251
|
Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR, Balch WE. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 2006; 127:803-15. [PMID: 17110338 DOI: 10.1016/j.cell.2006.09.043] [Citation(s) in RCA: 478] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 07/08/2006] [Accepted: 09/11/2006] [Indexed: 02/09/2023]
Abstract
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Ahner A, Nakatsukasa K, Zhang H, Frizzell RA, Brodsky JL. Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol Biol Cell 2006; 18:806-14. [PMID: 17182856 PMCID: PMC1805084 DOI: 10.1091/mbc.e06-05-0458] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Secreted proteins that fail to achieve their native conformations, such as cystic fibrosis transmembrane conductance regulator (CFTR) and particularly the DeltaF508-CFTR variant can be selected for endoplasmic reticulum (ER)-associated degradation (ERAD) by molecular chaperones. Because the message corresponding to HSP26, which encodes a small heat-shock protein (sHsp) in yeast was up-regulated in response to CFTR expression, we examined the impact of sHsps on ERAD. First, we observed that CFTR was completely stabilized in cells lacking two partially redundant sHsps, Hsp26p and Hsp42p. Interestingly, the ERAD of a soluble and a related integral membrane protein were unaffected in yeast deleted for the genes encoding these sHsps, and CFTR polyubiquitination was also unaltered, suggesting that Hsp26p/Hsp42p are not essential for polyubiquitination. Next, we discovered that DeltaF508-CFTR degradation was enhanced when a mammalian sHsp, alphaA-crystallin, was overexpressed in human embryonic kidney 293 cells, but wild-type CFTR biogenesis was unchanged. Because alphaA-crystallin interacted preferentially with DeltaF508-CFTR and because purified alphaA-crystallin suppressed the aggregation of the first nucleotide-binding domain of CFTR, we suggest that sHsps maintain the solubility of DeltaF508-CFTR during the ERAD of this polypeptide.
Collapse
Affiliation(s)
- Annette Ahner
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kunio Nakatsukasa
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Hui Zhang
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Raymond A. Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jeffrey L. Brodsky
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; and
| |
Collapse
|
253
|
Wang W, Bernard K, Li G, Kirk KL. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J Biol Chem 2006; 282:4533-4544. [PMID: 17178710 DOI: 10.1074/jbc.m609942200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.
Collapse
Affiliation(s)
- Wei Wang
- Department of Physiology and Biophysics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294.
| | - Karen Bernard
- Department of Physiology and Biophysics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Ge Li
- Department of Physiology and Biophysics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kevin L Kirk
- Department of Physiology and Biophysics and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
254
|
Oloo EO, Kandt C, O'Mara ML, Tieleman DP. Computer simulations of ABC transporter componentsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:900-11. [PMID: 17215877 DOI: 10.1139/o06-182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current computer simulation techniques provide robust tools for studying the detailed structure and functional dynamics of proteins, as well as their interaction with each other and with other biomolecules. In this minireview, we provide an illustration of recent progress and future challenges in computer modeling by discussing computational studies of ATP-binding cassette (ABC) transporters. ABC transporters have multiple components that work in a well coordinated fashion to enable active transport across membranes. The mechanism by which members of this superfamily execute transport remains largely unknown. Molecular dynamics simulations initiated from high-resolution crystal structures of several ABC transporters have proven to be useful in the investigation of the nature of conformational coupling events that may drive transport. In addition, fruitful efforts have been made to predict unknown structures of medically relevant ABC transporters, such as P-glycoprotein, using homology-based computational methods. The various techniques described here are also applicable to gaining an atomically detailed understanding of the functional mechanisms of proteins in general.
Collapse
Affiliation(s)
- Eliud O Oloo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
255
|
Roxo-Rosa M, Xu Z, Schmidt A, Neto M, Cai Z, Soares CM, Sheppard DN, Amaral MD. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Proc Natl Acad Sci U S A 2006; 103:17891-6. [PMID: 17098864 PMCID: PMC1693843 DOI: 10.1073/pnas.0608312103] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The revertant mutations G550E and 4RK [the simultaneous mutation of four arginine-framed tripeptides (AFTs): R29K, R516K, R555K, and R766K] rescue the cell surface expression and function of F508del-cystic fibrosis (CF) transmembrane conductance regulator (-CFTR), the most common CF mutation. Here, we investigate their mechanism of action by using biochemical and functional assays to examine their effects on F508del and three CF mutations (R560T, A561E, and V562I) located within a conserved region of the first nucleotide-binding domain (NBD1) of CFTR. Like F508del, R560T and A561E disrupt CFTR trafficking. G550E rescued the trafficking defect of A561E but not that of R560T. Of note, the processing and function of V562I were equivalent to that of wild-type (wt)-CFTR, suggesting that V562I is not a disease-causing mutation. Biochemical studies revealed that 4RK generates higher steady-state levels of mature CFTR (band C) for wt- and V562I-CFTR than does G550E. Moreover, functional studies showed that the revertants rescue the gating defect of F508del-CFTR with different efficacies. 4RK modestly increased F508del-CFTR activity by prolonging channel openings, whereas G550E restored F508del-CFTR activity to wt levels by altering the duration of channel openings and closings. Thus, our data suggest that the revertants G550E and 4RK might rescue F508del-CFTR by distinct mechanisms. G550E likely alters the conformation of NBD1, whereas 4RK allows F508del-CFTR to escape endoplasmic reticulum retention/retrieval mediated by AFTs. We propose that AFTs might constitute a checkpoint for endoplasmic reticulum quality control.
Collapse
Affiliation(s)
- Mónica Roxo-Rosa
- *Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Zhe Xu
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - André Schmidt
- *Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Mário Neto
- *Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Zhiwei Cai
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - Cláudio M. Soares
- Institute of Chemistry and Biological Technology, New University of Lisbon, 2781-901 Oeiras, Portugal
| | - David N. Sheppard
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom; and
| | - Margarida D. Amaral
- *Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- To whom correspondence should be addressed at:
Faculty of Sciences, University of Lisbon, Campo Grande, C8 Building, 1749-016 Lisbon, Portugal. E-mail:
| |
Collapse
|
256
|
Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 2006; 25:4728-39. [PMID: 17036051 PMCID: PMC1618097 DOI: 10.1038/sj.emboj.7601373] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 08/30/2006] [Indexed: 11/08/2022] Open
Abstract
The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH(2)-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH(2)-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1-NBD2 association to channel opening.
Collapse
Affiliation(s)
- Martin Mense
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY, USA
| | - Paola Vergani
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY, USA
| | - Dennis M White
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY, USA
| | - Gal Altberg
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - David C Gadsby
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY, USA
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA. Tel.: +1 212 327 8680; Fax: +1 212 327 7589; E-mail:
| |
Collapse
|
257
|
Aleksandrov AA, Aleksandrov LA, Riordan JR. CFTR (ABCC7) is a hydrolyzable-ligand-gated channel. Pflugers Arch 2006; 453:693-702. [PMID: 17021796 DOI: 10.1007/s00424-006-0140-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 01/28/2023]
Abstract
As the product of the gene mutated in cystic fibrosis, the most common genetic disease of Caucasians, CFTR is an atypical ABC protein. From an evolutionary perspective, it is apparently a relatively young member of the ABC family, present only in metazoans where it plays a critical role in epithelial salt and fluid homeostasis. Functionally, the membrane translocation process it mediates, the passive bidirectional diffusion of small inorganic anions, is simpler than the vectorial transport of larger more complex substrates ("allocrites") by most ABC transporters. However, the control of the permeation pathway which cannot go unchecked is necessarily more stringent than in the case of the transporters. There is tight regulation by the phosphorylation/dephosphorylation of the unique CFTR R domain superimposed on the basic ABC regulation mode of ATP binding and hydrolysis at the dual nucleotide binding sites. As with other ABCC subfamily members, only the second of these sites is hydrolytic in CFTR. The phosphorylation and ATP binding/hydrolysis events do not strongly influence each other; rather, R domain phosphorylation appears to enable transduction of the nucleotide binding allosteric signal to the responding channel gate. ATP hydrolysis is not required for either the opening or closing gating transitions but efficiently clears the ligand-binding site enabling a new gating cycle to be initiated.
