251
|
Karar J, Cerniglia GJ, Lindsten T, Koumenis C, Maity A. Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia. Cancer Biol Ther 2012; 13:1102-11. [PMID: 22895065 DOI: 10.4161/cbt.21144] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PI3K/Akt pathway is activated in many cancers; therefore, we investigated NVP-BEZ235, a dual PI3K/mTOR inhibitor. BEZ235 was more potent than either the mTOR inhibitor rapamycin or the PI3K inhibitor LY294002 in blocking HIF-1α induction. BEZ235 decreases protein translation, and 7-methyl GTP chromatography showed that the drug induced robust recruitment of 4E-BP1 to eIF4E and a near absence of binding of eIF4G. BEZ235 also decreased expression of other proteins known to be regulated by eIF4E including cyclin B1 and D1 and vascular endothelial growth factor (VEGF). BEZ235 also decreased the level of eIF4G but not eIF4E. As HIF-1α has been associated with adaptation to hypoxic stress, we examined the effect of the drug on cell survival in low pO 2. BEZ235 increased killing of cells under hypoxia, measured by short-term (MTT) and long-term (clonogenic) assays. To understand the underlying mechanism, we examined BEZ235's effect on the expression of factors associated with cell survival. Under normoxia, Akt Ser473 phosphorylation decreased within an hour of BEZ235 treatment, but then increased by 24 h. In contrast, under hypoxia, BEZ235 caused prolonged suppression of Akt Ser473 phosphorylation. Furthermore, there was greater PARP cleavage in hypoxic cells than in normoxic cells, consistent with increased apoptosis. BEZ235 increased autophagy as measured by LC3-I to LC3-II conversion under both normoxic and hypoxic conditions, but our data indicate that this is actually a pro-survival mechanism. In conclusion, we have found that BEZ235 blocks HIF-1α induction by decreasing protein translation and increases cell killing under hypoxia, likely by increasing apoptosis.
Collapse
Affiliation(s)
- Jayashree Karar
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
252
|
Phosphatidylinositol-3-kinase (PI3K) activity decreases in C2C12 myotubes during acute simulated ischemia at a cost to their survival. Life Sci 2012; 91:44-53. [DOI: 10.1016/j.lfs.2012.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 05/05/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022]
|
253
|
Cervical spinal erythropoietin induces phrenic motor facilitation via extracellular signal-regulated protein kinase and Akt signaling. J Neurosci 2012; 32:5973-83. [PMID: 22539857 DOI: 10.1523/jneurosci.3873-11.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is typically known for its role in erythropoiesis but is also a potent neurotrophic/neuroprotective factor for spinal motor neurons. Another trophic factor regulated by hypoxia-inducible factor-1, vascular endothelial growth factor (VEGF), signals via ERK and Akt activation to elicit long-lasting phrenic motor facilitation (pMF). Because EPO also signals via ERK and Akt activation, we tested the hypothesis that EPO elicits similar pMF. Using retrograde labeling and immunohistochemical techniques, we demonstrate in adult, male, Sprague Dawley rats that EPO and its receptor, EPO-R, are expressed in identified phrenic motor neurons. Intrathecal EPO at C4 elicits long-lasting pMF; integrated phrenic nerve burst amplitude increased >90 min after injection (63 ± 12% baseline 90 min after injection; p < 0.001). EPO increased phosphorylation (and presumed activation) of ERK (1.6-fold vs controls; p < 0.05) in phrenic motor neurons; EPO also increased pAkt (1.6-fold vs controls; p < 0.05). EPO-induced pMF was abolished by the MEK/ERK inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene] and the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one], demonstrating that ERK MAP kinases and Akt are both required for EPO-induced pMF. Pretreatment with U0126 and LY294002 decreased both pERK and pAkt in phrenic motor neurons (p < 0.05), indicating a complex interaction between these kinases. We conclude that EPO elicits spinal plasticity in respiratory motor control. Because EPO expression is hypoxia sensitive, it may play a role in respiratory plasticity in conditions of prolonged or recurrent low oxygen.
Collapse
|
254
|
Graves BM, Simerly T, Li C, Williams DL, Wondergem R. Phosphoinositide-3-kinase/akt - dependent signaling is required for maintenance of [Ca(2+)](i), I(Ca), and Ca(2+) transients in HL-1 cardiomyocytes. J Biomed Sci 2012; 19:59. [PMID: 22715995 PMCID: PMC3464604 DOI: 10.1186/1423-0127-19-59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/20/2012] [Indexed: 01/27/2023] Open
Abstract
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.
Collapse
Affiliation(s)
- Bridget M Graves
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State Universitycpr, Johnson City, TN 37614, USA
| | | | | | | | | |
Collapse
|
255
|
PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer 2012; 106:1535-42. [PMID: 22531720 PMCID: PMC3341864 DOI: 10.1038/bjc.2012.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: PI3K/Akt (PKB) pathway has been shown in several cell types to be activated by ligands to cell surface integrins, leading to the metastasis of tumour cells. The signalling pathways involved in the metastatic spread of human scirrhous gastric carcinoma cells have not been defined. Methods: The role of the PI3K/Akt pathway in an extensive peritoneal-seeding cell line, OCUM-2MD3 and a parental cell line, OCUM-2M, was investigated by assessing in vitro adhesion and spreading assay, and in vivo peritoneal metastatic model. We also examined the correlation of PI3K/Akt pathway with integrin signals by immunoprecipitations, using cells by transfection with mutant p85 (Δp85). Results: Adhesiveness and spreading of OCUM-2MD3 cells on collagen type IV was significantly decreased by PI3K inhibitors and expression of mutant p85, but not by inhibitors of protein kinase C (PKC) or extracellular signal-regulated kinase (ERK). Immunoprecipitation studies indicated that the PI3K/Akt pathway was associated with integrin signalling through Src and vinculin. In an in vivo experimental metastasis model, p85 inhibition reduced peritoneal metastasis of OCUM-2MD3 cells. Conclusion: PI3K/Akt signalling may be required for integrin-dependent attachment and spreading of scirrhous gastric carcinoma cells, and would be translated into generating better strategies to optimise their use in cancer clinical trials.
Collapse
|
256
|
Abstract
The Wnts are secreted cysteine-rich glycoproteins that have important roles in the developing embryo as well as in tissue homeostasis in adults. Dysregulation of Wnt signalling can lead to several types of cancer, including prostate cancer. A hallmark of the signalling pathway is the stabilization of the transcriptional co-activator β-catenin, which not only regulates expression of many genes implicated in cancer but is also an essential component of cadherin cell adhesion complexes. β-catenin regulates gene expression by binding members of the T-cell-specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF-1) family of transcription factors. In addition, β-catenin associates with the androgen receptor, a key regulator of prostate growth that drives prostate cancer progression. Wnt/β-catenin signalling can be controlled by secreted Wnt antagonists, many of which are downregulated in cancer. Activation of the Wnt/β-catenin pathway has effects on prostate cell proliferation, differentiation and the epithelial-mesenchymal transition, which is thought to regulate the invasive behaviour of tumour cells. However, whether targeting Wnt/β-catenin signalling is a good therapeutic option for prostate cancer remains unclear.
