251
|
|
252
|
Lan YY, Heather JM, Eisenhaure T, Garris CS, Lieb D, Raychowdhury R, Hacohen N. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell 2019; 18:e12901. [PMID: 30706626 PMCID: PMC6413746 DOI: 10.1111/acel.12901] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic inflammation is central to aging‐related conditions. However, the intrinsic factors that induce inflammation are not well understood. We previously identified a cell‐autonomous pathway through which damaged nuclear DNA is trafficked to the cytosol where it activates innate cytosolic DNA sensors that trigger inflammation. These results led us to hypothesize that DNA released after cumulative damage contributes to persistent inflammation in aging cells through a similar mechanism. Consistent with this notion, we found that older cells harbored higher levels of extranuclear DNA compared to younger cells. Extranuclear DNA was exported by a leptomycin B‐sensitive process, degraded through the autophagosome–lysosomal pathway and triggered innate immune responses through the DNA‐sensing cGAS‐STING pathway. Patient cells from the aging diseases ataxia and progeria also displayed extranuclear DNA accumulation, increased pIRF3 and pTBK1, and STING‐dependent p16 expression. Removing extranuclear DNA in old cells using DNASE2A reduced innate immune responses and senescence‐associated (SA) β‐gal enzyme activity. Cells and tissues of Dnase2a−/− mice with defective DNA degradation exhibited slower growth, higher activity of β‐gal, or increased expression of HP‐1β and p16 proteins, while Dnase2a−/−;Sting−/− cells and tissues were rescued from these phenotypes, supporting a role for extranuclear DNA in senescence. We hypothesize a direct role for excess DNA in aging‐related inflammation and in replicative senescence, and propose DNA degradation as a therapeutic approach to remove intrinsic DNA and revert inflammation associated with aging.
Collapse
Affiliation(s)
- Yuk Yuen Lan
- Center for Cancer Research; Massachusetts General Hospital; Charlestown Massachusetts
- Broad Institute; Cambridge Massachusetts
- Department of Medicine; Harvard Medical School; Boston Massachusetts
| | - James M. Heather
- Center for Cancer Research; Massachusetts General Hospital; Charlestown Massachusetts
| | | | - Christopher Stuart Garris
- Center for Systems Biology; Massachusetts General Hospital; Boston Massachusetts
- Graduate Program in Immunology; Harvard Medical School; Boston Massachusetts
| | - David Lieb
- Broad Institute; Cambridge Massachusetts
| | | | - Nir Hacohen
- Center for Cancer Research; Massachusetts General Hospital; Charlestown Massachusetts
- Broad Institute; Cambridge Massachusetts
- Department of Medicine; Harvard Medical School; Boston Massachusetts
| |
Collapse
|
253
|
Islam MI, Nagakannan P, Ogungbola O, Djordjevic J, Albensi BC, Eftekharpour E. Thioredoxin system as a gatekeeper in caspase-6 activation and nuclear lamina integrity: Implications for Alzheimer's disease. Free Radic Biol Med 2019; 134:567-580. [PMID: 30769159 DOI: 10.1016/j.freeradbiomed.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 02/01/2023]
Abstract
Recent reports in pathophysiology of neurodegenerative diseases (ND) have linked nuclear lamina degradation/deficits to neuronal cell death. Lamin-B1 damage is specifically involved in this process leading to nuclear envelope invagination and heterochromatin rearrangement. The underlying mechanisms involved in these events are not yet defined. In this study, while examining the effect of Thioredoxin-1(Trx1) inhibition on cell death in a model of oxidative stress, we noted robust nuclear invagination in SH-SY5Y cells. Evaluation of nuclear lamina proteins revealed lamin-B1 cleavage that was prevented by caspase-6 (CASP6) inhibitor and exacerbated after pharmacologic/genetic inhibition of Trx1 system, but not after glutathione depletion. Activation of CASP6 was upstream of CASP3/7 activation and its inhibition was sufficient to prevent cell death in our system. The effect of Trx1 redox status on CASP6 activation was assessed by administration of reduced/oxidized forms in cell-free nuclei preparation and purified enzymatic assays. Although reduced Trx1 decreased CASP6 enzymatic activity and lamin-B1 cleavage, the fully oxidized Trx1 showed opposite effects. The enhanced CASP6 activation was also associated with lower levels of DJ-1, a neuroprotective and master regulator of cellular antioxidants. The implication of our findings in ND pathophysiology was strengthened with detection of lower Trx1 levels in the hippocampi tissue of a mouse model of Alzheimer's disease. This coincided with higher CASP6 activation resulting in increased lamin-B1 and DJ-1 depletion. This study provides a first mechanistic explanation for the key regulatory role of Trx1 as a gatekeeper in activation of CASP6 and induction of nuclear invagination, an important player in ND pathophysiology.