Collapse
Affiliation(s)
- Andrei A Aleksandrov
- Department of Biochemistry and Biophysics and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
258
|
Zhou Z, Wang X, Liu HY, Zou X, Li M, Hwang TC. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. ACTA ACUST UNITED AC 2006; 128:413-22. [PMID: 16966475 PMCID: PMC2151577 DOI: 10.1085/jgp.200609622] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase–dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
259
|
Moody JE, Thomas PJ. Nucleotide binding domain interactions during the mechanochemical reaction cycle of ATP-binding cassette transporters. J Bioenerg Biomembr 2006; 37:475-9. [PMID: 16691486 DOI: 10.1007/s10863-005-9494-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ATP-binding cassette (ABC) transporters serve as importers and exporters for a wide variety of solutes in both prokaryotes and eukaryotes, and are implicated in microbial drug resistance and a number of significant human genetic disorders. Initial crystal structures of the soluble nucleotide binding domains (NBDs) of ABC transporters, while a significant step towards understanding the coupling of ATP binding and hydrolysis to transport, presented researchers with important questions surrounding the role of the signature sequence residues, the composition of the nucleotide binding sites, and the mode of NBD dimerization during the transport reaction cycle. Recent studies have begun to address these concerns. This mini-review summarizes the biochemical and structural characterizations of two archaebacterial NBDs from Methanocaldococcus jannaschii, MJ0796 and MJ1267, and offers current perspectives on the functional mechanism of ABC transporters.
Collapse
Affiliation(s)
- Jonathan E Moody
- Department of Physiology, University of Texas Southwestern Medical Center, 6001 Forest Park Lane, Dallas, Texas 75390-9040, USA
| | | |
Collapse
|
260
|
Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L. A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 2006; 25:3432-43. [PMID: 16858415 PMCID: PMC1523178 DOI: 10.1038/sj.emboj.7601208] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 05/30/2006] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC)-transporter haemolysin (Hly)B, a central element of a Type I secretion machinery, acts in concert with two additional proteins in Escherichia coli to translocate the toxin HlyA directly from the cytoplasm to the exterior. The basic set of crystal structures necessary to describe the catalytic cycle of the isolated HlyB-NBD (nucleotide-binding domain) has now been completed. This allowed a detailed analysis with respect to hinge regions, functionally important key residues and potential energy storage devices that revealed many novel features. These include a structural asymmetry within the ATP dimer that was significantly enhanced in the presence of Mg2+, indicating a possible functional asymmetry in the form of one open and one closed phosphate exit tunnel. Guided by the structural analysis, we identified two amino acids, closing one tunnel by an apparent salt bridge. Mutation of these residues abolished ATP-dependent cooperativity of the NBDs. The implications of these new findings for the coupling of ATP binding and hydrolysis to functional activity are discussed.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Thorsten Jumpertz
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Stefan Jenewein
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexander Wiedenmann
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - I Barry Holland
- Institut de Génétique et Microbiologie, Université de Paris XI, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
261
|
Abstract
Unique among ABC (ATP-binding cassette) protein family members, CFTR (cystic fibrosis transmembrane conductance regulator), also termed ABCC7, encoded by the gene mutated in cystic fibrosis patients, functions as an ion channel. Opening and closing of its anion-selective pore are linked to ATP binding and hydrolysis at CFTR's two NBDs (nucleotide-binding domains), NBD1 and NBD2. Isolated NBDs of prokaryotic ABC proteins form homodimers upon binding ATP, but separate after hydrolysis of the ATP. By combining mutagenesis with single-channel recording and nucleotide photolabelling on intact CFTR molecules, we relate opening and closing of the channel gates to ATP-mediated events in the NBDs. In particular, we demonstrate that two CFTR residues, predicted to lie on opposite sides of its anticipated NBD1-NBD2 heterodimer interface, are energetically coupled when the channels open but are independent of each other in closed channels. This directly links ATP-driven tight dimerization of CFTR's cytoplasmic NBDs to opening of the ion channel in the transmembrane domains. Evolutionary conservation of the energetically coupled residues in a manner that preserves their ability to form a hydrogen bond argues that this molecular mechanism, involving dynamic restructuring of the NBD dimer interface, is shared by all members of the ABC protein superfamily.
Collapse
Affiliation(s)
- P Vergani
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
262
|
Kurashima-Ito K, Ikeya T, Senbongi H, Tochio H, Mikawa T, Shibata T, Ito Y. Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6. JOURNAL OF BIOMOLECULAR NMR 2006; 35:53-71. [PMID: 16791740 DOI: 10.1007/s10858-006-9000-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/10/2006] [Indexed: 05/10/2023]
Abstract
Human ATP-binding cassette, sub-family B, member 6 (ABCB6) is a mitochondrial ABC transporter, and presumably contributes to iron homeostasis. Aimed at understanding the structural basis for the conformational changes accompanying the substrate-transportation cycle, we have studied the C-terminal nucleotide-binding domain of ABCB6 (ABCB6-C) in both the nucleotide-free and ADP-bound states by heteronuclear multidimensional NMR and homology modelling. A non-linear sampling scheme was utilised for indirectly acquired 13C and 15N dimensions of all 3D triple-resonance NMR experiments, in order to overcome the instability and the low solubility of ABCB6-C. The backbone resonances for approximately 25% of non-proline residues, which are mostly distributed around the functionally important loops and in the Helical domain, were not observed for nucleotide-free form of ABCB6-C. From the pH, temperature and magnetic field strength dependencies of the resonance intensities, we concluded that this incompleteness in the assignments is mainly due to the exchange between multiple conformations at an intermediate rate on the NMR timescale. These localised conformational dynamics remained in ADP-bound ABCB6-C except for the loops responsible for adenine base and alpha/beta-phosphate binding. These results revealed that the localised dynamic cooperativity, which was recently proposed for a prokaryotic ABC MJ1267, also exists in a higher eukaryotic ABC, and is presumably shared by all members of the ABC family. Since the Helical domain is the putative interface to the transmembrane domain, this cooperativity may explain the coupled functions between domains in the substrate-transportation cycle.
Collapse
Affiliation(s)
- Kaori Kurashima-Ito
- Cellular and Molecular Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
263
|
Gadsby DC, Vergani P, Csanády L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 2006; 440:477-83. [PMID: 16554808 PMCID: PMC2720541 DOI: 10.1038/nature04712] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.