Collapse
|
257
|
Li Y, Zhang P, Qiu F, Chen L, Miao C, Li J, Xiao W, Ma E. Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci 2012; 90:962-7. [DOI: 10.1016/j.lfs.2012.04.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
|
258
|
Salhia B, Van Cott C, Tegeler T, Polpitiya A, Duquette RA, Gale M, Hostteter G, Petritis K, Carpten J. Differential effects of AKT1(p.E17K) expression on human mammary luminal epithelial and myoepithelial cells. Hum Mutat 2012; 33:1216-27. [PMID: 22505016 DOI: 10.1002/humu.22100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/29/2012] [Indexed: 01/18/2023]
Abstract
Recently, we identified a somatic mutation in AKT1, which results in a glutamic acid to lysine substitution (p.Glu17Lys or E17K). E17K mutations appear almost exclusively in breast cancers of luminal origin. Cellular models involving cell lines such as human mammary epithelial and MCF10 are model systems that upon transformation lead to rare forms of human breast cancer. Hence, we studied the effects of E17K using a clinically pertinent luminal cell line model while providing evidence to explain why E17K mutations do not occur in the mammary myoepithelium. Thus the purpose of our study was to perform a functional and differential proteomics study to assess the role of AKT1(E17K) in the development of breast cancer. We used a set of genetically matched nontumorigenic and tumorigenic mammary luminal and myoepithelial cells. We demonstrated that in myoepithelial cells, expression of E17K inhibited growth, migration, and protein synthesis compared with wild-type AKT1. In luminal cells, E17K enhanced cell survival and migration, possibly offering a selective advantage in this type of cell. However, antineoplastic effects of E17K in luminal cells, such as inhibition of growth and protein synthesis, may ultimately be associated with favorable prognosis. Our study illustrates the importance of cellular context in determining phenotypic effects of putative oncogenic mutations.
Collapse
Affiliation(s)
- Bodour Salhia
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Ramnanan CJ, Edgerton DS, Cherrington AD. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab 2012; 15:656-64. [PMID: 22560218 PMCID: PMC3348512 DOI: 10.1016/j.cmet.2012.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This Perspective will discuss the physiologic relevance of data that suggest CNS insulin action is required for the rapid suppression of hepatic glucose production. It will also review data from experiments on the conscious dog, which show that although the canine brain can sense insulin and, thereby, regulate hepatic glucoregulatory enzyme expression, CNS insulin action is not essential for the rapid suppression of glucose production caused by the hormone. Insulin's direct hepatic effects are dominant, thus it appears that insulin's central effects are redundant in the acute regulation of hepatic glucose metabolism.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology and Biophysics, Nashville, TN 37232, USA
| | | | | |
Collapse
|
260
|
Blunt MD, Ward SG. Targeting PI3K isoforms and SHIP in the immune system: new therapeutics for inflammation and leukemia. Curr Opin Pharmacol 2012; 12:444-51. [PMID: 22483603 DOI: 10.1016/j.coph.2012.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
PI3K is critical for the normal function of the immune system, however dysregulated PI3K mediated signaling has been linked to the development of many immune mediated pathologies. This review describes current progress in the development of isoform-specific PI3K inhibitors that hold promise for the treatment of hematopoietic malignancies as well as for inflammatory and autoimmune diseases. A SH2-domain containing inositol-5-phosphatase (SHIP) is a regulator of PI3K signaling, and is also discussed as a potential drug target for immunomodulation and the treatment of leukemia. Recent progress has been made in the development of small molecule compounds that potently and selectively modulate SHIP activity and hence provide a novel mechanism to alter PI3K mediated signaling.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
261
|
Cortés MA, Cariaga-Martinez AE, Lobo MVT, Martín Orozco RM, Motiño O, Rodríguez-Ubreva FJ, Angulo J, López-Ruiz P, Colás B. EGF promotes neuroendocrine-like differentiation of prostate cancer cells in the presence of LY294002 through increased ErbB2 expression independent of the phosphatidylinositol 3-kinase-AKT pathway. Carcinogenesis 2012; 33:1169-77. [PMID: 22461520 DOI: 10.1093/carcin/bgs139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increased neuroendocrine (NE) cell population in prostate cancer is associated with more aggressive disease and recurrence after androgen-deprivation therapy, although the mechanism responsible is unknown. In this study, we report that the treatment of LNCaP cells with epidermal growth factor (EGF) in the presence of LY294002, an inhibitor of the phosphoinositol 3'-kinase (PI3K)-AKT pathway, induced an increase of levels and activity of ErbB2. Under these conditions, we also observed cell survival and NE differentiation. When we treated with wortmannin, another PI3K inhibitor, or we knocked down PI3K or AKT isoforms in the presence of EGF, ErbB2 up-regulation was not observed, suggesting that the increase of ErbB2 induced by EGF plus LY294002 is not mediated by the PI3K-Akt pathway. Other targets of LY294002 were also discounted. We also show that ErbB2 up-regulation is directly involved in neuroendocine differentiation but not in cell survival as ErbB2 levels increased in parallel with NE differentiation marker levels, whereas ErbB2 knockdown reduced them; other NE differentiation inducers also increased the ErbB2 levels and the immunohistochemical analysis of prostate cancer samples showed colocalization of ErbB2 and chromogranin A. We found that, in LNCaP cells, EGF in combination with LY294002 increased ErbB2 levels by a PI3K/AKT-independent mechanism and that this increase was associated with the acquisition of a NE phenotype. These results suggest that is worth reconsidering ErbB2 as a drug target in prostate cancer and this should be kept in mind when designing new clinical schedules for the treatment of this disease.
Collapse
Affiliation(s)
- M Alicia Cortés
- Department of Biochemistry and Molecular Biology, University of Alcala, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Abstract
The term "chemical proteomics" refers to a research area at the interface of chemistry, biochemistry, and cell biology that focuses on studying the mechanism of action of bioactive small molecule compounds, which comprises the mapping of their target proteins and their impact on protein expression and posttranslational modifications in target cells or tissues of interest on a proteome-wide level. For this purpose, a large arsenal of approaches has emerged in recent years, many of which employing quantitative mass spectrometry. This review briefly summarizes major experiment types employed in current chemical proteomics research.
