251
|
Ibrahim F, Nakaya T, Mourelatos Z. RNA dysregulation in diseases of motor neurons. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:323-52. [PMID: 22035195 DOI: 10.1146/annurev-pathol-011110-130307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that lead to paralysis and typically carry a dismal prognosis. In children, inherited spinal muscular atrophies are the predominant diseases that affect motor neurons, whereas in adults, amyotrophic lateral sclerosis, which is inherited but mostly sporadic, is the most common MND. In recent years, we have witnessed a revolution in this field, sparked by the discovery of the genes that cause MNDs. Remarkably, at least 10 genes, whose products are either RNA-binding proteins or proteins that function in RNA processing and regulation, cause MNDs and place the dysregulation of RNA pathways at the center of motor neuron degeneration pathogenesis.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
252
|
Ido A, Fukuyama H, Urushitani M. Protein misdirection inside and outside motor neurons in Amyotrophic Lateral Sclerosis (ALS): a possible clue for therapeutic strategies. Int J Mol Sci 2011; 12:6980-7003. [PMID: 22072931 PMCID: PMC3211022 DOI: 10.3390/ijms12106980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive muscle wasting and weakness with no effective cure. Emerging evidence supports the notion that the abnormal conformations of ALS-linked proteins play a central role in triggering the motor neuron degeneration. In particular, mutant types of superoxide dismutase 1 (SOD1) and TAR DNA binding protein 43kDa (TDP-43) are key molecules involved in the pathogenesis of familial and sporadic ALS, respectively. The commonalities of the two proteins include a propensity to aggregate and acquire detrimental conformations through oligomerization, fragmentation, or post-translational modification that may drive abnormal subcellular localizations. Although SOD1 is a major cytosolic protein, mutated SOD1 has been localized to mitochondria, endoplasmic reticulum, and even the extracellular space. The nuclear exclusion of TDP-43 is a pathological hallmark for ALS, although the pathogenic priority remains elusive. Nevertheless, these abnormal behaviors based on the protein misfolding are believed to induce diverse intracellular and extracellular events that may be tightly linked to non-cell-autonomous motor neuron death. The generation of mutant- or misfolded protein-specific antibodies would help to uncover the distribution and propagation of the ALS-linked proteins, and to design a therapeutic strategy to clear such species. Herein we review the literature regarding the mislocalization of ALS-linked proteins, especially mutant SOD1 and TDP-43 species, and discuss the rationale of molecular targeting strategies including immunotherapy.
Collapse
Affiliation(s)
- Akemi Ido
- Unit for Neurobiology and Therapeutics, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan; E-Mail:
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; E-Mail:
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; E-Mail:
| | - Makoto Urushitani
- Unit for Neurobiology and Therapeutics, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-77-548-2328
| |
Collapse
|
253
|
Baloh RH. TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 2011; 278:3539-49. [PMID: 21777387 PMCID: PMC3177991 DOI: 10.1111/j.1742-4658.2011.08256.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulations of aggregated proteins are a key feature of the pathology of all of the major neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) was brought into this fold quite recently with the discovery of TDP-43 (TAR DNA binding protein, 43 kDa) inclusions in nearly all ALS cases. In part this discovery was fueled by the recognition of the clinical overlap between ALS and frontotemporal lobar degeneration, where ubiquitinated TDP-43 inclusions were first identified. Later the identification of TDP-43 mutations in rare familial forms of ALS confirmed that altered TDP-43 function can be a primary cause of the disease. However, the simple concept that TDP-43 is an aggregation-prone protein that forms toxic inclusions capable of promoting neurodegeneration has not been upheld by initial investigations. This review discusses observations from human pathology, cell culture and animal model systems, to highlight our somewhat murky understanding of the relationship between TDP-43 aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Robert H Baloh
- Neuromuscular Division, Department of Neurology, Hope Center for Neurological Disorders, Washington University, Saint Louis, MO 63110, USA.
| |
Collapse
|
254
|
Kryndushkin D, Shewmaker F. Modeling ALS and FTLD proteinopathies in yeast: an efficient approach for studying protein aggregation and toxicity. Prion 2011; 5:250-7. [PMID: 22052354 DOI: 10.4161/pri.17229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years there have been several reports of human neurodegenerative diseases that involve protein misfolding being modeled in the yeast Saccharomyces cerevisiae. This review summarizes recent advances in understanding the specific mechanisms underlying intracellular neuronal pathology during Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), including SOD1, TDP-43 and FUS protein inclusions and the potential of these proteins to be involved in pathogenic prion-like mechanisms. More specifically, we focus on findings from yeast systems that offer tremendous possibilities for screening for genetic and chemical modifiers of disease-related proteotoxicity.
Collapse
Affiliation(s)
- Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | | |
Collapse
|
255
|
Mason RP, Giorgini F. Modeling Huntington disease in yeast: perspectives and future directions. Prion 2011. [PMID: 22052350 DOI: 10.4161/pri.5.4.18005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.
Collapse
Affiliation(s)
- Robert P Mason
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
256
|
Mason RP, Giorgini F. Modeling Huntington disease in yeast: perspectives and future directions. Prion 2011; 5:269-76. [PMID: 22052350 DOI: 10.4161/pri.18005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast have been extensively used to model aspects of protein folding diseases, yielding novel mechanistic insights and identifying promising candidate therapeutic targets. In particular, the neurodegenerative disorder Huntington disease (HD), which is caused by the abnormal expansion of a polyglutamine tract in the huntingtin (htt) protein, has been widely studied in yeast. This work has led to the identification of several promising therapeutic targets and compounds that have been validated in mammalian cells, Drosophila and rodent models of HD. Here we discuss the development of yeast models of mutant htt toxicity and misfolding, as well as the mechanistic insights gleaned from this simple model. The role of yeast prions in the toxicity/misfolding of mutant htt is also highlighted. Furthermore, we provide an overview of the application of HD yeast models in both genetic and chemical screens, and the fruitful results obtained from these approaches. Finally, we discuss the future of yeast in neurodegenerative research, in the context of HD and other diseases.
Collapse
Affiliation(s)
- Robert P Mason
- Department of Genetics, University of Leicester, Leicester, UK
| | | |
Collapse
|
257
|
Wang DB, Gitcho MA, Kraemer BC, Klein RL. Genetic strategies to study TDP-43 in rodents and to develop preclinical therapeutics for amyotrophic lateral sclerosis. Eur J Neurosci 2011; 34:1179-88. [PMID: 21777407 PMCID: PMC3196044 DOI: 10.1111/j.1460-9568.2011.07803.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuropathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) and a class of frontotemporal lobar degeneration is ubiquitinated cytoplasmic aggregates composed of transactive response DNA binding protein 43 kDa (TDP-43). Genetic manipulation of TDP-43 in animal models has been used to study the protein's role in pathogenesis. Transgenic rodents for TDP-43 have recapitulated key aspects of ALS such as paralysis, loss of spinal motor neurons and muscle atrophy. Viral vectors are an alternate approach to express pathological proteins in animals. Use of the recombinant adeno-associated virus vector serotype 9 has permitted widespread transgene expression throughout the central nervous system after intravenous administration. Expressing TDP-43 in rats with this method produced a phenotype that was consistent with and similar to TDP-43 transgenic lines. Increased levels of TDP-43 in the nucleus are toxic to neurons and sufficient to produce ALS-like symptoms. Animal models based on TDP-43 will address the relationships between TDP-43 expression levels, pathology, neuronal loss, muscle atrophy, motor function and causative mechanisms of disease. New targets that modify TDP-43 function, or targets from previous ALS models and other models of spinal cord diseases, could be tested for efficacy in the recent rodent models of ALS based on TDP-43. The vector approach could be an important therapeutic channel because the entire spinal cord can be affected from a one-time peripheral administration.