Collapse
Affiliation(s)
- David C Gadsby
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
264
|
Guo X, Harrison RW, Tai PC. Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. J Bacteriol 2006; 188:2383-91. [PMID: 16547024 PMCID: PMC1428426 DOI: 10.1128/jb.188.7.2383-2391.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.
Collapse
Affiliation(s)
- Xiangxue Guo
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, 402 Kell Hall, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
265
|
Melin P, Norez C, Callebaut I, Becq F. The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B. J Membr Biol 2006; 208:203-12. [PMID: 16604470 DOI: 10.1007/s00232-005-7001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/05/2005] [Indexed: 10/24/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein contains a canonical ATP-binding cassette (ABC) signature motif, LSGGQ, in nucleotide binding domain 1 (NBD1) and a degenerate LSHGH in NBD2. Here, we studied the contribution of the conserved residues G551 and G1349 to the pharmacological modulation of CFTR chloride channels by phloxine B using iodide efflux and whole-cell patch clamp experiments performed on the following green fluorescent protein (GFP)-tagged CFTR: wild-type, delF508, G551D, G1349D, and G551D/G1349D double mutant. We found that phloxine B stimulates and inhibits channel activity of wild-type CFTR (Ks = 3.2 +/- 1.6 microM: , Ki = 38 +/- 1.4 microM: ) and delF508 CFTR (Ks = 3 +/- 1.8 microM: , Ki = 33 +/- 1 microM: ). However, CFTR channels with the LSGDQ mutated motif (mutation G551D) are activated (Ks = 2 +/- 1.13 microM: ) but not inhibited by phloxine B. Conversely, CFTR channels with the LSHDH mutated motif (mutation G1349D) are inhibited (Ki = 40 +/- 1.01 microM: ) but not activated by phloxine B. Finally, the double mutant G551D/G1349D CFTR failed to respond not only to phloxine B stimulation but also to phloxine B inhibition, confirming the importance of both amino acid locations. Similar results were obtained with genistein, and kinetic parameters were determined to compare the pharmacological effects of both agents. These data show that G551 and G1349 control the inhibition and activation of CFTR by these agents, suggesting functional nonequivalence of the signature motifs of NBD in the ABC transporter CFTR.
Collapse
Affiliation(s)
- Patricia Melin
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR6187, Université de Poitiers, 40 avenue du recteur Pineau, 86022, Poitiers, France
| | | | | | | |
Collapse
|
266
|
Oswald C, Holland IB, Schmitt L. The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 2006; 372:385-99. [PMID: 16541253 DOI: 10.1007/s00210-005-0031-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/19/2005] [Indexed: 01/21/2023]
Abstract
The transport of substrates across a cellular membrane is a vitally important biological function essential for cell survival. ATP-binding cassette (ABC) transporters constitute one of the largest subfamilies of membrane proteins, accomplishing this task. Mutations in genes encoding for ABC transporters cause different diseases, for example, Adrenoleukodystrophy, Stargardt disease or Cystic Fibrosis. Furthermore, some ABC transporters are responsible for multidrug resistance, presenting a major obstacle in modern cancer chemotherapy. In order to translocate the enormous variety of substrates, ranging from ions, nutrients, small peptides to large toxins, different ABC-transporters utilize the energy gained from ATP binding and hydrolysis. The ATP binding cassette, also called the motor domain of ABC transporters, is highly conserved among all ABC transporters. The ability to purify this domain rather easily presents a perfect possibility to investigate the mechanism of ATP hydrolysis, thus providing us with a detailed picture of this process. Recently, many crystal structures of the ATP-binding domain and the full-length structures of two ABC transporters have been solved. Combining these structural data, we have now the opportunity to analyze the hydrolysis event on a molecular level. This review provides an overview of the structural investigations of the ATP-binding domains, highlighting molecular changes upon ATP binding and hydrolysis.
Collapse
Affiliation(s)
- Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germanye
| | | | | |
Collapse
|
267
|
Ramaen O, Sizun C, Pamlard O, Jacquet E, Lallemand JY. Attempts to characterize the NBD heterodimer of MRP1: transient complex formation involves Gly771 of the ABC signature sequence but does not enhance the intrinsic ATPase activity. Biochem J 2006; 391:481-90. [PMID: 16014004 PMCID: PMC1276949 DOI: 10.1042/bj20050897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MRP1 (multidrug-resistance-associated protein 1; also known as ABCC1) is a member of the human ABC (ATP-binding cassette) transporter superfamily that confers cell resistance to chemotherapeutic agents. Considering the structural and functional similarities to the other ABC proteins, the interaction between its two NBDs (nucleotide-binding domains), NBD1 (N-terminal NBD) and NBD2 (C-terminal NBD), is proposed to be essential for the regulation of the ATP-binding/ATP-hydrolysis cycle of MRP1. We were interested in the ability of recombinant NBD1 and NBD2 to interact with each other and to influence ATPase activity. We purified NBD1 (Asn642-Ser871) and NBD2 (Ser1286-Val1531) as soluble monomers under native conditions. We measured extremely low intrinsic ATPase activity of NBD1 (10(-5) s(-1)) and NBD2 (6x10(-6) s(-1)) and no increase in the ATP-hydrolysis rate could be detected in an NBD1+NBD2 mixture, with concentrations up to 200 microM. Despite the fact that both monomers bind ATP, no stable NBD1.NBD2 heterodimer could be isolated by gel-filtration chromatography or native-PAGE, but we observed some significant modifications of the heteronuclear single-quantum correlation NMR spectrum of 15N-NBD1 in the presence of NBD2. This apparent NBD1.NBD2 interaction only occurred in the presence of Mg2+ and ATP. Partial sequential assignment of the NBD1 backbone resonances shows that residue Gly771 of the LSGGQ sequence is involved in NBD1.NBD2 complex formation. This is the first NMR observation of a direct interaction between the ABC signature and the opposite NBD. Our study also reveals that the NBD1.NBD2 heterodimer of MRP1 is a transient complex. This labile interaction is not sufficient to induce an ATPase co-operativity of the NBDs and suggests that other structures are required for the ATPase activation mechanism.
Collapse
Affiliation(s)
- Odile Ramaen
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Pamlard
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- To whom correspondence should be addressed (email )
| | - Jean-Yves Lallemand
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
268
|
Ambudkar SV, Kim IW, Xia D, Sauna ZE. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 2005; 580:1049-55. [PMID: 16412422 DOI: 10.1016/j.febslet.2005.12.051] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest families of proteins, and transport a variety of substrates ranging from ions to amphipathic anticancer drugs. The functional unit of an ABC transporter is comprised of two transmembrane domains and two cytoplasmic ABC ATPase domains. The energy of the binding and hydrolysis of ATP is used to transport the substrates across membranes. An ABC domain consists of conserved regions, the Walker A and B motifs, the signature (or C) region and the D, H and Q loops. We recently described the A-loop (Aromatic residue interacting with the Adenine ring of ATP), a highly conserved aromatic residue approximately 25 amino acids upstream of the Walker A motif that is essential for ATP-binding. Here, we review the mutational analysis of this subdomain in human P-glycoprotein as well as homology modeling, structural and data mining studies that provide evidence for a functional role of the A-loop in ATP-binding in most members of the superfamily of ABC transporters.