Collapse
|
263
|
Bantscheff M, Drewes G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem 2012; 20:1973-8. [DOI: 10.1016/j.bmc.2011.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022]
|
264
|
Zhao W, Qi J, Wang L, Zhang M, Wang P, Gao C. LY294002 inhibits TLR3/4-mediated IFN-β production via inhibition of IRF3 activation with a PI3K-independent mechanism. FEBS Lett 2012; 586:705-10. [PMID: 22285490 DOI: 10.1016/j.febslet.2012.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
TLR3 and TLR4 utilize adaptor TRIF to activate interferon regulatory factor 3 (IRF3), resulting in interferon β (IFN-β) production to mediate anti-viral infection. In this report, we analyzed the effect of two known phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and wortmannin on LPS- and poly(I:C)-induced IFN-β production in peritoneal macrophages. LY294002 inhibited LPS- and poly(I:C)-induced IFN-β transcription and secretion. In contrast, wortmannin could not inhibit IFN-β production. Furthermore, IRF3 transcriptional activation and binding to IFN-β promoter were found to be inhibited by LY294002. Therefore, our findings demonstrate LY294002 negatively regulates LPS- and poly(I:C)-induced IFN-β production through inhibition of IRF3 activation in a PI3K-independent manner.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Immunology, Shandong University Medical School, Jinan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
265
|
Tsai KD, Chang WW, Lin CC, Hsu SC, Lee YJ, Chen W, Shieh JC, Lin TH. Differential effects of LY294002 and wortmannin on inducible nitric oxide synthase expression in glomerular mesangial cells. Int Immunopharmacol 2012; 12:471-80. [PMID: 22240122 DOI: 10.1016/j.intimp.2011.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/26/2011] [Accepted: 12/22/2011] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) that is produced by inducible nitric oxide synthase (iNOS) is associated with the pathophysiology of glomerulonephritis. Numerous studies have focused on the regulation of NO production by iNOS to reduce NO-mediated cytotoxicity. In the present study, we demonstrated the differential effects of two phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, on lipopolysaccharide- (LPS) and interferon (IFN)-γ-induced NO production in a glomerular mesangial cell line, MES-13 cells. At dosages without affecting cell viability of MES-13 cells, 5μM LY294002 showed a more-significant inhibitory effect on LPS/IFN-γ-induced NO production, and iNOS protein and gene expressions than did 1μM wortmannin. Akt phosphorylation in MES-13 cells declined upon the addition of wortmannin, but not upon treatment with LY294002. Suppression of PI3K expression by small interfering (si)RNA exhibited no effect on LPS/IFN-γ-stimulated NO production or iNOS protein expression in MES-13 cells. Neither LY294002 nor wortmannin reduced IFN-γ-induced STAT-1α phosphorylation. LY294002 exhibited a more-significant inhibitory effect on NF-κB luciferase activities than wortmannin in LPS/IFN-γ-stimulated MES-13 cells. Moreover, LY294002, but not wortmannin, accelerated iNOS protein degradation and reduced the iNOS dimer/monomer ratio in MES-13 cells. Although both LY294002 and wortmannin are known as PI3K inhibitors, their differential effects on iNOS expression in MES-13 cells indicate that the effects of LY294002 on inhibiting NF-κB activation and accelerating iNOS protein degradation are through a mechanism independent of PI3K.
Collapse
Affiliation(s)
- Kuen-Daw Tsai
- Department of Internal Medicine, China Medical University Beigang Hospital, 123 Sinde Road, Beigang Township, Yunlin County 65152, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Schirle M, Bantscheff M, Kuster B. Mass Spectrometry-Based Proteomics in Preclinical Drug Discovery. ACTA ACUST UNITED AC 2012; 19:72-84. [DOI: 10.1016/j.chembiol.2012.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/14/2023]
|
267
|
Abstract
Real-world drug discovery and development remains a notoriously unproductive and increasingly uneconomical process even in the Omics era. The dominating paradigm in the industry continues to be target-based drug design, with an increased perception of the role of signaling pathways in homeostasis and in disease. Since proteins represent the major type of drug targets, proteomics-based approaches, which study proteins under relatively physiological conditions, have great potential if they can be reduced to practice such that they successfully complement the arsenal of drug discovery techniques. This chapter discusses examples of drug discovery processes where chemical proteomics-based assays using native endogenous proteins should have substantial impact.
Collapse
|
268
|
Herrera JL, Gonzalez-Rey E, Fernandez-Montesinos R, Quintana FJ, Najmanovich R, Pozo D. Toll-like receptor stimulation differentially regulates vasoactive intestinal peptide type 2 receptor in macrophages. J Cell Mol Med 2011; 13:3209-17. [PMID: 20196778 PMCID: PMC4516478 DOI: 10.1111/j.1582-4934.2009.00662.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) was originally isolated as a vasodilator intestinal peptide, then as a neuropeptide. In the immune system, VIP is described as an endogenous macrophage-deactivating factor. VIP exerts its immunological actions in a paracrine and/or autocrine manner, through specific receptors. However, very little is known about the molecular regulation of VIP type 2 receptor (VPAC(2)) in the immune system. We now report that different toll-like receptor (TLR) ligands selectively regulate the VPAC(2) receptor gene and show a gene repression system controlled by key protein kinase signalling cascades in macrophages. VPAC(2) gene expression is regulated by gram-positive (TLR2 ligands) and gram-negative bacteria wall constituents (TLR4 ligands). Moreover, VPAC(2) is tightly regulated: TLR2- or TLR2/6- but not TLR2/1-mediated mechanisms are responsible for the induction of VPAC(2). TLR stimulation by viral or bacterial nucleic acids did not modify the VPAC(2) mRNA levels. Remarkably, imiquimod--a synthetic TLR7 ligand--led to a potent up-regulation of VPAC(2) gene expression. TLR5 stimulation by flagellin present in gram-positive and gram-negative bacteria did not affect VPAC(2) mRNA. The p38 mitogen-activated protein kinase (MAPK) activity accounted for the TLR4-mediated induction of VPAC(2) gene expression. Surprisingly, our data strongly suggest for the first time a tightly repressed control of VPAC(2) mRNA induction by elements downstream of MAPK kinase 1/2, PI3K/Akt, and particularly Jun-NH(2)-terminal kinase signalling pathways.
Collapse
Affiliation(s)
- Juan Luis Herrera
- CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, CSIC-University of Seville-UPO-Junta de Andalucia, Seville, Spain
| | | | | | | | | | | |
Collapse
|
269
|
Abstract
UNLABELLED Several phosphoinositide 3-kinase (PI3K) inhibitors are in the clinic and many more are in preclinical development. CAL-101, a selective inhibitor of the PI3Kδ isoform, has shown remarkable success in certain hematologic malignancies. Although PI3Kδ signaling plays a central role in lymphocyte biology, the degree of single-agent therapeutic activity of CAL-101 during early-phase development has been somewhat unexpected. CAL-101 works in part by blocking signals from the microenvironment that normally sustain leukemia and lymphoma cells in a protective niche. As PI3Ks enter the arena of molecular-targeted therapies, CAL-101 provides proof of principle that isoform-selective compounds can be effective in selected cancer types and patient populations. SIGNIFICANCE A key question is whether compounds targeting a single PI3K catalytic isoform can provide meaningful single agent efficacy in cancer cells that express multiple isoforms. Clinical studies of the drug CAL-101 have provided a significant advance by showing that selective targeting of PI3Kδ achieves efficacy in chronic lymphocytic leukemia, in part through targeting the tumor microenvironment.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine, Irvine, California 92697-3900, USA.
| | | |
Collapse
|
270
|
Nawroth R, Stellwagen F, Schulz WA, Stoehr R, Hartmann A, Krause BJ, Gschwend JE, Retz M. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One 2011; 6:e27509. [PMID: 22110663 PMCID: PMC3216974 DOI: 10.1371/journal.pone.0027509] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.