Collapse
Affiliation(s)
- Md Imamul Islam
- Regenerative Medicine Program and Spinal Cord Research Centre, Canada; Dept. Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Canada; Dept. Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Olamide Ogungbola
- Regenerative Medicine Program and Spinal Cord Research Centre, Canada; Dept. Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Canada; Dept. Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
254
|
Affiliation(s)
- Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
255
|
Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M, Ayusawa D. Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev 2019; 178:25-32. [PMID: 30615890 DOI: 10.1016/j.mad.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a phenomenon of irreversible growth arrest in mammalian somatic cells in culture. Various stresses induce cellular senescence and indeed, we have found that excess thymidine effectively induces cellular senescence in human cells. Further, many reports indicate the implication of chromatin proteins in cellular senescence. Here we analysed the role of lamin B receptor (LBR), a nuclear envelope protein that regulates heterochromatin organization, in cellular senescence induced by excess thymidine. We then found that the LBR protein was down-regulated and showed aberrant localization in cells upon induction of cellular senescence by excess thymidine. Additionally, we also found that knock-down of LBR facilitated the induction of cellular senescence by excess thymidine in cancerous HeLa cells, and importantly, it induced cellular senescence in normal human diploid fibroblast TIG-7 cells. These results suggested that decreased LBR function is involved in the induction of cellular senescence in human cells.
Collapse
Affiliation(s)
- Rumi Arai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Keisuke Maki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| |
Collapse
|
256
|
Sen P, Lan Y, Li CY, Sidoli S, Donahue G, Dou Z, Frederick B, Chen Q, Luense LJ, Garcia BA, Dang W, Johnson FB, Adams PD, Schultz DC, Berger SL. Histone Acetyltransferase p300 Induces De Novo Super-Enhancers to Drive Cellular Senescence. Mol Cell 2019; 73:684-698.e8. [PMID: 30773298 DOI: 10.1016/j.molcel.2019.01.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.
Collapse
Affiliation(s)
- Payel Sen
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine Y Li
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhixun Dou
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Frederick
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lacey J Luense
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - David C Schultz
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
257
|
Glück S, Ablasser A. Innate immunosensing of DNA in cellular senescence. Curr Opin Immunol 2019; 56:31-36. [DOI: 10.1016/j.coi.2018.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
|
258
|
Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18:e12841. [PMID: 30346102 PMCID: PMC6351832 DOI: 10.1111/acel.12841] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
259
|
Abstract
Originally thought of as a stress response end point, the view of cellular senescence has since evolved into one encompassing a wide range of physiological and pathological functions, including both protumorignic and antitumorigenic features. It has also become evident that senescence is a highly dynamic and heterogenous process. Efforts to reconcile the beneficial and detrimental features of senescence suggest that physiological functions require the transient presence of senescent cells in the tissue microenvironment. Here, we propose the concept of a physiological "senescence life cycle," which has pathological consequences if not executed in its entirety.
Collapse
Affiliation(s)
- Adelyne Sue Li Chan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
260
|
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54:61-83. [PMID: 30822165 PMCID: PMC6424622 DOI: 10.1080/10409238.2019.1570075] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - David A. Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
261
|
Lau L, David G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin Ther Targets 2019; 23:1041-1051. [PMID: 30616404 DOI: 10.1080/14728222.2019.1565658] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Cellular senescence is a stable form of cell cycle exit. Though they no longer divide, senescent cells remain metabolically active and secrete a plethora of proteins collectively termed the senescence-associated secretory phenotype (SASP). Although senescence-associated cell cycle exit likely evolved as an anti-tumor mechanism, the SASP contains both anti- and pro-tumorigenic potential.Areas covered: In this review, we briefly discuss the discovery of senescent cells and its relationship to cancer and aging. We also describe the initiation and regulation of the SASP upon senescence stimulus onset. We focus on both the pro- and anti-tumorigenic properties of the SASP. Finally, we speculate on the potential benefits of therapy-induced senescence combined with selective SASP inhibition for the treatment of cancer.Expert opinion: Further identification and characterization of the SASP factors that are pro-tumorigenic and those that are anti-tumorigenic in specific contexts will be crucial in order to develop personalized therapeutics for the successful treatment of cancer.