Collapse
Affiliation(s)
- Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892-4256, USA.
| | | | | | | |
Collapse
|
269
|
Gross CH, Abdul-Manan N, Fulghum J, Lippke J, Liu X, Prabhakar P, Brennan D, Willis MS, Faerman C, Connelly P, Raybuck S, Moore J. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis. J Biol Chem 2005; 281:4058-68. [PMID: 16361259 DOI: 10.1074/jbc.m511113200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.
Collapse
|
270
|
Lu G, Westbrooks JM, Davidson AL, Chen J. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc Natl Acad Sci U S A 2005; 102:17969-74. [PMID: 16326809 PMCID: PMC1312379 DOI: 10.1073/pnas.0506039102] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the movement of substances across the membrane; conformational changes clearly play an important role in the transporter mechanism. Previously, we have shown that a dimer of MalK, the ATPase subunit of the maltose transporter from Escherichia coli, undergoes a tweezers-like motion in a transport cycle. The MalK monomer consists of an N-terminal nucleotide binding domain and a C-terminal regulatory domain. The two nucleotide-binding domains in a dimer are either open or closed, depending on whether ATP is present, while the regulatory domains maintain contacts to hold the dimer together. In this work, the structure of MalK in a posthydrolysis state is presented, obtained by cocrystallizing MalK with ATP-Mg(2+). ATP was hydrolyzed in the crystallization drop, and ADP-Mg(2+) was found in the resulting crystal structure. In contrast to the ATP-bound form where two ATP molecules are buried in a closed interface between the nucleotide-binding domains, the two nucleotide-binding domains of the ADP-bound form are open, indicating that ADP, unlike ATP, cannot stabilize the closed form. This conclusion is further supported by oligomerization studies of MalK in solution. At low protein concentrations, ATP promotes dimerization of MalK, whereas ADP does not. The structures of dimeric MalK in the nucleotide-free, ATP-bound, and ADP-bound forms provide a framework for understanding the nature of the conformational changes that occur in an ATP-binding cassette transporter hydrolysis cycle, as well as how conformational changes in MalK are coupled to solute transport.
Collapse
Affiliation(s)
- Gang Lu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
271
|
Loo TW, Bartlett MC, Clarke DM. Rescue of Folding Defects in ABC Transporters Using Pharmacological Chaperones. J Bioenerg Biomembr 2005; 37:501-7. [PMID: 16691490 DOI: 10.1007/s10863-005-9499-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-binding cassette (ABC) family of membrane transport proteins is the largest class of transporters in humans (48 members). The majority of ABC transporters function at the cell surface. Therefore, defective folding and trafficking of the protein to the cell surface can lead to serious health problems. The classic example is cystic fibrosis (CF). In most CF patients, there is a deletion of Phe508 in the CFTR protein (DeltaF508 CFTR) that results in defective folding and intracellular retention of the protein (processing mutant). A potential treatment for most patients with CF would be to use a ligand(s) of CFTR that acts a pharmacological chaperone to correct the folding defect. The feasibility of such an approach was first demonstrated with the multidrug transporter P-glycoprotein (P-gp), an ABC transporter, and a sister protein of CFTR. It was found that P-gps with mutations at sites equivalent to those found in CFTR processing mutants were rescued when they were expressed in the presence of drug substrates or modulators of P-gp. These compounds acted as pharmacological chaperones and functioned by promoting interactions among the various domains in the protein during the folding process. Several groups have attempted to identify compounds that could rescue the folding defect in DeltaF508 CFTR. The best compound identified through high-throughout screening is a quinazoline derivative (CFcor-325). Expression of DeltaF508 CFTR as well as other CFTR processing mutants in the presence of 1 muM CFcor-325 promoted folding and trafficking of the mutant proteins to the cell surface in an active conformation. Therefore, CFcor-325 and other quinazoline derivates could be important therapeutic compounds for the treatment of CF.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Rm. 7342, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | |
Collapse
|
272
|
Reyes CL, Ward A, Yu J, Chang G. The structures of MsbA: Insight into ABC transporter-mediated multidrug efflux. FEBS Lett 2005; 580:1042-8. [PMID: 16337944 DOI: 10.1016/j.febslet.2005.11.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/07/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
ATP-binding cassette (ABC) transporters are integral membrane proteins that couple ATP hydrolysis to the transport of various molecules across cellular membranes. Found in both prokaryotes and eukaryotes, a sub-group of these transporters are involved in the efflux of hydrophobic drugs and lipids, causing anti-microbial and chemotherapeutic multidrug resistance. In this review, we examine recent structural and functional analysis of the ABC transporter MsbA and implications on the mechanism of multidrug efflux.
Collapse
Affiliation(s)
- Christopher L Reyes
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, CB105, La Jolla, CA 92137, USA
| | | | | | | |
Collapse
|
273
|
Cai Z, Taddei A, Sheppard DN. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. J Biol Chem 2005; 281:1970-7. [PMID: 16311240 DOI: 10.1074/jbc.m510576200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genetic disease cystic fibrosis (CF) is caused by loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Two CF mutants, G551D and G1349D, affect equivalent residues in the highly conserved LSGGQ motifs that are essential components of the ATP-binding sites of CFTR. Both mutants severely disrupt CFTR channel gating by decreasing mean burst duration (MBD) and prolonging greatly the interburst interval (IBI). To identify small molecules that rescue the gating defects of G551D- and G1349D-CFTR and understand better how these agents work, we used the patch clamp technique to study the effects on G551D- and G1349D-CFTR of phloxine B, pyrophosphate (PP(i)), and 2'-deoxy ATP (2'-dATP), three agents that strongly enhance CFTR channel gating. Phloxine B (5 microm) potentiated robustly G551D-CFTR Cl- channels by altering both MBD and IBI. In contrast, phloxine B (5 microm) decreased the IBI of G1349D-CFTR, but this effect was insufficient to rescue G1349D-CFTR channel gating. PP(i) (5 mm) potentiated weakly G551D-CFTR and was without effect on the G1349D-CFTR Cl- channel. However, by altering both MBD and IBI, albeit with different efficacies, 2'-dATP (1 mm) potentiated both G551D- and G1349D-CFTR Cl- channels. Using the ATP-driven nucleotide-binding domain dimerization model of CFTR channel gating, we suggest that phloxine B, PP(i) and 2'-dATP alter channel gating by distinct mechanisms. We conclude that G551D- and G1349D-CFTR have distinct pharmacological profiles and speculate that drug therapy for CF is likely to be mutation-specific.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
274
|
Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MSP, Ford RC, Ashcroft FM. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J 2005; 24:4166-75. [PMID: 16308567 PMCID: PMC1356316 DOI: 10.1038/sj.emboj.7600877] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/15/2005] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.