Collapse
Affiliation(s)
- David B. Wang
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Michael A. Gitcho
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ronald L. Klein
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
258
|
Abstract
Protein misfolding is associated with many human diseases, including neurodegenerative diseases, such as Alzheimer disease, Parkinson disease and Huntington disease. Protein misfolding often results in the formation of intracellular or extracellular inclusions or aggregates. Even though deciphering the role of these aggregates has been the object of intense research activity, their role in protein misfolding diseases is unclear. Here, I discuss the implications of studies on polyglutamine aggregation and toxicity in yeast and other model organisms. These studies provide an excellent experimental and conceptual paradigm that contributes to understanding the differences between toxic and protective trajectories of protein misfolding. Future studies like the ones discussed here have the potential to transform basic concepts of protein misfolding in human diseases and may thus help to identify new therapeutic strategies for their treatment.
Collapse
|
259
|
Ito D, Suzuki N. Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology 2011; 77:1636-43. [PMID: 21956718 DOI: 10.1212/wnl.0b013e3182343365] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding proteins TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) play central roles in neurodegeneration associated with familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Normally localized in the nucleus, in sites affected by ALS and FTLD-U they are mislocalized to the cytoplasm and form cytoplasmic inclusions. TDP-43 and FUS are transported to the nucleus in a Ran-GTPase-dependent manner via nuclear import receptors, but they also contribute to the formation of stress granules (SGs), which are intracytoplasmic structures incorporating RNA. C-terminal truncations of TDP-43 eliminate the nuclear transport signal and cause mislocalization of the protein to the cytoplasm, where it accumulates and forms SGs. ALS-associated FUS mutations impair nuclear transport and cause mislocalization of FUS to the cytoplasm, where it also contributes to assembly of SGs. Furthermore, the ALS susceptibility factor ataxin-2, recently identified as a potent modifier of TDP-43 toxicity, is also a predicted cytoplasmic RNA-binding protein and a constituent protein of SGs, suggesting that it is a part of the common pathologic cascade formed by TDP-43 and FUS. Thus, we propose that excessive mislocalization of the RNA-binding proteins TDP-43, FUS, and ataxin-2 into the cytoplasm leads to impairment of the RNA quality control system, forming the core of the ALS/FTLD-U degenerative cascade. In this review, we discuss the molecular basis of the novel disease spectrum of ALS/FTLD-U, including the neurodegenerative mechanism of the cytoplasmic RNA-binding proteins TDP-43 and FUS and the possibility of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|
260
|
Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Biochem Soc Trans 2011; 39:1482-7. [DOI: 10.1042/bst0391482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.
Collapse
|
261
|
Spinal inhibitory interneuron pathology follows motor neuron degeneration independent of glial mutant superoxide dismutase 1 expression in SOD1-ALS mice. J Neuropathol Exp Neurol 2011; 70:662-77. [PMID: 21760539 DOI: 10.1097/nen.0b013e31822581ac] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Motor neuron degeneration and skeletal muscle denervation are hallmarks of amyotrophic lateral sclerosis (ALS), but other neuron populations and glial cells are also involved in ALS pathogenesis. We examined changes in inhibitory interneurons in spinal cords of the ALS model low-copy Gurney G93A-SOD1 (G1del) mice and found reduced expression of markers of glycinergic and GABAergic neurons, that is, glycine transporter 2 (GlyT2) and glutamic acid decarboxylase (GAD65/67), specifically in the ventral horns of clinically affected mice. There was also loss of GlyT2 and GAD67 messenger RNA-labeled neurons in the intermediate zone. Ubiquitinated inclusions appeared in interneurons before 20 weeks of age, that is, after their development in motor neurons but before the onset of clinical signs and major motor neuron degeneration, which starts from 25 weeks of age. Because mutant superoxide dismutase 1 (SOD1) in glia might contribute to the pathogenesis, we also examined neuron-specific G93A-SOD1 mice; they also had loss of inhibitory interneuron markers in ventral horns and ubiquitinated interneuron inclusions. These data suggest that, in mutant SOD1-associated ALS, pathological changes may spread from motor neurons to interneuronsin a relatively early phase of the disease, independent of the presence of mutant SOD1 in glia. The degeneration of spinal inhibitory interneurons may in turn facilitate degeneration of motor neurons and contribute to disease progression.
Collapse
|
262
|
Saini A, Chauhan VS. Delineation of the core aggregation sequences of TDP-43 C-terminal fragment. Chembiochem 2011; 12:2495-501. [PMID: 21905193 DOI: 10.1002/cbic.201100427] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Indexed: 12/12/2022]
Abstract
Ubiquitinated cytoplasmic inclusions of TDP-43 and its C-terminal cleavage products are the pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitinated inclusions. The C-terminal fragments (CTFs) of TDP-43 are increasingly considered to play an important role in its aggregation and in disease. Here, we employed a set of synthetic peptides spanning the length of the TDP-43 CTF (220-414) in order to find out its core aggregation domains. Two regions, one in the RRM-2 domain (246-255) and the other in the C-terminal domain (311-320) of TDP-43, stand out as highly aggregation prone. Studies done on recombinant purified TDP-43 CTF and its three mutants, in which these sequences were deleted individually and together, suggested that the 311-320 region has a more crucial role to play than the 246-255 in its aggregation. The study helps in defining specific peptide sequences that might form the core of TDP-43 aggregation. Identification of these sequences could help in designing peptide based inhibitors of TDP-43 aggregation.
Collapse
Affiliation(s)
- Akash Saini
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
263
|
Li HY, Yeh PA, Chiu HC, Tang CY, Tu BPH. Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS One 2011; 6:e23075. [PMID: 21850253 PMCID: PMC3151276 DOI: 10.1371/journal.pone.0023075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) are characterized by inclusion bodies formed by TDP-43 (TDP). We established cell and transgenic Drosophila models expressing TDP carboxyl terminal fragment (ND251 and ND207), which developed aggregates recapitulating important features of TDP inclusions in ALS/FTLD-U, including hyperphosphorylation at previously reported serine403,404,409,410 residues, polyubiquitination and colocalization with optineurin. These models were used to address the pathogenic role of hyperphosphorylation in ALS/FTLD-U. We demonstrated that hyperphosphorylation and ubiquitination occurred temporally later than aggregation in cells. Expression of CK2α which phosphorylated TDP decreased the aggregation propensity of ND251 or ND207; this effect could be blocked by CK2 inhibitor DMAT. Mutation of serines379,403,404,409,410 to alanines (S5A) to eliminate phosphorylation increased the aggregation propensity and number of aggregates of TDP, but mutation to aspartic acids (S5D) or glutamic acids (S5E) to simulate hyperphosphorylation had the opposite effect. Functionally, ND251 or ND207 aggregates decreased the number of neurites of Neuro2a cells induced by retinoic acid or number of cells by MTT assay. S5A mutation aggravated, but S5E mutation alleviated these cytotoxic effects of aggregates. Finally, ND251 or ND251S5A developed aggregates in neurons, and salivary gland of transgenic Drosophila, but ND251S5E did not. Taken together, our data indicate that hyperphosphorylation may represent a compensatory defense mechanism to stop or prevent pathogenic TDP from aggregation. Therefore, enhancement of phosphorylation may serve as an effective therapeutic strategy against ALS/FTLD-U.