Collapse
Affiliation(s)
- Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Luk SK, Piekorz RP, Nürnberg B, Tony To SS. The catalytic phosphoinositol 3-kinase isoform p110δ is required for glioma cell migration and invasion. Eur J Cancer 2011; 48:149-57. [PMID: 22079609 DOI: 10.1016/j.ejca.2011.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/08/2011] [Accepted: 09/06/2011] [Indexed: 01/15/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive and aggressive primary brain tumour in which loss of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a negative regulator of PI3K signalling, is a common feature. PTEN/PI3K/Akt signalling is involved in the regulation of proliferation, apoptosis and cell migration. Deregulation of PI3K signalling is considered an essential driver in gliomagenesis. However, the role of different PI3K isoforms in glioma is still largely unclear. Here we show that the catalytic PI3K isoform p110δ is consistently expressed at a high level in various glioma cell lines. We used small interfering RNA to selectively deplete p110δ and to determine its tumourigenic roles in PTEN-deficient cells. Interestingly, knockdown of p110δ decreased the cell migration and invasion ability of all GBM cell lines tested. Mechanistically, p110δ knockdown reduced the protein levels of focal adhesion kinase and cell division cycle 42, key regulators of cellular migration. In contrast, pharmacologic inhibition of p110δ by IC87114 or CAL-101 also clearly impaired glioma cell migration but had no obvious effect on the invasion capacity thus pinpointing to possible kinase-dependent and -independent roles of p110δ in glioma pathology. In summary, our data provide novel evidence that in glioma cells p110δ is a key regulator of cell movement and thus may contribute to the highly invasive phenotype of GBM. Isoform specific targeting of PI3Kδ may be beneficial in the treatment of glioblastoma multiforme by specifically inhibiting tumour cell migration capacity.
Collapse
Affiliation(s)
- Sze Ki Luk
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | | | | | | |
Collapse
|
272
|
Avni D, Glucksam Y, Zor T. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor κB inhibition, in a PI3K-independent mechanism. Biochem Pharmacol 2011; 83:106-14. [PMID: 22005520 DOI: 10.1016/j.bcp.2011.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 02/05/2023]
Abstract
The Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 (LY2), has been previously reported to inhibit nuclear factor κB (NFκB) activity, in a PI3K-independent mechanism. The goals of the current research were to determine the specificity of LY2 regarding NFκB subunits, and to identify relevant modulation of cytokine expression in LPS-stimulated macrophages. We found that LY2 specifically diminished the level of p50, but not p65, NFκB in the nucleus of LPS-stimulated mouse RAW264.7 macrophages and human THP-1 monocytes. This activity of LY2 was mimicked by its PI3K-inert analog LY303511 (LY3), but not by another PI3K inhibitor - wortmannin. We further show that LY2 inhibited LPS-induced IL-10 expression by RAW264.7 macrophages, in a PI3K-independent mechanism. Moreover, using a deletion mutant of an IL-10 promoter reporter gene we demonstrate that the activity of the NFκB enhancer site at the IL-10 promoter is regulated by LY2 in a PI3K-independent manner. Finally, both LY2 and LY3 elevated TNFα production in the LPS tolerant state which is regulated by p50 NFκB homodimers, but not before tolerance development. The effects of LY2 and LY3 on p50 translocation and on cytokine production in LPS-stimulated macrophages are thus consistent with specific PI3K-independent inhibition of p50 NFκB homodimer activity by LY2.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Tel-Aviv University, Israel.
| | | | | |
Collapse
|
273
|
Pemberton JG, Stafford JL, Yu Y, Chang JP. Differential involvement of phosphoinositide 3-kinase in gonadotrophin-releasing hormone actions in gonadotrophs and somatotrophs of goldfish, Carassius auratus. J Neuroendocrinol 2011; 23:660-74. [PMID: 21649760 DOI: 10.1111/j.1365-2826.2011.02172.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In goldfish, two endogenous gonadotrophin-releasing hormones (GnRHs) [salmon (s)GnRH and chicken (c)GnRH-II] control maturational gonadotrophin-II [lutenising hormone (LH)] and growth hormone (GH) secretion via Ca(2+)-dependent intracellular signalling pathways. We investigated the involvement of phosphoinositide 3-kinase (PI3K) in GnRH-evoked LH and GH release and associated intracellular Ca(2+) increases ([Ca(2+)](i) ) in goldfish gonadotrophs and somatotrophs. Immunoreactive PI3K p85α, the predominant regulatory subunit for class IA PI3Ks, was detected in goldfish pituitary tissue extracts and both endogenous GnRH isoforms increased phosphorylation of PI3K p85α in excised pituitary fragments. sGnRH- and cGnRH-II-elicited LH release responses from primary cultures of pituitary cells and [Ca(2+)](i) increases in identified gonadotrophs were significantly reduced in the presence of PI3K inhibitors wortmannin (100 nm) and LY294002 (10 μm). Unexpectedly, wortmannin and LY294002 inhibited GnRH-evoked GH release but only attenuated the [Ca(2+)](i) response in identified somatotrophs to cGnRH-II, and not sGnRH. On the other hand, Ca(2+) ionophore-evoked LH and GH secretion remained unaltered in the presence of the PI3K inhibitors, suggesting that general decreases in the releasable hormone pool or sensitivity to [Ca(2+)](i) changes did not underlie the ability of wortmannin and LY294002 to reduce the actions of GnRH. These results provide the first evidence for the presence and involvement of PI3K in GnRH-induced LH and GH release in any primary pituitary cell system. In gonadotrophs, the inhibitory action of PI3K on both sGnRH and cGnRH-II involves the attenuation of their evoked [Ca(2+)](i); in contrast, GnRH isoform-specific effects occur in somatotrophs.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
274
|
Nguyen QD, Perumal M, Waldman TA, Aboagye EO. Glucose metabolism measured by [¹⁸F]fluorodeoxyglucose positron emission tomography is independent of PTEN/AKT status in human colon carcinoma cells. Transl Oncol 2011; 4:241-8. [PMID: 21804920 PMCID: PMC3140012 DOI: 10.1593/tlo.11118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 02/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most altered in cancer, leading to a range of cellular responses including enhanced proliferation, survival, and metabolism, and is thus an attractive target for anticancer drug development. Stimulation of the PI3K pathway can be initiated by alterations at different levels of the signaling cascade including growth factor receptor activation, as well as mutations in PIK3CA, PTEN, and AKT genes frequently found in a broad range of cancers. Given its role in glucose metabolism, we investigated the utility of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG PET) as a pharmacodynamic biomarker of PI3K pathway-induced glucose metabolism. PTEN deletion in human colon carcinoma cells led to constitutive AKT activation but did not confer a phenotype of increased cell proliferation or glucose metabolism advantage in vivo relative to isogenic tumors derived from cells with a wild-type allele. This was not due to the activation context, that is, phosphatase activity, per se because PIK3CA activation in xenografts derived from the same lineage failed to increase glucose metabolism. Acute inhibition of PI3K activity by LY294002, and hence decreased activated AKT expression, led to a significant reduction in tumor [(18)F]FDG uptake that could be explained at least in part by decreased membrane glucose transporter 1 expression. The pharmacodynamic effect was again independent of PTEN status. In conclusion, [(18)F]FDG PET is a promising pharmacodynamic biomarker of PI3K pathway inhibition; however, its utility to detect glucose metabolism is not directly linked to the magnitude of activated AKT protein expression.