Collapse
Affiliation(s)
| | - Jeff D Campbell
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Heidi de Wet
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Brittany Zadek
- Laboratory of Physiology, University of Oxford, Oxford, UK
| | | | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Robert C Ford
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Frances M Ashcroft
- Laboratory of Physiology, University of Oxford, Oxford, UK
- Laboratory of Physiology, University of Oxford, Parks Road, OX1 3PT, UK. Tel.: +44 1865 285810; Fax: +44 1865 285813. E-mail:
| |
Collapse
|
275
|
Hanekop N, Zaitseva J, Jenewein S, Holland IB, Schmitt L. Molecular insights into the mechanism of ATP-hydrolysis by the NBD of the ABC-transporter HlyB. FEBS Lett 2005; 580:1036-41. [PMID: 16330029 DOI: 10.1016/j.febslet.2005.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 02/08/2023]
Abstract
The ABC-transporter HlyB is a central element of the Type I protein secretion machinery, dedicated to export the E. coli toxin HlyA in a single step across the two membranes of the cell envelope. Here, we discuss recent insights into the structure and the mechanism of ATP-hydrolysis by the NBD of HlyB. Combining structural and biochemical data, we have suggested that substrate-assisted catalysis (SAC), but not general base catalysis, is responsible for ATP-hydrolysis in this NBD and might also operate in other NBDs. Finally, the implications and advantages of SAC are discussed in the context of ATP-induced dimerization of the NBDs.
Collapse
Affiliation(s)
- N Hanekop
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
276
|
Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Biochem Soc Trans 2005. [DOI: 10.1042/bst0330996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cystic fibrosis, one of the major human inherited diseases, is caused by defects in the CFTR (cystic fibrosis transmembrane conductance regulator), a cell-membrane protein. CFTR acts as a chloride channel which can be opened by ATP. Low-resolution structural studies of purified recombinant human CFTR are described in the present paper. Localization of the C-terminal decahistidine tag in CFTR was achieved by Ni2+-nitriloacetate nanogold labelling, followed by electron microscopy and single-particle analysis. The presence of the gold label appears to improve the single-particle-alignment procedure. Projection structures of CFTR from two-dimensional crystals analysed by electron crystallography displayed two alternative conformational states in the presence of nucleotide and nanogold, but only one form of the protein was observed in the quiescent (nucleotide-free) state.
Collapse
|
277
|
Abstract
Unique among ABC (ATP-binding cassette) protein family members, CFTR (cystic fibrosis transmembrane conductance regulator), also termed ABCC7, encoded by the gene mutated in cystic fibrosis patients, functions as an ion channel. Opening and closing of its anion-selective pore are linked to ATP binding and hydrolysis at CFTR's two NBDs (nucleotide-binding domains), NBD1 and NBD2. Isolated NBDs of prokaryotic ABC proteins form homodimers upon binding ATP, but separate after hydrolysis of the ATP. By combining mutagenesis with single-channel recording and nucleotide photolabelling on intact CFTR molecules, we relate opening and closing of the channel gates to ATP-mediated events in the NBDs. In particular, we demonstrate that two CFTR residues, predicted to lie on opposite sides of its anticipated NBD1–NBD2 heterodimer interface, are energetically coupled when the channels open but are independent of each other in closed channels. This directly links ATP-driven tight dimerization of CFTR's cytoplasmic NBDs to opening of the ion channel in the transmembrane domains. Evolutionary conservation of the energetically coupled residues in a manner that preserves their ability to form a hydrogen bond argues that this molecular mechanism, involving dynamic restructuring of the NBD dimer interface, is shared by all members of the ABC protein superfamily.
Collapse
|
278
|
Zhou Z, Wang X, Li M, Sohma Y, Zou X, Hwang TC. High affinity ATP/ADP analogues as new tools for studying CFTR gating. J Physiol 2005; 569:447-57. [PMID: 16223764 PMCID: PMC1464241 DOI: 10.1113/jphysiol.2005.095083] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previous studies using non-hydrolysable ATP analogues and hydrolysis-deficient cystic fibrosis transmembrane conductance regulator (CFTR) mutants have indicated that ATP hydrolysis precedes channel closing. Our recent data suggest that ATP binding is also important in modulating the closing rate. This latter hypothesis predicts that ATP analogues with higher binding affinities should stabilize the open state more than ATP. Here we explore the possibility of using N6-modified ATP/ADP analogues as high-affinity ligands for CFTR gating, since these analogues have been shown to be more potent than native ATP/ADP in other ATP-binding proteins. Among the three N6-modified ATP analogues tested, N6-(2-phenylethyl)-ATP (P-ATP) was the most potent, with a K(1/2) of 1.6 +/- 0.4 microm (>50-fold more potent than ATP). The maximal open probability (P(o)) in the presence of P-ATP was approximately 30% higher than that of ATP, indicating that P-ATP also has a higher efficacy than ATP. Single-channel kinetic analysis showed that as [P-ATP] was increased, the opening rate increased, whereas the closing rate decreased. The fact that these two kinetic parameters have different sensitivities to changes of [P-ATP] suggests an involvement of two different ATP-binding sites, a high-affinity site modulating channel closing and a low affinity site controlling channel opening. The effect of P-ATP on the stability of open states was more evident when ATP hydrolysis was abolished, either by mutating the nucleotide-binding domain 2 (NBD2) Walker B glutamate (i.e. E1371) or by using the non-hydrolysable ATP analogue AMP-PNP. Similar strategies to develop nucleotide analogues with a modified adenine ring could be valuable for future studies of CFTR gating.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Medical Pharmacology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
279
|
Arndt V, Daniel C, Nastainczyk W, Alberti S, Höhfeld J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 2005; 16:5891-900. [PMID: 16207813 PMCID: PMC1289430 DOI: 10.1091/mbc.e05-07-0660] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a ubiquitin chain to a chaperone-presented client protein and thereby stimulates its proteasomal degradation. To gain further insight into the function of CHIP we isolated CHIP-containing protein complexes from human HeLa cells and analyzed their composition by peptide mass fingerprinting. We identified the Hsc70 cochaperone BAG-2 as a main component of CHIP complexes. BAG-2 inhibits the ubiquitin ligase activity of CHIP by abrogating the CHIP/E2 cooperation and stimulates the chaperone-assisted maturation of CFTR. The activity of BAG-2 resembles that of the previously characterized Hsc70 cochaperone and CHIP inhibitor HspBP1. The presented data therefore establish multiple mechanisms to control the destructive activity of the CHIP ubiquitin ligase in human cells.
Collapse
Affiliation(s)
- Verena Arndt
- Institute for Cell Biology, Rheinische Friedrich-Wilhelms-University Bonn, D-53121 Bonn, Germany
| | | | | | | | | |
Collapse
|
280
|
Campbell JD, Sansom MSP. Nucleotide binding to the homodimeric MJ0796 protein: a computational study of a prokaryotic ABC transporter NBD dimer. FEBS Lett 2005; 579:4193-9. [PMID: 16038903 DOI: 10.1016/j.febslet.2005.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 05/23/2005] [Accepted: 06/15/2005] [Indexed: 12/19/2022]
Abstract
Transport by ABC proteins requires a cycle of ATP-driven conformational changes of the nucleotide binding domains (NBDs). We compare three molecular dynamics simulations of dimeric MJ0796: with ATP was present at both NBDs; with ATP at one NBD but ADP at the other; and without any bound ATP. In the simulation with ATP present at both NBDs, the dimeric protein interacts with the nucleotides in a symmetrical manner. However, if ADP is present at one binding site then both NBD-NBD and protein-ATP interactions are enhanced at the opposite site.