Collapse
Affiliation(s)
- Huei-Ying Li
- Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-An Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chiang Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Benjamin Pang-hsien Tu
- Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
264
|
Rodent models of TDP-43 proteinopathy: investigating the mechanisms of TDP-43-mediated neurodegeneration. J Mol Neurosci 2011; 45:486-99. [PMID: 21811811 PMCID: PMC3207125 DOI: 10.1007/s12031-011-9610-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/21/2011] [Indexed: 12/11/2022]
Abstract
Since the identification of phosphorylated and truncated transactive response DNA-binding protein 43 (TDP-43) as a primary component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions, much effort has been directed towards ascertaining how TDP-43 contributes to the pathogenesis of disease. As with other protein misfolding disorders, TDP-43-mediated neuronal death is likely caused by both a toxic gain and loss of TDP-43 function. Indeed, the presence of cytoplasmic TDP-43 inclusions is associated with loss of nuclear TDP-43. Moreover, post-translational modifications of TDP-43, including phosphorylation, ubiquitination, and cleavage into C-terminal fragments, may bestow toxic properties upon TDP-43 and cause TDP-43 dysfunction. However, the exact neurotoxic TDP-43 species remain unclear, as do the mechanism(s) by which they cause neurotoxicity. Additionally, given our incomplete understanding of the roles of TDP-43, both in the nucleus and the cytoplasm, it is difficult to truly appreciate the detrimental consequences of aberrant TDP-43 function. The development of TDP-43 transgenic animal models is expected to narrow these gaps in our knowledge. The aim of this review is to highlight the key findings emerging from TDP-43 transgenic animal models and the insight they provide into the mechanisms driving TDP-43-mediated neurodegeneration.
Collapse
|
265
|
van Eersel J, Ke YD, Gladbach A, Bi M, Götz J, Kril JJ, Ittner LM. Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS One 2011; 6:e22850. [PMID: 21829535 PMCID: PMC3146516 DOI: 10.1371/journal.pone.0022850] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/01/2011] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease.
Collapse
Affiliation(s)
- Janet van Eersel
- Laboratory for Translational Neurodegeneration, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Yazi D. Ke
- Laboratory for Translational Neurodegeneration, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Amadeus Gladbach
- Laboratory for Translational Neurodegeneration, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Mian Bi
- Laboratory for Translational Neurodegeneration, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | - Jillian J. Kril
- Disciplines of Medicine and Pathology, University of Sydney, Sydney, Australia
| | - Lars M. Ittner
- Laboratory for Translational Neurodegeneration, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
266
|
Abstract
The budding yeast, Saccharomyces cerevisiae, is a powerful model system for defining fundamental mechanisms of many important cellular processes, including those with direct relevance to human disease. Because of its short generation time and well-characterized genome, a major experimental advantage of the yeast model system is the ability to perform genetic screens to identify genes and pathways that are involved in a given process. Over the last thirty years such genetic screens have been used to elucidate the cell cycle, secretory pathway, and many more highly conserved aspects of eukaryotic cell biology (1-5). In the last few years, several genomewide libraries of yeast strains and plasmids have been generated (6-10). These collections now allow for the systematic interrogation of gene function using gain- and loss-of-function approaches (11-16). Here we provide a detailed protocol for the use of a high-throughput yeast transformation protocol with a liquid handling robot to perform a plasmid overexpression screen, using an arrayed library of 5,500 yeast plasmids. We have been using these screens to identify genetic modifiers of toxicity associated with the accumulation of aggregation-prone human neurodegenerative disease proteins. The methods presented here are readily adaptable to the study of other cellular phenotypes of interest.
Collapse
Affiliation(s)
- Michael S Fleming
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, USA
| | | |
Collapse
|
267
|
Abstract
Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.
Collapse
Affiliation(s)
- Aaron D Gitler
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
268
|
Dormann D, Haass C. TDP-43 and FUS: a nuclear affair. Trends Neurosci 2011; 34:339-48. [PMID: 21700347 DOI: 10.1016/j.tins.2011.05.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 12/12/2022]
Abstract
Misfolded TAR DNA binding protein 43 (TDP-43) and Fused-In-Sarcoma (FUS) protein have recently been identified as pathological hallmarks of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) characterized by the presence of ubiquitin-positive inclusions (FTLD-U). Although TDP-43 and FUS are normally located predominantly in the nucleus, pathological TDP-43 and FUS inclusions are mostly found in the cytosol. Cytosolic deposition is paralleled by a striking nuclear depletion of either protein. Based on a number of recent findings, we postulate that defects in nuclear import are an important step towards TDP-43 and FUS dysfunction. Failure of nuclear transport can arise from mutations within a nuclear localization signal or from age-related decline of nuclear import mechanisms. We propose that nuclear import defects in combination with additional hits, for example cellular stress and genetic risk factors, may be a central underlying cause of ALS and FTLD-U pathology.
Collapse
Affiliation(s)
- Dorothee Dormann
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University and German Center for Neurodegenerative Diseases (DZNE) Munich, Schillerstr. 44, 80336 Munich, Germany
| | | |
Collapse
|
269
|
Budini M, Buratti E. TDP-43 autoregulation: implications for disease. J Mol Neurosci 2011; 45:473-9. [PMID: 21681666 DOI: 10.1007/s12031-011-9573-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/06/2011] [Indexed: 12/13/2022]
Abstract
TDP-43 is a nuclear protein that has been shown to play a central role in RNA metabolism. In recent years, this protein has become very important in the study of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD). These diseases share, as common feature, the presence of abnormally aggregated, posttranslationally modified, and mislocalized TDP-43 in the cell cytoplasm of both neurons and glial cells. A major question in TDP-43 research is represented by the investigation of the mechanism(s) that trigger this process and its potential consequences. Regarding the first issue, it is likely that relative protein expression levels might play an important role as has been demonstrated for many protein aggregation processes. In fact, the eventual misregulation of TDP-43 expression leading to enhanced protein production might well correlate with enhanced aggregation, and thus results in increasingly harmful gain- or loss-of-function effects on cellular metabolism. For this reason, it is important to determine the mechanisms that act to regulate TDP-43 levels within the cell. In normal conditions, it is now clear that TDP-43 can modulate its own protein levels through a negative feedback loop triggered by binding to its own RNA in the 3'UTR region leading to mRNA degradation. This work discusses how an eventual disruption of this mechanism might affect TDP-43 pathology, focusing in particular on its association with stress granules and intrinsic aggregation properties.
Collapse
Affiliation(s)
- Mauricio Budini
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012, Trieste, Italy
| | | |
Collapse
|
270
|
Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L, Liu J, Xu M, Yang Y, Wang C, Zhang D, Bigio EH, Mesulam M, Shen Y, Xu Q, Fushimi K, Wu JY. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 2011; 18:822-30. [PMID: 21666678 DOI: 10.1038/nsmb.2053] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
Mutations in TARDBP, encoding TAR DNA-binding protein-43 (TDP-43), are associated with TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We compared wild-type TDP-43 and an ALS-associated mutant TDP-43 in vitro and in vivo. The A315T mutant enhances neurotoxicity and the formation of aberrant TDP-43 species, including protease-resistant fragments. The C terminus of TDP-43 shows sequence similarity to prion proteins. Synthetic peptides flanking residue 315 form amyloid fibrils in vitro and cause neuronal death in primary cultures. These data provide evidence for biochemical similarities between TDP-43 and prion proteins, raising the possibility that TDP-43 derivatives may cause spreading of the disease phenotype among neighboring neurons. Our work also suggests that decreasing the abundance of neurotoxic TDP-43 species, enhancing degradation or clearance of such TDP-43 derivatives and blocking the spread of the disease phenotype may have therapeutic potential for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Weirui Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Model organisms reveal insight into human neurodegenerative disease: ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS. J Mol Neurosci 2011; 45:676-83. [PMID: 21660502 PMCID: PMC3207127 DOI: 10.1007/s12031-011-9548-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 12/13/2022]
Abstract
Model organisms include yeast Saccromyces cerevisae and fly Drosophila melanogaster. These systems have powerful genetic approaches, as well as highly conserved pathways, both for normal function and disease. Here, we review and highlight how we applied these systems to provide mechanistic insight into the toxicity of TDP-43. TDP-43 accumulates in pathological aggregates in ALS and about half of FTD. Yeast and fly studies revealed an interaction with the counterparts of human Ataxin-2, a gene whose polyglutamine repeat expansion is associated with spinocerebellar ataxia type 2. This finding raised the hypothesis that repeat expansions in ataxin-2 may associate with diseases characterized by TDP-43 pathology such as ALS. DNA analysis of patients revealed that intermediate-length polyglutamine expansions in ataxin-2 are a risk factor for ALS, such that repeat lengths are greater than normal, but lower than that associated with spinocerebellar ataxia type 2 (SCA2), and are more frequent in ALS patients than in matched controls. Moreover, repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to the pure CAG repeat expansions typically associated with SCA2. These studies provide an example of how model systems, when extended to human cells and human patient tissue, can reveal new mechanistic insight into disease.