Collapse
Affiliation(s)
- Quang-Dé Nguyen
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
275
|
Cooper KG, Winfree S, Malik-Kale P, Jolly C, Ireland R, Knodler LA, Steele-Mortimer O. Activation of Akt by the bacterial inositol phosphatase, SopB, is wortmannin insensitive. PLoS One 2011; 6:e22260. [PMID: 21779406 PMCID: PMC3136525 DOI: 10.1371/journal.pone.0022260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/22/2011] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P(2) rather than phosphoinositide (3,4,5) P(3). Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Seth Winfree
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Preeti Malik-Kale
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Carrie Jolly
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Robin Ireland
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Leigh A. Knodler
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|
276
|
Nakajima T, Owen CA. Polymorphonuclear neutrophils move into the fast lane in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 183:1118-20. [PMID: 21531949 DOI: 10.1164/rccm.201102-0208ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
277
|
Lin YH, Lee CC, Chan WL, Chang WH, Wu YC, Chang JG. 16-Hydroxycleroda-3,13-dien-15,16-olide deregulates PI3K and Aurora B activities that involve in cancer cell apoptosis. Toxicology 2011; 285:72-80. [DOI: 10.1016/j.tox.2011.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/16/2022]
|
278
|
Zhao YW, Jin L, Li ZM, Zhao CJ, Wei YQ, Yang HS. Enhanced antitumor efficacy by blocking activation of the phosphatidylinositol 3-kinase/Akt pathway during anti-angiogenesis therapy. Cancer Sci 2011; 102:1469-75. [PMID: 21561530 DOI: 10.1111/j.1349-7006.2011.01979.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anti-angiogenesis has been a promising strategy for cancer therapy. However, many signal pathways are activated during anti-angiogenic treatment to counteract the therapeutic efficacy. Among these pathways, evidence has directly pointed to the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, whose activation resulted in tolerance to the absence of nutrients and oxygen when tumor angiogenesis has been inhibited. In the present study, we investigated the effects of blocking activation of the PI3K/Akt pathway on cell survival in vitro and tumor growth in vivo during anti-angiogenesis therapy. In modeled microenvironments in vitro, we observed that the phosphorylation of Akt in tumor cells was increased gradually in the absence of serum and oxygen in a time-dependent manner. The specific inhibitors of PI3K inhibited the proliferation of tumor cells in a dose-dependent manner in vitro. Moreover, inhibition was enhanced gradually with increased serum deprivation and/or hypoxia. In a mouse tumor model, we found the phosphorylation of Akt obviously increased following anti-angiogenic therapy using plasmids encoding soluble vascular endothelial growth factor receptor-2, but significantly reduced after treatment with LY294002. Consequently, the combinational treatment exhibited better antitumor effects compared with single treatments, presenting larger necrosis-like areas, more apoptotic cells, less microvessel density and less phosphorylated Akt in tumors. These results suggest that blocking activation of the PI3K/Akt pathway during anti-angiogenesis therapy could enhance antitumor efficacy. Thus, targeting the PI3K/Akt pathway might be a promising strategy to reverse tumor resistance to anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Yu Wei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
279
|
Abstract
The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine kinase that exists as a downstream component of numerous signaling pathways. The activation of mTOR results in the production of proteins involved in cell metabolism, growth, proliferation, and angiogenesis. Aberrant activation of mTOR signaling has been identified in a number of cancers, and targeted inhibition of mTOR has been successful in achieving tumor responses, prolonging progression-free survival, and increasing overall survival in various oncologic patient populations. In particular, persistent activation of mTOR signaling has been identified in cell lines and patient samples with leukemias, Hodgkin's lymphoma (HL), non-Hodgkin's lymphoma (NHL), multiple myeloma (MM), and Waldenström's macroglobulinemia (WM). In vitro and preclinical studies using agents that inhibit mTOR signaling have demonstrated cytostatic and cytotoxic effects in these hematologic malignancies, suggesting that mTOR is a rational target for therapy in these disease states. In addition, the combination of mTOR inhibitors with traditional therapies may help to overcome the development of resistance and may improve response rates over those seen with established regimens through synergistic or additive effects. Inhibitors of mTOR signaling currently are being investigated in clinical trials of hematologic malignancies as single agents and as components of combination regimens. Thus far, promising results have been seen with the application of mTOR inhibitors as single agents in patients with relapsed or refractory leukemia, HL, NHL, MM, and WM.