Collapse
Affiliation(s)
- Jeff D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
281
|
Oberdorf J, Pitonzo D, Skach WR. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery. J Biol Chem 2005; 280:38193-202. [PMID: 16166089 DOI: 10.1074/jbc.m504200200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Polytopic proteins are synthesized in the endoplasmic reticulum (ER) by ribosomes docked at the Sec61 translocation channel. It is generally assumed that, upon termination of translation, polypeptides are spontaneously released into the ER membrane where final stages of folding and assembly are completed. Here we investigate early interactions between the ribosome-translocon complex and cystic fibrosis transmembrane conductance regulator (CFTR), a multidomain ABC transporter, and demonstrate that this is not always the case. Using in vitro and Xenopus oocyte expression systems we show that, during and immediately following synthesis, nascent CFTR polypeptides associate with large, heterogeneous, and dynamic protein complexes. Partial-length precursors were quantitatively isolated in a non-covalent, puromycin-sensitive complex (>3,500 kDa) that contained the Sec61 ER translocation machinery and the cytosolic chaperone Hsc70. Following the completion of synthesis, CFTR was gradually released into a smaller (600-800 kDa) ATP-sensitive complex. Surprisingly, release of full-length CFTR from the ribosome and translocon was significantly delayed after translation was completed. Moreover, this step required both nucleotide triphosphates and cytosol. Release of control proteins varied depending on their size and domain complexity. These studies thus identify a novel energy-dependent step early in the CFTR maturation pathway that is required to disengage nascent CFTR from ER biosynthetic machinery. We propose that, contrary to current models, the final stage of membrane integration is a regulated process that can be influenced by the state of nascent chain folding, and we speculate that this step is influenced by the complex multidomain structure of CFTR.
Collapse
Affiliation(s)
- Jon Oberdorf
- Department of Biochemistry and Moleculor Biology, Oregon Health & Sciences University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
282
|
Benabdelhak H, Schmitt L, Horn C, Jumel K, Blight M, Holland I. Positive co-operative activity and dimerization of the isolated ABC ATPase domain of HlyB from Escherichia coli. Biochem J 2005; 386:489-95. [PMID: 15636583 PMCID: PMC1134867 DOI: 10.1042/bj20041282] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ATPase activity of the ABC (ATP-binding cassette) ATPase domain of the HlyB (haemolysin B) transporter is required for secretion of Escherichia coli haemolysin via the type I pathway. Although ABC transporters are generally presumed to function as dimers, the precise role of dimerization remains unclear. In the present study, we have analysed the HlyB ABC domain, purified separately from the membrane domain, with respect to its activity and capacity to form physically detectable dimers. The ATPase activity of the isolated ABC domain clearly demonstrated positive co-operativity, with a Hill coefficient of 1.7. Furthermore, the activity is (reversibly) inhibited by salt concentrations in the physiological range accompanied by proportionately decreased binding of 8-azido-ATP. Inhibition of activity with increasing salt concentration resulted in a change in flexibility as detected by intrinsic tryptophan fluorescence. Finally, ATPase activity was sensitive towards orthovanadate, with an IC50 of 16 microM, consistent with the presence of transient dimers during ATP hydrolysis. Nevertheless, over a wide range of protein or of NaCl or KCl concentrations, the ABC ATPase was only detected as a monomer, as measured by ultracentrifugation or gel filtration. In contrast, in the absence of salt, the sedimentation velocity determined by analytical ultracentrifugation suggested a rapid equilibrium between monomers and dimers. Small amounts of dimers, but apparently only when stabilized by 8-azido-ATP, were also detected by gel filtration, even in the presence of salt. These data are consistent with the fact that monomers can interact at least transiently and are the important species during ATP hydrolysis.
Collapse
Affiliation(s)
- Houssain Benabdelhak
- *Institut de Génétique et Microbiologie, Bâtiment 409, Université Paris-Sud, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- †Institute of Biochemistry, Biocenter N210, Johann Wolfgang Goethe University Frankfurt, Marie-Curie Strasse 9, 60439 Frankfurt, Germany
| | - Carsten Horn
- †Institute of Biochemistry, Biocenter N210, Johann Wolfgang Goethe University Frankfurt, Marie-Curie Strasse 9, 60439 Frankfurt, Germany
| | - Kornelia Jumel
- ‡School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leics. LE12 5RD, U.K
| | - Mark A. Blight
- *Institut de Génétique et Microbiologie, Bâtiment 409, Université Paris-Sud, 91405 Orsay Cedex, France
| | - I. Barry Holland
- *Institut de Génétique et Microbiologie, Bâtiment 409, Université Paris-Sud, 91405 Orsay Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
283
|
Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther 2005; 108:208-23. [PMID: 15936089 DOI: 10.1016/j.pharmthera.2005.04.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 01/12/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the product of the gene mutated in patients with cystic fibrosis (CF). CFTR is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. CFTR chloride channel belongs to the superfamily of the ATP-binding cassette (ABC) transporters, which bind ATP and use the energy to drive the transport of a wide variety of substrates across extra- and intracellular membranes. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, or transporters, in addition to its role as a chloride conductor. The molecular assembly of CFTR with these interacting proteins is of great interest and importance because several human diseases are attributed to altered regulation of CFTR, among which cystic fibrosis is the most serious one. Most interactions primarily occur between the opposing terminal tails (N- or C-) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. These dynamic interactions impact the channel function as well as the localization and processing of CFTR protein within cells. This review focuses on the recent developments in defining the assembly of CFTR-containing complexes in the plasma membrane and its interacting proteins.
Collapse
Affiliation(s)
- Chunying Li
- Department of Physiology, University of Tennessee Health Science Center, 420 Nash, 894 Union Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
284
|
Farinha CM, Amaral MD. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin. Mol Cell Biol 2005; 25:5242-52. [PMID: 15923638 PMCID: PMC1140594 DOI: 10.1128/mcb.25.12.5242-5252.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 11/16/2004] [Accepted: 03/04/2005] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis and folding of multidomain transmembrane proteins is a complex process. Structural fidelity is monitored by endoplasmic reticulum (ER) quality control involving the molecular chaperone calnexin. Retained misfolded proteins undergo ER-associated degradation (ERAD) through the ubiquitin-proteasome pathway. Our data show that the major degradation pathway of the cystic fibrosis transmembrane conductance regulator (CFTR) with F508del (the most frequent mutation found in patients with the genetic disease cystic fibrosis) from the ER is independent of calnexin. Moreover, our results demonstrate that inhibition of mannose-processing enzymes, unlike most substrate glycoproteins, does not stabilize F508del-CFTR, although wild-type (wt) CFTR is drastically stabilized under the same conditions. Together, our data support a novel model by which wt and F508del-CFTR undergo ERAD from two distinct checkpoints, the mutant being disposed of independently of N-glycosidic residues and calnexin, probably by the Hsc70/Hsp70 machinery, and wt CFTR undergoing glycan-mediated ERAD.