Collapse
|
272
|
Braun RJ, Sommer C, Carmona-Gutierrez D, Khoury CM, Ring J, Büttner S, Madeo F. Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem 2011; 286:19958-72. [PMID: 21471218 PMCID: PMC3103370 DOI: 10.1074/jbc.m110.194852] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/04/2011] [Indexed: 12/12/2022] Open
Abstract
Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stress, apoptosis, and necrosis. Cytotoxicity was dose- and age-dependent and was potentiated upon expression of disease-associated variants. TDP-43 was localized in perimitochondrial aggregate-like foci, which correlated with cytotoxicity. Although the deleterious effects of TDP-43 were significantly decreased in cells lacking functional mitochondria, cell death depended neither on the mitochondrial cell death proteins apoptosis-inducing factor, endonuclease G, and cytochrome c nor on the activity of cell death proteases like the yeast caspase 1. In contrast, impairment of the respiratory chain attenuated the lethality upon TDP-43 expression with a stringent correlation between cytotoxicity and the degree of respiratory capacity or mitochondrial DNA stability. Consistently, an increase in the respiratory capacity of yeast resulted in enhanced TDP-43-triggered cytotoxicity, oxidative stress, and cell death markers. These data demonstrate that mitochondria and oxidative stress are important to TDP-43-triggered cell death in yeast and may suggest a similar role in human TDP-43 pathologies.
Collapse
Affiliation(s)
- Ralf J. Braun
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
- Institute of Cell Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Cornelia Sommer
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Didac Carmona-Gutierrez
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Chamel M. Khoury
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Julia Ring
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Sabrina Büttner
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| | - Frank Madeo
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria and
| |
Collapse
|
273
|
Konopka CA, Locke MN, Gallagher PS, Pham N, Hart MP, Walker CJ, Gitler AD, Gardner RG. A yeast model for polyalanine-expansion aggregation and toxicity. Mol Biol Cell 2011; 22:1971-84. [PMID: 21508314 PMCID: PMC3113764 DOI: 10.1091/mbc.e11-01-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyalanine expansions can result in aggregation and cause cytotoxicity. We have created the first yeast model of polyalanine-expansion aggregation and toxicity using the poly(Ade)-binding protein Pab1. Nine human disorders result from the toxic accumulation and aggregation of proteins with expansions in their endogenous polyalanine (polyA) tracts. Given the prevalence of polyA tracts in eukaryotic proteomes, we wanted to understand the generality of polyA-expansion cytotoxicity by using yeast as a model organism. In our initial case, we expanded the polyA tract within the native yeast poly(Adenine)-binding protein Pab1 from 8A to 13A, 15A, 17A, and 20A. These expansions resulted in increasing formation of Pab1 inclusions, insolubility, and cytotoxicity that correlated with the length of the polyA expansion. Pab1 binds mRNA as part of its normal function, and disrupting RNA binding or altering cytoplasmic mRNA levels suppressed the cytotoxicity of 17A-expanded Pab1, indicating a requisite role for mRNA in Pab1 polyA-expansion toxicity. Surprisingly, neither manipulation suppressed the cytotoxicity of 20A-expanded Pab1. Thus longer expansions may have a different mechanism for toxicity. We think that this difference underscores the potential need to examine the cytotoxic mechanisms of both long and short expansions in models of expansion disorders.
Collapse
|
274
|
Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 2011; 9:e1000614. [PMID: 21541367 PMCID: PMC3082519 DOI: 10.1371/journal.pbio.1000614] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 03/17/2011] [Indexed: 12/12/2022] Open
Abstract
TDP-43 and FUS are RNA-binding proteins that form cytoplasmic inclusions in some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, mutations in TDP-43 and FUS are linked to ALS and FTLD. However, it is unknown whether TDP-43 and FUS aggregate and cause toxicity by similar mechanisms. Here, we exploit a yeast model and purified FUS to elucidate mechanisms of FUS aggregation and toxicity. Like TDP-43, FUS must aggregate in the cytoplasm and bind RNA to confer toxicity in yeast. These cytoplasmic FUS aggregates partition to stress granule compartments just as they do in ALS patients. Importantly, in isolation, FUS spontaneously forms pore-like oligomers and filamentous structures reminiscent of FUS inclusions in ALS patients. FUS aggregation and toxicity requires a prion-like domain, but unlike TDP-43, additional determinants within a RGG domain are critical for FUS aggregation and toxicity. In further distinction to TDP-43, ALS-linked FUS mutations do not promote aggregation. Finally, genome-wide screens uncovered stress granule assembly and RNA metabolism genes that modify FUS toxicity but not TDP-43 toxicity. Our findings suggest that TDP-43 and FUS, though similar RNA-binding proteins, aggregate and confer disease phenotypes via distinct mechanisms. These differences will likely have important therapeutic implications.
Collapse
Affiliation(s)
- Zhihui Sun
- Department of Cell and Developmental Biology, The University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Zamia Diaz
- Department of Biochemistry and Biophysics, The University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Xiaodong Fang
- Department of Cell and Developmental Biology, The University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Michael P. Hart
- Department of Cell and Developmental Biology, The University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Alessandra Chesi
- Department of Cell and Developmental Biology, The University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - James Shorter
- Department of Biochemistry and Biophysics, The University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Aaron D. Gitler
- Department of Cell and Developmental Biology, The University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| |
Collapse
|
275
|
Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, König J, Hortobágyi T, Nishimura AL, Zupunski V, Patani R, Chandran S, Rot G, Zupan B, Shaw CE, Ule J. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 2011; 14:452-8. [PMID: 21358640 PMCID: PMC3108889 DOI: 10.1038/nn.2778] [Citation(s) in RCA: 843] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/11/2022]
Abstract
TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.
Collapse
Affiliation(s)
- James R Tollervey
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Ju S, Tardiff DF, Han H, Divya K, Zhong Q, Maquat LE, Bosco DA, Hayward LJ, Brown RH, Lindquist S, Ringe D, Petsko GA. A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 2011; 9:e1001052. [PMID: 21541368 PMCID: PMC3082520 DOI: 10.1371/journal.pbio.1001052] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/17/2011] [Indexed: 12/12/2022] Open
Abstract
FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.
