
| | - Laurent Muller
- Department of Biomedicine, University of Basel, 4051 Basel, Switzerland; (L.B.); (M.C.); (D.C.)
- Department of Otolaryngology and Head & Neck Surgery, University Hospital Basel, 4051 Basel, Switzerland
| |
Collapse
|