Collapse
Affiliation(s)
- Carlos M Farinha
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | | |
Collapse
|
285
|
Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 2005; 24:1901-10. [PMID: 15889153 PMCID: PMC1142601 DOI: 10.1038/sj.emboj.7600657] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 03/23/2005] [Indexed: 01/07/2023] Open
Abstract
The ABC transporter HlyB is a central element of the HlyA secretion machinery, a paradigm of Type I secretion. Here, we describe the crystal structure of the HlyB-NBD (nucleotide-binding domain) with H662 replaced by Ala in complex with ATP/Mg2+. The dimer shows a composite architecture, in which two intact ATP molecules are bound at the interface of the Walker A motif and the C-loop, provided by the two monomers. ATPase measurements confirm that H662 is essential for activity. Based on these data, we propose a model in which E631 and H662, highly conserved among ABC transporters, form a catalytic dyad. Here, H662 acts as a 'linchpin', holding together all required parts of a complicated network of interactions between ATP, water molecules, Mg2+, and amino acids both in cis and trans, necessary for intermonomer communication. Based on biochemical experiments, we discuss the hypothesis that substrate-assisted catalysis, rather than general base catalysis might operate in ABC-ATPases.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Jenewein
- Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Thorsten Jumpertz
- Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - I Barry Holland
- Institut de Génétique et Microbiologie, Bât. 409, Université de Paris XI, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, Biocenter, Johann-Wolfgang Goethe University Frankfurt, Marie Curie Strasse 9, 60439 Frankfurt, Germany. Tel.: +49 69 79829 569; Fax: +49 69 79829 495; E-mail:
| |
Collapse
|
286
|
Amaral MD. Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis? Pediatr Pulmonol 2005; 39:479-91. [PMID: 15765539 DOI: 10.1002/ppul.20168] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Biosynthesis of the cystic fibrosis transmembrane conductance regulator (CFTR), like other proteins aimed at the cell surface, involves transport through a series of membranous compartments, the first of which is the endoplasmic reticulum (ER), where CFTR encounters the appropriate environment for folding, oligomerization, maturation, and export from the ER. After exiting the ER, CFTR has to traffic through complex pathways until it reaches the cell surface. Although not yet fully understood, the fine details of these pathways are starting to emerge, partially through identification of an increasing number of CFTR-interacting proteins (CIPs) and the clarification of their roles in CFTR trafficking and function. These aspects of CFTR biogenesis/degradation and by membrane traffic and CIPs are discussed in this review. Following this description of complex pathways and multiple checkpoints to which CFTR is subjected in the cell, the basic question remains of how much CFTR has to overcome these barriers and be functionally expressed at the plasma membrane to avoid CF. This question is also discussed here.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, and Centre of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
287
|
Karcher A, Büttner K, Märtens B, Jansen RP, Hopfner KP. X-ray structure of RLI, an essential twin cassette ABC ATPase involved in ribosome biogenesis and HIV capsid assembly. Structure 2005; 13:649-59. [PMID: 15837203 DOI: 10.1016/j.str.2005.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/01/2005] [Accepted: 02/01/2005] [Indexed: 11/28/2022]
Abstract
The ABC ATPase RNase-L inhibitor (RLI) emerges as a key enzyme in ribosome biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. To help reveal the structural mechanism of RLI, we determined the Mg2+-ADP bound crystal structure of the twin cassette ATPase of P. furiosus RLI at 1.9 A resolution and analyzed functional motifs in yeast in vivo. RLI shows similarities but also differences to known ABC enzyme structures. Twin nucleotide binding domains (NBD1 and NBD2) are arranged to form two composite active sites in their interface cleft, indicating they undergo the ATP-driven clamp-like motion of the NBDs of ABC transporters. An unusual "hinge" domain along the NBD1:NBD2 interface provides a frame for association and possibly ATP-driven conformational changes of the NBDs. Our results establish a first structural basis for ABC domain heterodimers and suggest that RLI may act as mechanochemical enzyme in ribosome and HIV capsid biogenesis.
Collapse
Affiliation(s)
- Annette Karcher
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
288
|
Affiliation(s)
- Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
289
|
Abstract
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- John R Riordan
- Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259, USA.
| |
Collapse
|
290
|
Bompadre SG, Cho JH, Wang X, Zou X, Sohma Y, Li M, Hwang TC. CFTR gating II: Effects of nucleotide binding on the stability of open states. ACTA ACUST UNITED AC 2005; 125:377-94. [PMID: 15767296 PMCID: PMC1289160 DOI: 10.1085/jgp.200409228] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of ΔR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. ΔR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of ∼100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for ΔR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH2-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation.
Collapse
Affiliation(s)
- Silvia G Bompadre
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia 65211, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Abstract
ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substrates across cell or organelle membranes. The recently determined crystal structures of the vitamin B(12) importer BtuCD and its cognate binding protein BtuF have revealed critical architectural features that are probably shared by other ABC transporters. For example, the arrangement of the ABC domains and their interface with the membrane-spanning domains are probably conserved, whereas the number of transmembrane helices and their arrangement are not. Two distinct mechanistic schemes for how ABC engines couple ATP hydrolysis to substrate transport have been proposed recently and are being explored.
Collapse
Affiliation(s)
- Kaspar P Locher
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
292
|
|
293
|
Younger JM, Ren HY, Chen L, Fan CY, Fields A, Patterson C, Cyr DM. A foldable CFTR{Delta}F508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. ACTA ACUST UNITED AC 2005; 167:1075-85. [PMID: 15611333 PMCID: PMC2172621 DOI: 10.1083/jcb.200410065] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CFTRΔF508 exhibits a correctable protein-folding defect that leads to its misfolding and premature degradation, which is the cause of cystic fibrosis (CF). Herein we report on the characterization of the CFTRΔF508 biogenic intermediate that is selected for proteasomal degradation and identification of cellular components that polyubiquitinate CFTRΔF508. Nonubiquitinated CFTRΔF508 accumulates in a kinetically trapped, but folding competent conformation, that is maintained in a soluble state by cytosolic Hsc70. Ubiquitination of Hsc70-bound CFTRΔF508 requires CHIP, a U box containing cytosolic cochaperone. CHIP is demonstrated to function as a scaffold that nucleates the formation of a multisubunit E3 ubiquitin ligase whose reconstituted activity toward CFTR is dependent upon Hdj2, Hsc70, and the E2 UbcH5a. Inactivation of the Hsc70–CHIP E3 leads CFTRΔF508 to accumulate in a nonaggregated state, which upon lowering of cell growth temperatures, can fold and reach the cell surface. Inhibition of CFTRΔF508 ubiquitination can increase its cell surface expression and may provide an approach to treat CF.
Collapse
Affiliation(s)
- J Michael Younger
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
Randak CO, Welsh MJ. ADP inhibits function of the ABC transporter cystic fibrosis transmembrane conductance regulator via its adenylate kinase activity. Proc Natl Acad Sci U S A 2005; 102:2216-20. [PMID: 15684079 PMCID: PMC548590 DOI: 10.1073/pnas.0409787102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP interacts with the nucleotide-binding domains (NBDs) of the cystic fibrosis transmembrane conductance regulator (CFTR) to inhibit its Cl- channel activity. Because CFTR NBD2 has reversible adenylate kinase activity (ATP + AMP<==> ADP + ADP) that gates the channel, we asked whether ADP might inhibit current through this enzymatic activity. In adenylate kinases, binding of the two ADP molecules is cooperative. Consistent with this hypothesis, CFTR current inhibition showed positive cooperativity for ADP. We also found that ADP inhibition of current was attenuated when we prevented adenylate kinase activity with P1,P5-di(adenosine-5') pentaphosphate. Additional studies suggested that adenylate kinase-dependent inhibition involved phosphotransfer between two nucleotide diphosphates. These data indicate that the adenylate kinase reaction at NBD2 contributed to the inhibitory effect of ADP. Finding that ADP inhibits function via an adenylate kinase activity also helps explain the earlier observation that mutations that disrupt adenylate kinase activity also disrupt ADP inhibition. Thus, the results reveal a previously unrecognized mechanism by which ADP inhibits an ABC transporter.