Collapse
Affiliation(s)
- Shulin Ju
- Department of Biochemistry and Chemistry, Rosenstiel Basic Medical
Sciences Research Center, Brandeis University, Waltham, Massachusetts, United
States of America
- Department of Neurology and Center for Neurologic Diseases, Harvard
Medical School and Brigham & Women's Hospital, Cambridge,
Massachusetts, United States of America
| | - Daniel F. Tardiff
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
United States of America
- Howard Hughes Medical Institute, Department of Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of
America
| | - Haesun Han
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
United States of America
- Howard Hughes Medical Institute, Department of Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of
America
| | - Kanneganti Divya
- Department of Biochemistry and Chemistry, Rosenstiel Basic Medical
Sciences Research Center, Brandeis University, Waltham, Massachusetts, United
States of America
| | - Quan Zhong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston,
Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts,
United States of America
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics and Center for RNA Biology,
School of Medicine and Dentistry, University of Rochester, Rochester, New York,
United States of America
| | - Daryl A. Bosco
- Department of Neurology, University of Massachusetts Medical School,
Worcester, Massachusetts, United States of America
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Medical School,
Worcester, Massachusetts, United States of America
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School,
Worcester, Massachusetts, United States of America
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,
United States of America
- Howard Hughes Medical Institute, Department of Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of
America
| | - Dagmar Ringe
- Department of Biochemistry and Chemistry, Rosenstiel Basic Medical
Sciences Research Center, Brandeis University, Waltham, Massachusetts, United
States of America
- Department of Neurology and Center for Neurologic Diseases, Harvard
Medical School and Brigham & Women's Hospital, Cambridge,
Massachusetts, United States of America
| | - Gregory A. Petsko
- Department of Biochemistry and Chemistry, Rosenstiel Basic Medical
Sciences Research Center, Brandeis University, Waltham, Massachusetts, United
States of America
- Department of Neurology and Center for Neurologic Diseases, Harvard
Medical School and Brigham & Women's Hospital, Cambridge,
Massachusetts, United States of America
| |
Collapse
|
277
|
Kryndushkin D, Wickner RB, Shewmaker F. FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2011; 2:223-36. [PMID: 21452073 DOI: 10.1007/s13238-011-1525-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/06/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the premature loss of motor neurons. While the underlying cellular mechanisms of neuron degeneration are unknown, the cytoplasmic aggregation of several proteins is associated with sporadic and familial forms of the disease. Both wild-type and mutant forms of the RNA-binding proteins FUS and TDP-43 accumulate in cytoplasmic inclusions in the neurons of ALS patients. It is not known if these so-called proteinopathies are due to a loss of function or a gain of toxicity resulting from the formation of cytoplasmic aggregates. Here we present a model of FUS toxicity using the yeast Saccharomyces cerevisiae in which toxicity is associated with greater expression and accumulation of FUS in cytoplasmic aggregates. We find that FUS and TDP-43 have a high propensity for co-aggregation, unlike the aggregation patterns of several other aggregation-prone proteins. Moreover, the biophysical properties of FUS aggregates in yeast are distinctly different from many amyloidogenic proteins, suggesting they are not composed of amyloid.
Collapse
Affiliation(s)
- Dmitry Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
278
|
Estes PS, Boehringer A, Zwick R, Tang JE, Grigsby B, Zarnescu DC. Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Hum Mol Genet 2011; 20:2308-21. [PMID: 21441568 DOI: 10.1093/hmg/ddr124] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 has been linked to amyotrophic lateral sclerosis (ALS) both as a causative locus and as a marker of pathology. With several missense mutations being identified within TDP-43, efforts have been directed towards generating animal models of ALS in mouse, zebrafish, Drosophila and worms. Previous loss of function and overexpression studies have shown that alterations in TDP-43 dosage recapitulate hallmark features of ALS pathology, including neuronal loss and locomotor dysfunction. Here we report a direct in vivo comparison between wild-type and A315T mutant TDP-43 overexpression in Drosophila neurons. We found that when expressed at comparable levels, wild-type TDP-43 exerts more severe effects on neuromuscular junction architecture, viability and motor neuron loss compared with the A315T allele. A subset of these differences can be compensated by higher levels of A315T expression, indicating a direct correlation between dosage and neurotoxic phenotypes. Interestingly, larval locomotion is the sole parameter that is more affected by the A315T allele than wild-type TDP-43. RNA interference and genetic interaction experiments indicate that TDP-43 overexpression mimics a loss-of-function phenotype and suggest a dominant-negative effect. Furthermore, we show that neuronal apoptosis does not require the cytoplasmic localization of TDP-43 and that its neurotoxicity is modulated by the proteasome, the HSP70 chaperone and the apoptosis pathway. Taken together, our findings provide novel insights into the phenotypic consequences of the A315T TDP-43 missense mutation and suggest that studies of individual mutations are critical for elucidating the molecular mechanisms of ALS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
279
|
Suzuki H, Lee K, Matsuoka M. TDP-43-induced death is associated with altered regulation of BIM and Bcl-xL and attenuated by caspase-mediated TDP-43 cleavage. J Biol Chem 2011; 286:13171-83. [PMID: 21339291 DOI: 10.1074/jbc.m110.197483] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abnormal aggregates of transactive response DNA-binding protein-43 (TDP-43) and its hyperphosphorylated and N-terminal truncated C-terminal fragments (CTFs) are deposited as major components of ubiquitinated inclusions in most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). The mechanism underlying the contribution of TDP-43 to the pathogenesis of these neurodegenerative diseases remains unknown. In this study, we found that a 2-5-fold increase in TDP-43 expression over the endogenous level induced death of NSC34 motor neuronal cells and primary cortical neurons. TDP-43-induced death is associated with up-regulation of Bim expression and down-regulation of Bcl-xL expression. siRNA-mediated reduction of Bim expression attenuates TDP-43-induced death. Accumulated evidence indicates that caspases are activated in neurons of ALS and FTLD-U patients, and activated caspase-mediated cleavage of TDP-43 generates CTFs of TDP-43. Here, we further found that the ER (endoplasmic reticulum) stress- or staurosporine-mediated activation of caspases leads to cleavage of TDP-43 at Asp(89) and Asp(169), generating CTF35 (TDP-43-(90-414)) and CTF27 (TDP-43-(170-414)) in cultured neuronal cells. In contrast to TDP-43, CTF27 is unable to induce death while it forms aggregates. CTF35 was weaker than full-length TDP-43 in inducing death. A cleavage-resistant mutant of TDP-43 (TDP-43-D89E/D169E) showed stronger death-inducing activity than wild-type TDP-43. These results suggest that disease-related activation of caspases may attenuate TDP-43-induced toxicity by promoting TDP-43 cleavage.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | |
Collapse
|
280
|
Fushimi K, Long C, Jayaram N, Chen X, Li L, Wu JY. Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy. Protein Cell 2011; 2:141-9. [PMID: 21327870 DOI: 10.1007/s13238-011-1014-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.
Collapse
Affiliation(s)
- Kazuo Fushimi
- Department of Neurology, Center for Genetic Medicine, Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
281
|
Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal 2011; 23:324-34. [PMID: 20813183 PMCID: PMC3001194 DOI: 10.1016/j.cellsig.2010.08.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
Processing bodies (PBs) and Stress Granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbour transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor eIF2alpha, and tRNA cleavage among others. PBs and SGs with different compositions may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of Nuclear Stress Bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA -the UV granules and the Ire1 foci-, all of them induced by specific cell damage factors, contribute to cell survival.
Collapse
Key Words
- atxn2, ataxin-2
- bicd, bicaudal d
- cbp, creb binding protein
- cpeb, cytoplasmic polyadenylation element binding protein
- dhc, dynein heavy chain
- dic, dynein intermediate chain
- fak, focal adhesion kinase
- fus/tls/hnrnp p2, fused in sarcoma
- g3bp, ras-gap sh3 domain binding protein
- gcn2, general control nonderepressible-2
- grb7, growth factor receptor-bound protein 7
- hap, hnrnp a1 interacting protein
- hdac6, histone deacetylase 6
- hri, heme-regulated inhibitor
- hsf, heat shock transcription factor
- khc, kinesin heavy chain
- klc, kinesin light chain
- mln51, metastatic lymph node 51
- nmd, nonsense mediated decay
- nsbs, nuclear stress bodies
- ogfod1, 2–14 oxoglutarate and fe(ii)-dependent oxygenase domain containing 1
- pb, processing body
- perk, pancreatic endoplasmic reticulum eif2alpha kinase
- pkr/eif2ak2, double stranded rna-dependent protein kinase
- pp1, protein phosphatase 1
- prp, prion protein
- rbp, rna binding protein
- rnp, ribonucleoparticle
- sam68, src associated in mitosis 68 kda
- member of star, signal transducer and activator of rna
- sca, spinocerebellar ataxia
- sg, stress granule
- sma, spinal muscular atrophy
- fmrp, fragile x mental retardation protein
- smn, survival of motor neuron
- tdp43, tar dna-binding protein 43
- traf2, tnf receptor associated factor 2
- uvgs, uv rna granules
- processing body
- stress granule
- kinesin
- dynein
- bicaudal d
- aggresome
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mariela Loschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María Andrea Desbats
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405 BWE Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- University of Buenos Aires
| |
Collapse
|
282
|
Abstract
Protein misfolding is associated with many human diseases, including neurodegenerative diseases, such as Alzheimer disease, Parkinson disease and Huntington disease. Protein misfolding often results in the formation of intracellular or extracellular inclusions or aggregates. Even though deciphering the role of these aggregates has been the object of intense research activity, their role in protein misfolding diseases is unclear. Here, I discuss the implications of studies on polyglutamine aggregation and toxicity in yeast and other model organisms. These studies provide an excellent experimental and conceptual paradigm that contributes to understanding the differences between toxic and protective trajectories of protein misfolding. Future studies like the ones discussed here have the potential to transform basic concepts of protein misfolding in human diseases and may thus help to identify new therapeutic strategies for their treatment.