Collapse
Affiliation(s)
- Lena Lau
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA.,NYU Cancer Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
262
|
The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21:94-101. [PMID: 30602768 DOI: 10.1038/s41556-018-0249-2] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
Cellular senescence is implicated in physiological and pathological processes spanning development, wound healing, age-related decline in organ functions and cancer. Here, we discuss cell-autonomous and non-cell-autonomous properties of senescence in the context of tumour formation and anticancer therapy, and characterize these properties, such as reprogramming into stemness, tissue remodelling and immune crosstalk, as far more dynamic than suggested by the common view of senescence as an irreversible, static condition.
Collapse
|
263
|
Wang L, Han X, Qu G, Su L, Zhao B, Miao J. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther 2018; 9:343. [PMID: 30526663 PMCID: PMC6286523 DOI: 10.1186/s13287-018-1081-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) are gradually getting attention because of its multi-directional differentiation potential, hematopoietic support, and promotion of stem cell implantation. However, cultured BMSCs in vitro possess a very limited proliferation potential, and the presence of stem cell aging has substantially restricted the effect together with the efficiency in clinical treatment. Recently, increasing attention has been paid to the connection between cellular aging and lysosomal acidification as new reports indicated that vacuolar H+-ATPase (v-ATPase) activity was altered and lysosomal pH was dysregulated in the process of cellular aging. Therefore, promoting lysosomal acidification might contribute to inhibition of cell senescence. Our previous studies showed that a novel small molecule, 3-butyl-1-chloro imidazo [1, 5-a] pyridine-7-carboxylic acid (SGJ), could selectively and sensitively respond to acidic pH with fast response (within 3 min), but whether SGJ can promote lysosomal acidification and inhibit senescence in BMSCs is unknown. METHODS Rat BMSCs were cultured based on our system that had been already documented. BMSCs were treated with SGJ and/or Bafilomycin-A1 (Baf-A1). The co-localization between SGJ and lysosomes was assessed by a confocal microscope. Acridine orange (AO) staining and the Lysosensor™ Green DND-189 reagents were used for indicating changes in lysosomal concentration of H+. Changes of senescence were detected by immunoblotting of p21 and senescence-associated beta-galactosidase (SA-β-gal) staining as well as immunofluorescence assay of senescence-associated heterochromatin foci (SAHF). Changes of autophagy were detected by immunoblotting of MAP1LC3 (LC3B) and SQSTM1 (p62). Cell proliferation was determined by flow cytometry. Cell viability was calculated by sulforhodamine B assay (SRB). The V0 proton channel of v-ATPase was knocked down by transfecting with its small interfering RNA (si-ATP6V0C). RESULTS Our work showed that SGJ can promote lysosomal acidification and inhibit senescence in BMSCs. Firstly, SGJ and lysosomes were well co-located in senescent BMSCs with the co-localization coefficient of 0.94. Secondly, SGJ increased the concentration of H+ and the protein expression of lysosome-associated membrane protein 1 (LAMP1) and lysosome-associated membrane protein 2 (LAMP2). Thirdly, SGJ suppressed the expression of p21 in the senescent BMSCs and reduced SA-β-gal positive cells. Fourthly, SGJ promoted senescent BMSCs' proliferation and protein level of LC3B but reduced the p62/SQSTM1 protein level. Furthermore, experimental group pretreated with 20 μM SGJ showed a stronger red fluorescent intensity, thinner cell morphology, less SA-β-gal positive cell, and less p21 protein level as well as higher cell viability in the presence of Baf-A1. Notably, ATP6V0C knockdown decreased the activity of v-ATPase and SGJ increased the concentration of H+. CONCLUSION Our work showed that SGJ could inhibit senescence in BMSCs and protect lysosomes by promoting expression of LAMP1 and LAMP2. Meanwhile, SGJ could promote autophagy. Furthermore, our study also suggested that SGJ was a new Baf-A1 antagonist because SGJ could target and occupy the V0 proton channel of v-ATPase.