Collapse
Affiliation(s)
- Christoph O Randak
- Departments of Internal Medicine and Physiology and Biophysics, Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
295
|
Csanády L, Seto-Young D, Chan KW, Cenciarelli C, Angel BB, Qin J, McLachlin DT, Krutchinsky AN, Chait BT, Nairn AC, Gadsby DC. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. ACTA ACUST UNITED AC 2005; 125:171-86. [PMID: 15657296 PMCID: PMC2217491 DOI: 10.1085/jgp.200409076] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent protein kinase (PKA). Whereas eight R-domain serines have previously been shown to be phosphorylated in purified CFTR, it is not known how individual phosphoserines regulate channel gating, although two of them, at positions 737 and 768, have been suggested to be inhibitory. Here we show, using mass spectrometric analysis, that Ser 768 is the first site phosphorylated in purified R-domain protein, and that it and five other R-domain sites are already phosphorylated in resting Xenopus oocytes expressing wild-type (WT) human epithelial CFTR. The WT channels have lower activity than S768A channels (with Ser 768 mutated to Ala) in resting oocytes, confirming the inhibitory influence of phosphoserine 768. In excised patches exposed to a range of PKA concentrations, the open probability (P(o)) of mutant S768A channels exceeded that of WT CFTR channels at all [PKA], and the half-maximally activating [PKA] for WT channels was twice that for S768A channels. As the open burst duration of S768A CFTR channels was almost double that of WT channels, at both low (55 nM) and high (550 nM) [PKA], we conclude that the principal mechanism by which phosphoserine 768 inhibits WT CFTR is by hastening the termination of open channel bursts. The right-shifted P(o)-[PKA] curve of WT channels might explain their slower activation, compared with S768A channels, at low [PKA]. The finding that phosphorylation kinetics of WT or S768A R-domain peptides were similar provides no support for an alternative explanation, that early phosphorylation of Ser 768 in WT CFTR might also impair subsequent phosphorylation of stimulatory R-domain serines. The observed reduced sensitivity to activation by [PKA] imparted by Ser 768 might serve to ensure activation of WT CFTR by strong stimuli while dampening responses to weak signals.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, Budapest, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Ernst R, Klemm R, Schmitt L, Kuchler K. Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol 2005; 400:460-84. [PMID: 16399365 DOI: 10.1016/s0076-6879(05)00026-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function.
Collapse
Affiliation(s)
- Robert Ernst
- Institute of Biochemistry, Membrane Transport Group, Heinrich-Heine University of Düsseldorf, Germany
| | | | | | | |
Collapse
|
297
|
Berger AL, Ikuma M, Welsh MJ. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc Natl Acad Sci U S A 2004; 102:455-60. [PMID: 15623556 PMCID: PMC544308 DOI: 10.1073/pnas.0408575102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [alpha-(32)P]8-N(3)-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating.
Collapse
Affiliation(s)
- Allan L Berger
- Department of Internal Medicine, Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
298
|
Thibodeau PH, Brautigam CA, Machius M, Thomas PJ. Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 2004; 12:10-6. [PMID: 15619636 PMCID: PMC3516198 DOI: 10.1038/nsmb881] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 11/15/2004] [Indexed: 11/09/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.
Collapse
Affiliation(s)
- Patrick H Thibodeau
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 75390 USA
| | | | | | | |
Collapse
|
299
|
Du K, Sharma M, Lukacs GL. The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 2004; 12:17-25. [PMID: 15619635 DOI: 10.1038/nsmb882] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/19/2004] [Indexed: 02/03/2023]
Abstract
Misfolding accounts for the endoplasmic reticulum-associated degradation of mutant cystic fibrosis transmembrane conductance regulators (CFTRs), including deletion of Phe508 (DeltaF508) in the nucleotide-binding domain 1 (NBD1). To study the role of Phe508, the de novo folding and stability of NBD1, NBD2 and CFTR were compared in conjunction with mutagenesis of Phe508. DeltaF508 and amino acid replacements that prevented CFTR folding disrupted the NBD2 fold and its native interaction with NBD1. DeltaF508 caused limited alteration in NBD1 conformation. Whereas nonpolar and some aliphatic residues were permissive, charged residues and glycine compromised the post-translational folding and stability of NBD2 and CFTR. The results suggest that hydrophobic side chain interactions of Phe508 are required for vectorial folding of NBD2 and the domain-domain assembly of CFTR, representing a combined co- and post-translational folding mechanism that may be used by other multidomain membrane proteins.
Collapse
Affiliation(s)
- Kai Du
- Hospital for Sick Children Research Institute, Program in Cell and Lung Biology, University of Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
300
|
Csanády L, Chan KW, Nairn AC, Gadsby DC. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. ACTA ACUST UNITED AC 2004; 125:43-55. [PMID: 15596536 PMCID: PMC2217481 DOI: 10.1085/jgp.200409174] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), encoded by the gene mutated in cystic fibrosis patients, belongs to the family of ATP-binding cassette (ABC) proteins, but, unlike other members, functions as a chloride channel. CFTR is activated by protein kinase A (PKA)-mediated phosphorylation of multiple sites in its regulatory domain, and gated by binding and hydrolysis of ATP at its two nucleotide binding domains (NBD1, NBD2). The recent crystal structure of NBD1 from mouse CFTR (Lewis, H.A., S.G. Buchanan, S.K. Burley, K. Conners, M. Dickey, M. Dorwart, R. Fowler, X. Gao, W.B. Guggino, W.A. Hendrickson, et al. 2004. EMBO J. 23:282–293) identified two regions absent from structures of all other NBDs determined so far, a “regulatory insertion” (residues 404–435) and a “regulatory extension” (residues 639–670), both positioned to impede formation of the putative NBD1–NBD2 dimer anticipated to occur during channel gating; as both segments appeared highly mobile and both contained consensus PKA sites (serine 422, and serines 660 and 670, respectively), it was suggested that their phosphorylation-linked conformational changes might underlie CFTR channel regulation. To test that suggestion, we coexpressed in Xenopus oocytes CFTR residues 1–414 with residues 433–1480, or residues 1–633 with 668–1480, to yield split CFTR channels (called 414+433 and 633+668) that lack most of the insertion, or extension, respectively. In excised patches, regulation of the resulting CFTR channels by PKA and by ATP was largely normal. Both 414+433 channels and 633+668 channels, as well as 633(S422A)+668 channels (lacking both the extension and the sole PKA consensus site in the insertion), were all shut during exposure to MgATP before addition of PKA, but activated like wild type (WT) upon phosphorylation; this indicates that inhibitory regulation of nonphosphorylated WT channels depends upon neither segment. Detailed kinetic analysis of 414+433 channels revealed intact ATP dependence of single-channel gating kinetics, but slightly shortened open bursts and faster closing from the locked-open state (elicited by ATP plus pyrophosphate or ATP plus AMPPNP). In contrast, 633+668 channel function was indistinguishable from WT at both macroscopic and microscopic levels. We conclude that neither nonconserved segment is an essential element of PKA- or nucleotide-dependent regulation.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University, 1088 Budapest, Hungary
| | | | | | | |
Collapse
|