Collapse
Affiliation(s)
- Anas Younes
- Department of Lymphoma/Myeloma, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
280
|
Fortin CF, Cloutier A, Ear T, Sylvain-Prévost S, Mayer TZ, Bouchelaghem R, McDonald PP. A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol 2011; 41:1709-19. [DOI: 10.1002/eji.201040945] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/15/2011] [Accepted: 03/11/2011] [Indexed: 12/30/2022]
|
281
|
Kanai R, Wakimoto H, Martuza RL, Rabkin SD. A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 2011; 17:3686-96. [PMID: 21505062 DOI: 10.1158/1078-0432.ccr-10-3142] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To develop a new oncolytic herpes simplex virus (oHSV) for glioblastoma (GBM) therapy that will be effective in glioblastoma stem cells (GSC), an important and untargeted component of GBM. One approach to enhance oHSV efficacy is by combination with other therapeutic modalities. EXPERIMENTAL DESIGN MG18L, containing a U(S)3 deletion and an inactivating LacZ insertion in U(L)39, was constructed for the treatment of brain tumors. Safety was evaluated after intracerebral injection in HSV-susceptible mice. The efficacy of MG18L in human GSCs and glioma cell lines in vitro was compared with other oHSVs, alone or in combination with phosphoinositide-3-kinase (PI3K)/Akt inhibitors (LY294002, triciribine, GDC-0941, and BEZ235). Cytotoxic interactions between MG18L and PI3K/Akt inhibitors were determined using Chou-Talalay analysis. In vivo efficacy studies were conducted using a clinically relevant mouse model of GSC-derived GBM. RESULTS MG18L was severely neuroattenuated in mice, replicated well in GSCs, and had anti-GBM activity in vivo. PI3K/Akt inhibitors displayed significant but variable antiproliferative activities in GSCs, whereas their combination with MG18L synergized in killing GSCs and glioma cell lines, but not human astrocytes, through enhanced induction of apoptosis. Importantly, synergy was independent of inhibitor sensitivity. In vivo, the combination of MG18L and LY294002 significantly prolonged survival of mice, as compared with either agent alone, achieving 50% long-term survival in GBM-bearing mice. CONCLUSIONS This study establishes a novel therapeutic strategy: oHSV manipulation of critical oncogenic pathways to sensitize cancer cells to molecularly targeted drugs. MG18L is a promising agent for the treatment of GBM, being especially effective when combined with PI3K/Akt pathway-targeted agents.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
282
|
Mercado N, To Y, Ito K, Barnes PJ. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-δ. J Pharmacol Exp Ther 2011; 337:465-70. [PMID: 21300705 DOI: 10.1124/jpet.110.175950] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Corticosteroid insensitivity represents a major barrier to the treatment of chronic obstructive pulmonary disease (COPD) and severe asthma. It is caused by oxidative stress, leading to reduced histone deacetylase-2 (HDAC2) function through activation of phosphoinositide-3-kinase-δ (PI3Kδ). The tricyclic antidepressant nortriptyline has been identified in high-throughput screens as an agent that increases corticosteroid responsiveness. The aim of this study was to identify the molecular mechanism whereby nortriptyline increases corticosteroid sensitivity. Phosphorylation of Akt, a footprint of PI3K activation, and HDAC activity were evaluated by Western blotting and fluorescent activity assay in U937 monocytic cells. Corticosteroid sensitivity was evaluated by the inhibition of tumor necrosis factor α (TNFα)-induced interleukin 8 (IL-8) production by budesonide. Hydrogen peroxide (H(2)O(2)) or cigarette smoke extract (CSE) increased the level of phosphorylated Akt (pAkt) and reduced HDAC activity. Pretreatment with nortriptyline inhibited pAkt induced by CSE and H(2)O(2) as well as restored HDAC activity that had been decreased by H(2)O(2) and CSE. In addition, nortriptyline inhibited PI3Kδ activity, but had no effect on the PI3Kα and PI3Kγ isoforms. Although CSE reduced the effects of budesonide on TNFα-induced IL-8 production in U937 cells, nortriptyline reversed CSE-induced corticosteroid insensitivity. Nortriptyline restores corticosteroid sensitivity induced by oxidative stress via direct inhibition of PI3Kδ and is a potential treatment for corticosteroid-insensitive diseases such as COPD and severe asthma.
Collapse
Affiliation(s)
- Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Dovehouse St., London, SW3 6LY, United Kingdom
| | | | | | | |
Collapse
|
283
|
Sapey E, Stockley JA, Greenwood H, Ahmad A, Bayley D, Lord JM, Insall RH, Stockley RA. Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 183:1176-86. [PMID: 21257786 DOI: 10.1164/rccm.201008-1285oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RATIONALE There are increased neutrophils in the lungs of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this is due to increased inflammatory signal or related to the inherent behavior of the neutrophils. This is critical, because inaccurate or excessive neutrophil chemotaxis could drive pathological accumulation and tissue damage. OBJECTIVES To assess migratory dynamics of neutrophils isolated from patients with COPD compared with healthy smoking and nonsmoking control subjects and patients with α(1)-antitryspin deficiency. METHODS Migratory dynamics and structure were assessed in circulating neutrophils, using phase and differential interference contrast microscopy and time-lapse photography. The effect of COPD severity was studied. Surface expression of receptors was measured using flow cytometry. The in vitro effects of a phosphoinositide 3-kinase inhibitor (LY294002) were studied. MEASUREMENTS AND MAIN RESULTS COPD neutrophils moved with greater speed than cells from either control group but with reduced migratory accuracy, in the presence of IL-8, growth-related oncogene α, formyl-methionyl-leucyl-phenylalanine, and sputum. This was present across all stages of COPD. Structurally, COPD neutrophils formed fewer pseudopods during migration. There were no differences in surface expression of the receptors CXCR1, CXCR2, or FPR1. LY294002 reduced COPD neutrophil migratory speed while increasing chemotactic accuracy, returning values to normal. The inhibitor did not have these effects in healthy control subjects or patients with a similar degree of lung disease. CONCLUSIONS COPD neutrophils are intrinsically different than cells from other studied populations in their chemotactic behavior and migratory structure. Differences are not due to surface expression of chemoattractant receptors but instead appear to be due to differences in cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Department of Clinical and Experimental Medicine, First Floor, Nuffield House, University of Birmingham, Edgbaston, Birmingham B15 2TH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
284
|
|
285
|
Peracino B, Balest A, Bozzaro S. Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 2010; 123:4039-51. [DOI: 10.1242/jcs.072124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane phosphatidylinositides recruit cytosolic proteins to regulate phagocytosis, macropinocytosis and endolysosomal vesicle maturation. Here, we describe effects of inactivation of PI3K, PTEN or PLC on Escherichia coli and Legionella pneumophila uptake by the professional phagocyte Dictyostelium discoideum. We show that L. pneumophila is engulfed by macropinocytosis, a process that is partially sensitive to PI3K inactivation, unlike phagocytosis of E. coli. Both processes are blocked by PLC inhibition. Whereas E. coli is rapidly digested, Legionella proliferates intracellularly. Proliferation is blocked by constitutively expressing Nramp1, an endolysosomal iron transporter that confers resistance against invasive bacteria. Inactivation of PI3K, but not PTEN or PLC, enhances Legionella infection and suppresses the protective effect of Nramp1 overexpression. PI3K activity is restricted to early infection and is not mediated by effects on the actin cytoskeleton; rather L. pneumophila, in contrast to E. coli, subverts phosphoinositide-sensitive fusion of Legionella-containing macropinosomes with acidic vesicles, without affecting Nramp1 recruitment. A model is presented to explain how Legionella escapes fusion with acidic vesicles and Nramp1-induced resistance to pathogens.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Alessandra Balest
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, Reg. Gonzole 10, 10043 Orbassano (Torino), Italy
| |
Collapse
|
286
|
Molgat ASD, Gagnon A, Sorisky A. Macrophage-induced preadipocyte survival depends on signaling through Akt, ERK1/2, and reactive oxygen species. Exp Cell Res 2010; 317:521-30. [PMID: 21056559 DOI: 10.1016/j.yexcr.2010.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 01/11/2023]
Abstract
Obesity is associated with adipose tissue remodeling, characterized by macrophage accumulation, adipocyte hypertrophy, and apoptosis. We previously reported that macrophage-conditioned medium (MacCM) protects preadipocytes from apoptosis, due to serum withdrawal, in a platelet-derived growth factor (PDGF)-dependent manner. We have now investigated the role of intracellular signaling pathways, activated in response to MacCM versus PDGF, in promoting preadipocyte survival. Exposure of 3T3-L1 preadipocytes to J774A.1-MacCM or PDGF strongly stimulated Akt and ERK1/2 phosphorylation from initially undetectable levels. Inhibition of the upstream regulators of Akt or ERK1/2, i.e. phosphoinositide 3-kinase (PI3K; using wortmannin or LY294002) or MEK1/2 (using UO126 or PD98509), abrogated the respective phosphorylation responses, and significantly impaired pro-survival activity. J774A.1-MacCM increased reactive oxygen species (ROS) levels by 3.4-fold, and diphenyleneiodonium (DPI) or N-acetyl cysteine (NAC) significantly inhibited pro-survival signaling and preadipocyte survival in response to J774A.1-MacCM. Serum withdrawal itself also increased ROS levels (2.1-fold), and the associated cell death was attenuated by DPI or NAC. In summary, J774A.1-MacCM-dependent 3T3-L1 preadipocyte survival requires the Akt and ERK1/2 signaling pathways. Furthermore, ROS generation by J774A.1-MacCM is required for Akt and ERK1/2 signaling to promote 3T3-L1 preadipocyte survival. These data suggest potential mechanisms by which macrophages may alter preadipocyte fate.