Collapse
|
283
|
Kryndushkin D, Shewmaker F. Modeling ALS and FTLD proteinopathies in yeast: an efficient approach for studying protein aggregation and toxicity. Prion 2011; 5. [PMID: 22052354 PMCID: PMC4012400 DOI: 10.4161/pri.5.4.17229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In recent years there have been several reports of human neurodegenerative diseases that involve protein misfolding being modeled in the yeast Saccharomyces cerevisiae. This review summarizes recent advances in understanding the specific mechanisms underlying intracellular neuronal pathology during Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), including SOD1, TDP-43 and FUS protein inclusions and the potential of these proteins to be involved in pathogenic prion-like mechanisms. More specifically, we focus on findings from yeast systems that offer tremendous possibilities for screening for genetic and chemical modifiers of disease-related proteotoxicity.
Collapse
|
284
|
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are clinically overlapping neurodegenerative disorders whose pathophysiology remains incompletely understood. ALS initiates in a discrete location, and typically progresses in a pattern consistent with spread of the degenerative process to involve neighboring regions of the motor system, although the basis of the apparent "spread" remains elusive. Recently mutations in two RNA binding proteins, TDP-43 and FUS, were identified in patients with familial ALS. In addition to being involved in numerous events related to RNA metabolism, each forms aggregates in neurons in ALS and FTLD. Recent evidence also indicates that both TDP-43 and FUS contain prion-related domains rich in glutamine (Q) and asparagine (N) residues, and in the case of TDP-43 this is the location of most disease causing mutations. This review discusses the potential relevance of the prion-related domains in TDP-43 and FUS in normal physiology, pathologic aggregation, and disease progression in ALS and FTLD.
Collapse
Affiliation(s)
- Maria Udan
- Department of Neurology, Neuromuscular Division, Washington University, Saint Louis, MO, USA
| | | |
Collapse
|
285
|
Abstract
Neurodegenerative diseases represent one of the most devastating types of diseases in older populations in our time. Significant efforts have been made over the last 20 years to understand the molecular, biochemical, and physiological alterations underlying these diseases. However, in most cases, little is known about their pathological mechanisms due to their high complexity and involvement of a multiplicity of cellular pathways. To gain insight into this group of disorders and to devise potential therapeutic approaches, cellular and animal models of neurodegenerative proteinopathies have been created. Among them, the yeast Saccharomyces cerevisiae has been one of the most popular model organisms due to the degree of conservation of many biological pathways from yeast to human as well as its ease of use. Here, we describe how to create yeast models of neurodegenerative proteinopathies by ectopic expression of human proteins and how to perform a basic characterization of these models by analyzing cellular toxicity and protein aggregation.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
286
|
Yang C, Tan W, Whittle C, Qiu L, Cao L, Akbarian S, Xu Z. The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 2010; 5:e15878. [PMID: 21209826 PMCID: PMC3013128 DOI: 10.1371/journal.pone.0015878] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/26/2010] [Indexed: 12/13/2022] Open
Abstract
TAR DNA binding protein 43 KD (TDP-43) is an essential gene that regulates gene transcription, mRNA splicing and stability. In amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two fatal neurodegenerative diseases, TDP-43 is fragmented, generating multiple fragments that include the C-terminal fragment of ∼25 KD. The role of these fragments in the pathogenesis of ALS and FTD is not clear. Here we investigated the aggregation propensity in various polypeptide regions of TDP-43 in mammalian cells and the effect of these fragments on cultured neurons. By expressing the full length and various TDP-43 fragments in motor neuron-derived NSC-34 cells and primary neurons, we found that both N- and C-terminal fragments of TDP-43 are prone to aggregate and the C-terminal end of RRM2 region is required, though not sufficient, for aggregation. The aggregation of the TDP-43 fragments can drive co-aggregation with the full-length TDP-43, consequently reducing the nuclear TDP-43. In addition, the TDP-43 fragments can impair neurite growth during neuronal differentiation. Importantly, overexpression of the full-length TDP-43 rescues the neurite growth phenotype whereas knockdown of the endogenous TDP-43 reproduces this phenotype. These results suggest that TDP-43 fragments, particularly the pathologically relevant C-terminal fragments, can impair neuronal differentiation by dominant-negatively interfering with the function of the full length TDP-43, thus playing a role in pathogenesis in ALS and FTD.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Weijia Tan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Catheryne Whittle
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Linghua Qiu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lucheng Cao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Neuroscience Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
287
|
Barmada SJ, Finkbeiner S. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev Neurosci 2010; 21:251-72. [PMID: 21086759 DOI: 10.1515/revneuro.2010.21.4.251] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are late-onset neurodegenerative disorders that are associated with mutations in the TARDBP gene. The product of this gene, TDP-43, has also been identified as the main component of the intracellular inclusions typical of most cases of ALS and FTD. Recent evidence suggests that TDP-43 is essential for proper development and involved in several fundamental cellular processes, including gene transcription, RNA processing, and the spatial regulation of mRNA translation. Pathogenic TARDBP mutations that impair TDP-43 function could therefore be related to neuronal degeneration in ALS and FTD. Conversely, cellular and animal studies have shown that pathogenic TARDBP mutations induce neuronal toxicity through mislocalization or elevated concentrations of TDP-43, consistent with a gain-of-function mechanism. In this review, we focus on the physiologic functions of TDP-43 within the central nervous system and discuss how these functions may be perturbed or pathologically altered by disease-associated mutations.
Collapse
Affiliation(s)
- Sami J Barmada
- Gladstone Institute of Neurological Disease, University of California, San Francisco 94158, USA
| | | |
Collapse
|
288
|
Armakola M, Hart MP, Gitler AD. TDP-43 toxicity in yeast. Methods 2010; 53:238-45. [PMID: 21115123 DOI: 10.1016/j.ymeth.2010.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is an emerging tool for investigating the molecular pathways that underpin several human neurodegenerative disorders associated with protein misfolding. Amyotrophic lateral sclerosis (ALS) is a devastating adult onset neurodegenerative disease primarily affecting motor neurons. The protein TDP-43 has recently been demonstrated to play an important role in the disease, however, the mechanisms by which TDP-43 contributes to pathogenesis are unclear. To explore the mechanistic details that result in aberrant accumulation of TDP-43 and to discover potential strategies for therapeutic intervention, we employed a yeast TDP-43 proteinopathy model system. These studies allowed us to determine the regions of TDP-43 required for aggregation and toxicity and to define the effects of ALS-linked mutant forms of TDP-43. We have also been able to harness the power of yeast genetics to identify potent modifiers of TDP-43 toxicity using high-throughput yeast genetic screens. Here, we describe the methods and approaches that we have used in order to gain insight into TDP-43 biology and its role in disease. These approaches are readily adaptable to other neurodegenerative disease proteins.