Collapse
Affiliation(s)
- André S D Molgat
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
287
|
Zeng KW, Ko H, Yang HO, Wang XM. Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 2010; 59:542-50. [DOI: 10.1016/j.neuropharm.2010.07.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 01/19/2023]
|
288
|
Martin SK, Fitter S, Bong LF, Drew JJ, Gronthos S, Shepherd PR, Zannettino ACW. NVP-BEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. J Bone Miner Res 2010; 25:2126-37. [PMID: 20499346 DOI: 10.1002/jbmr.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoblasts are bone-forming cells derived from mesenchymal stromal cells (MSCs) that reside within the bone marrow. In response to a variety of factors, MSCs proliferate and differentiate into mature, functional osteoblasts. Several studies have shown previously that suppression of the PI3K and mTOR signaling pathways in these cells strongly promotes osteogenic differentiation, which suggests that inhibitors of these pathways may be useful as anabolic bone agents. In this study we examined the effect of BEZ235, a newly developed dual PI3K and mTOR inhibitor currently in phase I-II clinical trials for advanced solid tumors, on osteogenic differentiation and function using primary MSC cultures. Under osteoinductive conditions, BEZ235 strongly promotes osteogenic differentiation, as evidenced by an increase in mineralized matrix production, an upregulation of genes involved in osteogenesis, including bone morphogenetic proteins (BMP2, -4, and -6) and transforming growth factor β1 (TGF-β1) superfamily members (TGFB1, TGFB2, and INHBE), and increased activation of SMAD signaling molecules. In addition, BEZ235 enhances de novo bone formation in calvarial organotypic cultures. Using pharmacologic inhibitors to delineate mechanism, our studies reveal that suppression of mTOR and, to a much lesser extent PI3K p110α, mediates the osteogenic effects of BEZ235. As confirmation, shRNA-mediated knockdown of mTOR enhances osteogenic differentiation and function in SAOS-2 osteoblast-like cells. Taken together, our findings suggest that BEZ235 may be useful in treating PI3K/mTOR-dependent tumors associated with bone loss, such as the hematologic malignancy multiple myeloma.
Collapse
Affiliation(s)
- Sally K Martin
- Myeloma Research Program, Division of Haematology, Centre for Cancer Biology, SA Pathology, and University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
289
|
Woo JH, Kim MJ, Kim HS. Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.496541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
290
|
Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 2010; 3:re5. [PMID: 20716765 DOI: 10.1126/scisignal.3135re5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus serves as the primary site for the lifelong formation of new T lymphocytes; hence, it is essential for the maintenance of an effective immune system. Although thymocyte development has been widely studied, the mechanisms involved are incompletely defined. A comprehensive understanding of the molecular events that control regular thymocyte development will not only shed light on the physiological control of T cell differentiation but also probably provide insight into the pathophysiology of T cell immunodeficiencies, the molecular basis that underpins autoimmunity, and the mechanisms that instigate the formation of T cell lymphomas. Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in thymocyte development, although not all of their downstream mediators have yet been identified. Here, we discuss experimental evidence that argues for a critical role of the PI3K-phosphoinositide-dependent protein kinase (PDK1)-protein kinase B (PKB) signaling pathway in the development of both normal and malignant thymocytes, and we highlight molecules that can potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
291
|
Workman P, Collins I. Probing the probes: fitness factors for small molecule tools. CHEMISTRY & BIOLOGY 2010; 17:561-77. [PMID: 20609406 PMCID: PMC2905514 DOI: 10.1016/j.chembiol.2010.05.013] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/08/2010] [Accepted: 05/24/2010] [Indexed: 01/09/2023]
Abstract
Chemical probes for interrogating biological processes are of considerable current interest. Cell permeable small molecule tools have a major role in facilitating the functional annotation of the human genome, understanding both physiological and pathological processes, and validating new molecular targets. To be valuable, chemical tools must satisfy necessary criteria and recent publications have suggested objective guidelines for what makes a useful chemical probe. Although recognizing that such guidelines may be valuable, we caution against overly restrictive rules that may stifle innovation in favor of a "fit-for-purpose" approach. Reviewing the literature and providing examples from the cancer field, we recommend a series of "fitness factors" to be considered when assessing chemical probes. We hope this will encourage innovative chemical biology research while minimizing the generation of poor quality and misleading biological data, thus increasing understanding of the particular biological area, to the benefit of basic research and drug discovery.
Collapse
Affiliation(s)
- Paul Workman
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, SM2 5NG, UK
| | - Ian Collins
- Medicinal Chemistry Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
292
|
Adenuga D, Rahman I. Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 2010; 498:62-73. [PMID: 20388487 PMCID: PMC2874641 DOI: 10.1016/j.abb.2010.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/29/2010] [Accepted: 04/07/2010] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 2 (HDAC2) mediates the repression of pro-inflammatory genes by deacetylating core histones, RelA/p65 and the glucocorticoid receptor. Reduced level of HDAC2 is associated with steroid resistant inflammation caused by cigarette smoke (CS)-derived oxidants and aldehydes. However, the molecular mechanisms regulating HDAC2 in response to CS and aldehydes is not known. Here, we report that CS extract, and aldehyde acrolein induced phosphorylation of HDAC2 which was abolished by mutations at serine sites S(394), S(411), S(422) and S(424). HDAC2 phosphorylation required direct interaction with serine-phosphorylated protein kinase CK2alpha and involved reduced HDAC2 deacetylase activity. Furthermore, HDAC2 phosphorylation was required for HDAC2 interaction with transcription factors, co-repressor complex formation, CBP recruitment, acetylation on lysine residues and modulates transrepression activity. Thus, phospho-acetylation of HDAC2 negatively regulates its deacetylase activity which has implications in steroid resistance in chronic inflammatory conditions.
Collapse
Affiliation(s)
- David Adenuga
- Department of Environmental Medicine, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
293
|
Yang X. Dynamic Ranges of Detection-Coupled Assays and Their Effect on IC50 Measurements for Inhibition of Enzymatic Reactions. ACTA ACUST UNITED AC 2010; 15:556-61. [DOI: 10.1177/1087057110369259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most assays used to monitor enzymatic activities can be considered detection-coupled assays (i.e., indirect measurement of an analyte by using another chemical reaction for detection). The major reason for this is that the analyte that indicates the activity of the reaction cannot be directly measured or specifically directly measured by conventional means, such as optical density, fluorescence, and so on. By coupling another reaction to the enzymatic reaction of interest, the activity of the reaction can be monitored without modification to the analyte itself. However, due to the additional coupling reaction between the analyte and the detection reagents, the dynamic range of the assay could be greatly limited by the coupling reaction, and the apparent parameters of the enzymatic reaction could be much different from its uncoupled counterpart, causing significant deviations for IC50 measurement for an inhibition reaction of the enzyme. By using exact solutions for both the enzymatic and the coupling reactions, the effects of the coupling reaction on the dynamic range and accuracy of the IC50 measurement are reviewed and evaluated. In addition, real examples are provided to further illustrate the problem and validate the analysis.
Collapse
Affiliation(s)
- Xiaoke Yang
- Pfizer Biotherapeutic Research and Development, Inflammation and Immunology, Cambridge, MA
| |
Collapse
|
294
|
Song HP, Zhang L, Dang YM, Yan H, Chu ZG, Huang YS. The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. Clin Exp Pharmacol Physiol 2010; 37:598-604. [DOI: 10.1111/j.1440-1681.2010.05355.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
295
|
Tzukert K, Shimony N, Krasny L, Urieli-Shoval S, Gorodetsky R, Avrahami I, Nettelbeck D, Haviv Y. Human melanoma cells expressing the αvβ3 integrin are partially protected from necrotic cell death induced by dynamic matrix detachment. Cancer Lett 2010; 290:174-81. [DOI: 10.1016/j.canlet.2009.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 08/29/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
|
296
|
Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 2010; 115:5111-20. [PMID: 20228268 DOI: 10.1182/blood-2009-08-236430] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Factor XII (FXII) and high molecular weight kininogen (HK) mutually block each other's binding to the urokinase plasminogen activator receptor (uPAR). We investigated if FXII stimulates cells by interacting with uPAR. FXII (3-62nM) with 0.05mM Zn(2+) induces extracellular signal-related kinase 1/2 (ERK1/2; mitogen-activated protein kinase 44 [MAPK44] and MAPK42) and Akt (Ser473) phosphorylation in endothelial cells. FXII-induced phosphorylation of ERK1/2 or Akt is a zymogen activity, not an enzymatic event. ERK1/2 or Akt phosphorylation is blocked upstream by PD98059 or Wortmannin or LY294002, respectively. An uPAR signaling region for FXII is on domain 2 adjacent to uPAR's integrin binding site. Cleaved HK or peptides from HK's domain 5 blocks FXII-induced ERK1/2 and Akt phosphorylation. A beta(1) integrin peptide that binds uPAR, antibody 6S6 to beta(1) integrin, or the epidermal growth factor receptor (EGFR) inhibitor AG1478 blocks FXII-induced phosphorylation of ERK1/2 and Akt. FXII induces endothelial cell proliferation and 5-bromo-2'deoxy-uridine incorporation. FXII stimulates aortic sprouting in normal but not uPAR-deficient mouse aorta. FXII produces angiogenesis in matrigel plugs in normal but not uPAR-deficient mice. FXII knockout mice have reduced constitutive and wound-induced blood vessel number. In sum, FXII initiates signaling mediated by uPAR, beta(1) integrin, and the EGFR to induce human umbilical vein endothelial cell proliferation, growth, and angiogenesis.
Collapse
|
297
|
Ihle NT, Powis G. Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Mol Aspects Med 2010; 31:135-44. [PMID: 20176047 DOI: 10.1016/j.mam.2010.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/16/2010] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K) signaling pathway is implicated in multiple aspects of tumorigenesis and tumor maintenance, and recent years have seen significant efforts towards developing agents to inhibit the pathway. However, the development of such agents raises issues such as what specific member or members in the PI3K family should be inhibited to achieve maximal therapeutic benefit, and can specific inhibitors be developed with the necessary pharmacologic properties to allow them to proceed to clinical trials? The number of PI3K inhibitors has gone from a handful of archetypal inhibitors which largely determined how the pathway was initially defined through their inhibition of PI3K, but also due to their off target properties, to a much larger number of inhibitors of not only PI3K but also other members of the PI3K family. The question remains to be answered whether greater therapeutic efficacy will be obtained through the use of inhibitors with increased specificity, or through inhibitors that target a spectrum of targets within the pathway. This review will cover the development of agents targeting the pathway, and will discuss current issues surrounding the development of such agents.
Collapse
Affiliation(s)
- Nathan T Ihle
- Anderson Cancer Center, FC-6.3044, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
298
|
Herrera JL, Gonzalez-Rey E, Fernandez-Montesinos R, Quintana FJ, Najmanovich R, Pozo D. Toll-like receptor stimulation differentially regulates vasoactive intestinal peptide type 2 receptor in macrophages. J Cell Mol Med 2010. [DOI: 10.1111/j.1582-4934.2008.00662.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
299
|
Ukhanov K, Corey EA, Brunert D, Klasen K, Ache BW. Inhibitory odorant signaling in Mammalian olfactory receptor neurons. J Neurophysiol 2009; 103:1114-22. [PMID: 20032232 DOI: 10.1152/jn.00980.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction in rodent ORNs. We show that odorants rapidly and transiently activate PI3K in the olfactory cilia and in the olfactory epithelium in vitro. We implicate known G-protein-coupled isoforms of PI3K and show that they modulate not only the magnitude but also the onset kinetics of the electrophysiological response of ORNs to complex odorants. Finally, we show that the ability of a single odorant to inhibit another can be PI3K dependent. Our collective results provide compelling support for the idea that PI3K-dependent signaling mediates inhibitory odorant input to mammalian ORNs and at least in part contributes to the mixture suppression typically seen in the response of ORNs to complex natural odorants.
Collapse
Affiliation(s)
- Kirill Ukhanov
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610-0127, USA.
| | | | | | | | | |
Collapse
|
300
|
Koehler BC, Urbanik T, Vick B, Boger RJ, Heeger S, Galle PR, Schuchmann M, Schulze-Bergkamen H. TRAIL-induced apoptosis of hepatocellular carcinoma cells is augmented by targeted therapies. World J Gastroenterol 2009; 15:5924-35. [PMID: 20014456 PMCID: PMC2795179 DOI: 10.3748/wjg.15.5924] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors, in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand (TRAIL), on overcoming TRAIL resistance in hepatocellular carcinoma (HCC) and to study the efficacy of agonistic TRAIL antibodies, as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis.
METHODS: Surface expression of TRAIL receptors (TRAIL-R1-4) and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting, respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs. HCC cells were treated with kinase inhibitors and chemotherapeutic drugs. Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
RESULTS: TRAIL-R1 and -R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However, treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates. Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002 [inhibition of phosphoinositol-3-kinase (PI3K)], AG1478 (epidermal growth factor receptor kinase), PD98059 (MEK1), rapamycin (mammalian target of rapamycin) and the multi-kinase inhibitor Sorafenib. Furthermore, the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance: knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells. Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.
CONCLUSION: Our data identify the blockage of survival kinases, combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.
Collapse
|