Collapse
Affiliation(s)
- Maria Armakola
- Neuroscience Graduate Group, The University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
289
|
Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010; 9:995-1007. [PMID: 20864052 DOI: 10.1016/s1474-4422(10)70195-2] [Citation(s) in RCA: 693] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal intracellular protein aggregates comprise a key characteristic in most neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The seminal discoveries of accumulation of TDP-43 in most cases of ALS and the most frequent form of FTD, frontotemporal lobar degeneration with ubiquitinated inclusions, followed by identification of FUS as the novel pathological protein in a small subset of patients with ALS and various FTD subtypes provide clear evidence that these disorders are related. The creation of a novel molecular classification of ALS and FTD based on the identity of the predominant protein abnormality has, therefore, been possible. The striking functional and structural similarities of TDP-43 and FUS, which are both DNA/RNA binding proteins, imply that abnormal RNA metabolism is a pivotal event, but the mechanisms leading to TDP-43 and FUS accumulation and the resulting neurodegeneration are currently unknown. Nonetheless, TDP-43 and FUS are promising candidates for the development of novel biomarker assays and targeted therapies.
Collapse
Affiliation(s)
- Ian Ra Mackenzie
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | | | | |
Collapse
|
290
|
Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466:1069-75. [PMID: 20740007 PMCID: PMC2965417 DOI: 10.1038/nature09320] [Citation(s) in RCA: 966] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/28/2010] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The causes of ALS are poorly understood, although the protein TDP-43 has been suggested to play a critical role in disease pathogenesis. Here we show that Ataxin-2, a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2 (SCA2), is a potent modifier of TDP-43 toxicity in animal and cellular models. The proteins associate in a complex that depends on RNA. Ataxin-2 is abnormally localized in spinal cord neurons of ALS patients. Likewise, TDP-43 shows mislocalization in SCA2. To assess a role in ALS, we analyzed the Ataxin-2 gene (ATXN2) in 915 ALS patients. We found intermediate-length polyQ expansions (27–33 Qs) in ATXN2 significantly associated with ALS. These data establish ATXN2 as a relatively common ALS disease susceptibility gene. Further, these findings indicate that the TDP-43/Ataxin-2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.
Collapse
|
291
|
Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 2010; 30:10851-9. [PMID: 20702714 DOI: 10.1523/jneurosci.1630-10.2010] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose-dependent downregulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, and intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities, and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the CNS and for studying TDP-43-associated neurotoxicity.
Collapse
|
292
|
Zhang YJ, Gendron TF, Xu YF, Ko LW, Yen SH, Petrucelli L. Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener 2010; 5:33. [PMID: 20804554 PMCID: PMC2941488 DOI: 10.1186/1750-1326-5-33] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Inclusions of TAR DNA binding protein-43 (TDP-43) are the defining histopathological feature of several neurodegenerative diseases collectively referred to as TDP-43 proteinopathies. These diseases are characterized by the presence of cellular aggregates composed of abnormally phosphorylated, N-terminally truncated and ubiquitinated TDP-43 in the spinal cord and/or brain. Recent studies indicate that C-terminal fragments of TDP-43 are aggregation-prone and induce cytotoxicity. However, little is known regarding the pathways responsible for the degradation of these fragments and how their phosphorylation contributes to the pathogenesis of disease. Results Herein, we established a human neuroblastoma cell line (M17D3) that conditionally expresses an enhanced green fluorescent protein (GFP)-tagged caspase-cleaved C-terminal TDP-43 fragment (GFP-TDP220-414). We report that expression of this fragment within cells leads to a time-dependent formation of inclusions that are immunoreactive for both ubiquitin and phosphorylated TDP-43, thus recapitulating pathological hallmarks of TDP-43 proteinopathies. Phosphorylation of GFP-TDP220-414 renders it resistant to degradation and enhances its accumulation into insoluble aggregates. Nonetheless, GFP-TDP220-414 inclusions are reversible and can be cleared through the ubiquitin proteasome system. Moreover, both Hsp70 and Hsp90 bind to GFP-TDP220-414 and regulate its degradation. Conclusions Our data indicates that inclusions formed from TDP-43 C-terminal fragments are reversible. Given that TDP-43 inclusions have been shown to confer toxicity, our findings have important therapeutic implications and suggest that modulating the phosphorylation state of TDP-43 C-terminal fragments may be a promising therapeutic strategy to clear TDP-43 inclusions.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | |
Collapse
|
293
|
Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 2010; 107:16325-30. [PMID: 20736350 DOI: 10.1073/pnas.1003459107] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein-43 (TDP-43), a DNA/RNA-binding protein involved in RNA transcription and splicing, has been associated with the pathophysiology of neurodegenerative diseases, including ALS. However, the function of TDP-43 in motor neurons remains undefined. Here we use both gain- and loss-of-function approaches to determine roles of TDP-43 in motor neurons. Mice expressing human TDP-43 in neurons exhibited growth retardation and premature death that are characterized by abnormal intranuclear inclusions composed of TDP-43 and fused in sarcoma/translocated in liposarcoma (FUS/TLS), and massive accumulation of mitochondria in TDP-43-negative cytoplasmic inclusions in motor neurons, lack of mitochondria in motor axon terminals, and immature neuromuscular junctions. Whereas an elevated level of TDP-43 disrupts the normal nuclear distribution of survival motor neuron (SMN)-associated Gemini of coiled bodies (GEMs) in motor neurons, its absence prevents the formation of GEMs in the nuclei of these cells. Moreover, transcriptome-wide deep sequencing analysis revealed that a decrease in abundance of neurofilament transcripts contributed to the reduction of caliber of motor axons in TDP-43 mice. In concert, our findings indicate that TDP-43 participates in pathways critical for motor neuron physiology, including those that regulate the normal distributions of SMN-associated GEMs in the nucleus and mitochondria in the cytoplasm.
Collapse
|
294
|
Kim SH, Shanware NP, Bowler MJ, Tibbetts RS. Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA. J Biol Chem 2010; 285:34097-105. [PMID: 20720006 DOI: 10.1074/jbc.m110.154831] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that preferentially targets motor neurons. It was recently found that dominant mutations in two related RNA-binding proteins, TDP-43 (43-kDa TAR DNA-binding domain protein) and FUS/TLS (fused in sarcoma/translated in liposarcoma) cause a subset of ALS. The convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations are suggestive of a functional relationship; however, whether or not TDP-43 and FUS/TLS operate in common biochemical pathways is not known. Here we show that TDP-43 and FUS/TLS directly interact to form a complex at endogenous expression levels in mammalian cells. Binding was mediated by an unstructured TDP-43 C-terminal domain and occurred within the context of a 300-400-kDa complex that also contained C-terminal cleavage products of TDP-43 linked to neuropathology. TDP-43 C-terminal fragments were excluded from large molecular mass TDP-43 ribonucleoprotein complexes but retained FUS/TLS binding activity. The functional significance of TDP-43-FUS/TLS complexes was established by showing that RNAi silencing of either TDP-43 or FUS/TLS reduced the expression of histone deacetylase (HDAC) 6 mRNA. TDP-43 and FUS/TLS associated with HDAC6 mRNA in intact cells and in vitro, and competition experiments suggested that the proteins occupy overlapping binding sites. The combined findings demonstrate that TDP-43 and FUS/TLS form a functional complex in intact cells and suggest that convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations may reflect their participation in common biochemical processes.
Collapse
Affiliation(s)
- Sang Hwa Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
295
|
Tsai KJ, Yang CH, Fang YH, Cho KH, Chien WL, Wang WT, Wu TW, Lin CP, Fu WM, Shen CKJ. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. ACTA ACUST UNITED AC 2010; 207:1661-73. [PMID: 20660618 PMCID: PMC2916125 DOI: 10.1084/jem.20092164] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin(+) inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U. In particular, the transgenic (Tg) mice exhibit impaired learning/memory, progressive motor dysfunction, and hippocampal atrophy. The cognitive and motor impairments are accompanied by reduced levels of the neuronal regulators phospho-extracellular signal-regulated kinase and phosphorylated cAMP response element-binding protein and increased levels of gliosis in the brains of the Tg mice. Moreover, cells with TDP-43(+), ubiquitin(+) NCIs and TDP-43-deleted nuclei appear in the Tg mouse brains in an age-dependent manner. Our data provide direct evidence that increased levels of TDP-43 protein in the forebrain is sufficient to lead to the formation of TDP-43(+), ubiquitin(+) NCIs and neurodegeneration. This FTLD-U mouse model should be valuable for the mechanistic analysis of the role of TDP-43 in the pathogenesis of FTLD-U and for the design of effective therapeutic approaches of the disease.
Collapse
Affiliation(s)
- Kuen-Jer Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 2010; 107:13318-23. [PMID: 20624952 DOI: 10.1073/pnas.1008227107] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dominant mutations in two functionally related DNA/RNA-binding proteins, trans-activating response region (TAR) DNA-binding protein with a molecular mass of 43 KDa (TDP-43) and fused in sarcoma/translocation in liposarcoma (FUS/TLS), cause an inherited form of ALS that is accompanied by nuclear and cytoplasmic aggregates containing TDP-43 or FUS/TLS. Using isogenic cell lines expressing wild-type or ALS-linked TDP-43 mutants and fibroblasts from a human patient, pulse-chase radiolabeling of newly synthesized proteins is used to determine, surprisingly, that ALS-linked TDP-43 mutant polypeptides are more stable than wild-type TDP-43. Tandem-affinity purification and quantitative mass spectrometry are used to identify TDP-43 complexes not only with heterogeneous nuclear ribonucleoproteins family proteins, as expected, but also with components of Drosha microprocessor complexes, consistent with roles for TDP-43 in both mRNA processing and microRNA biogenesis. A fraction of TDP-43 is shown to be complexed with FUS/TLS, an interaction substantially enhanced by TDP-43 mutants. Taken together, abnormal stability of mutant TDP-43 and its enhanced binding to normal FUS/TLS imply a convergence of pathogenic pathways from mutant TDP-43 and FUS/TLS in ALS.
Collapse
|
297
|
Cushman M, Johnson BS, King OD, Gitler AD, Shorter J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 2010; 123:1191-201. [PMID: 20356930 DOI: 10.1242/jcs.051672] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prions are proteins that access self-templating amyloid forms, which confer phenotypic changes that can spread from individual to individual within or between species. These infectious phenotypes can be beneficial, as with yeast prions, or deleterious, as with mammalian prions that transmit spongiform encephalopathies. However, the ability to form self-templating amyloid is not unique to prion proteins. Diverse polypeptides that tend to populate intrinsically unfolded states also form self-templating amyloid conformers that are associated with devastating neurodegenerative disorders. Moreover, two RNA-binding proteins, FUS and TDP-43, which form cytoplasmic aggregates in amyotrophic lateral sclerosis, harbor a 'prion domain' similar to those found in several yeast prion proteins. Can these proteins and the neurodegenerative diseases to which they are linked become 'infectious' too? Here, we highlight advances that define the transmissibility of amyloid forms connected with Alzheimer's disease, Parkinson's disease and Huntington's disease. Collectively, these findings suggest that amyloid conformers can spread from cell to cell within the brains of afflicted individuals, thereby spreading the specific neurodegenerative phenotypes distinctive to the protein being converted to amyloid. Importantly, this transmissibility mandates a re-evaluation of emerging neuronal graft and stem-cell therapies. In this Commentary, we suggest how these treatments might be optimized to overcome the transmissible conformers that confer neurodegeneration.
Collapse
Affiliation(s)
- Mimi Cushman
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
298
|
Ash PEA, Zhang YJ, Roberts CM, Saldi T, Hutter H, Buratti E, Petrucelli L, Link CD. Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 2010; 19:3206-18. [PMID: 20530643 DOI: 10.1093/hmg/ddq230] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA-binding protein TDP-43 has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. We have engineered pan-neuronal expression of human TDP-43 protein in Caenorhabditis elegans, with the goal of generating a convenient in vivo model of TDP-43 function and neurotoxicity. Transgenic worms with the neuronal expression of human TDP-43 exhibit an 'uncoordinated' phenotype and have abnormal motorneuron synapses. Caenorhabditis elegans contains a single putative ortholog of TDP-43, designated TDP-1, which we show can support alternative splicing of CFTR in a cell-based assay. Neuronal overexpression of TDP-1 also results in an uncoordinated phenotype, while genetic deletion of the tdp-1 gene does not affect movement or alter motorneuron synapses. By using the uncoordinated phenotype as a read-out of TDP-43 overexpression neurotoxicty, we have investigated the contribution of specific TDP-43 domains and subcellular localization to toxicity. Full-length (wild-type) human TDP-43 expressed in C. elegans is localized to the nucleus. Deletion of either RNA recognition domain (RRM1 or RRM2) completely blocks neurotoxicity, as does deletion of the C-terminal region. These deleted TDP-43 variants still accumulate in the nucleus, although their subnuclear distribution is altered. Interestingly, fusion of TDP-1 C-terminal sequences to TDP-43 missing its C-terminal domain restores normal subnuclear localization and toxicity in C. elegans and CFTR splicing in cell-based assays. Overexpression of wild-type, full-length TDP-43 in mammalian cells (differentiated M17 cells) can also result in cell toxicity. Our results demonstrate that in vivo TDP-43 neurotoxicity can result from nuclear activity of overexpressed full-length protein.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Ambegaokar SS, Roy B, Jackson GR. Neurodegenerative models in Drosophila: polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis. Neurobiol Dis 2010; 40:29-39. [PMID: 20561920 DOI: 10.1016/j.nbd.2010.05.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology and George P. and Cynthia Woods Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
300
|
Kokoulina P, Rohn TT. Caspase-cleaved transactivation response DNA-binding protein 43 in Parkinson's disease and dementia with Lewy bodies. NEURODEGENER DIS 2010; 7:243-50. [PMID: 20551689 DOI: 10.1159/000287952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/12/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transactivation response DNA-binding protein 43 (TDP-43) proteinopathies are classified based upon the extent of modified TDP-43 and include a growing number of neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration with ubiquitin-immunoreactive, tau-negative inclusions and frontotemporal lobar degeneration with motor neuron disease. OBJECTIVE The purpose of the study was to examine whether proteolytic modifications of TDP-43 are a relevant finding in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). METHODS A novel site-directed caspase cleavage antibody, termed TDP caspase cleavage product antibody (TDPccp), was utilized based upon a known caspase 3 cleavage consensus site within TDP-43 at position 219. RESULTS Application of this antibody to postmortem brain sections from PD and DLB patients revealed the presence of caspase-cleaved TDP-43 in Lewy bodies and Hirano bodies in all cases examined. Colocalization of TDPccp with an antibody to alpha-synuclein (alpha-Syn), which served as a general marker for Lewy bodies, was evident within the substantia nigra in both alpha-synucleinopathies. Interestingly, the TDPccp antibody detected a greater number of Lewy bodies in PD and DLB compared to the alpha-Syn antibody. In addition, a semiquantitative analysis in both diseases confirmed this finding by indicating that the percentage of caspase-cleaved TDP-43 single-labeled Lewy bodies was approximately twice that of alpha-Syn labeling (in DLB 13.4 vs. 5.5%, while in PD 34.6 vs. 17.6%). CONCLUSION Collectively, these data have identified caspase-cleaved TDP-43 as a primary component of Lewy and Hirano bodies in PD and DLB, and suggest that the TDPccp antibody is an effective marker for the detection of Lewy bodies in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Polina Kokoulina
- Department of Biology, Boise State University, Boise, Idaho, USA
| | | |
Collapse
|