Collapse
Affiliation(s)
- Lihong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Xianjing Han
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Guojing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
264
|
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:1-35. [PMID: 31097147 DOI: 10.1016/j.mrrev.2018.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Micronuclei (MN), the small nucleus-like bodies separated from the primary nucleus, can exist in cells with numerical and/or structural chromosomal aberrations in apparently normal tissues and more so in tumors in humans. While MN have been observed for over 100 years, they were merely and constantly considered as passive indicators of chromosome instability (CIN) for a long time. Relatively little is known about the molecular origins and biological consequences of MN. Rapid technological advances are helping to close these gaps. Very recent studies provide exciting evidence that MN act as key platform for chromothripsis and a trigger of innate immune response, suggesting that MN could affect cellular functions by both genetic and nongenetic means. These previously unappreciated findings have reawakened widespread interests in MN. In this review, the diverse mechanisms leading to MN generation and the complex fate profiles of MN are discussed, together with the evidence for their contribution to CIN, inflammation, senescence and cell death. Moreover, we put this knowledge together into a speculative perspective on how MN may be responsible for cancer development and how their presence may influence the choice of treatment. We suggest that the heterogeneous responses to MN may function physiological to ensure the arrestment, elimination and immune clearance of damaged cells, but pathologically, may enable the survival and oncogenic transformation of cells bearing CIN. These insights not only underscore the complexity of MN biology, but also raise a host of new questions and provide fertile ground for future research.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ziqing Liang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael F Fenech
- University of South Australia, Adelaide, SA, 5000, Australia; Genome Health Foundation, North Brighton, SA, 5048, Australia.
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
265
|
Abstract
A critical hallmark of aging is cellular senescence, a state of growth arrest and inflammatory cytokine release in cells, caused by a variety of stresses. Recent work has convincingly linked the accumulation of senescent cells in aged tissues to a decline in health and a limit of lifespan, primarily through "inflammaging". Importantly, interventions that clear senescent cells have achieved marked improvements in healthspan and lifespan in mice. A growing list of studies show that environmental stimuli can affect aging and longevity through conserved pathways which, in turn, modulate chromatin states. This review consolidates key findings of chromatin state changes in senescence including histone modifications, histone variants, DNA methylation and changes in three-dimensional genome organization. This information will facilitate the identification of mechanisms and discovery of potential epigenetic targets for therapeutic interventions in aging and age-related disease.
Collapse
Affiliation(s)
- Na Yang
- National Institute on Aging, NIH, Laboratory of Genetics and Genomics, Functional Epigenomics Unit, Baltimore, MD 21224, USA
| | - Payel Sen
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA 19104, USA
| |
Collapse
|
266
|
Apelin/APJ system: A novel promising target for anti-aging intervention. Clin Chim Acta 2018; 487:233-240. [PMID: 30296443 DOI: 10.1016/j.cca.2018.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Apelin, an endogenous ligand for the G protein-coupled receptor APJ, is widely expressed in various organs. Recent research has indicated that the Apelin/APJ system plays an important role in aging. Apelin and APJ receptor expression are down-regulated with increasing age. In murine models, Apelin and APJ knockouts exhibit accelerated senescence whereas Apelin-restoration results in enhanced vigor and rejuvenated behavioral and circadian phenotypes. Furthermore, aged Apelin knockout mice develop progressive impairment of cardiac contractility associated with systolic dysfunction. Apelin is crucial to maintain cardiac contractility in aging. Moreover, the Apelin/APJ system appears to be involved in regulation of renin-angiotensin-aldosterone system (RAAS), apoptosis, inflammation and oxidative stress which promotes aging. Likewise, the Apelin/APJ system regulates autophagy, stem cells and the sirtuin family thus contributing to anti-aging. In this review, we describe the relationship between Apelin/APJ system and aging. We elaborate on the role of the Apelin/APJ system in aging stimulators, aging inhibitors and age-related diseases such as obesity, diabetes and cardiovascular disease. We conclude that Apelin/APJ system might become a novel promising therapeutic target for anti-aging.
Collapse
|
267
|
Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 2018; 7:34081. [PMID: 30274593 PMCID: PMC6168286 DOI: 10.7554/elife.34081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Monica Della Rosa
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Dorottya Horkai
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Field
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
268
|
Damodaran K, Venkatachalapathy S, Alisafaei F, Radhakrishnan AV, Sharma Jokhun D, Shenoy VB, Shivashankar GV. Compressive force induces reversible chromatin condensation and cell geometry-dependent transcriptional response. Mol Biol Cell 2018; 29:3039-3051. [PMID: 30256731 PMCID: PMC6333178 DOI: 10.1091/mbc.e18-04-0256] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fibroblasts exhibit heterogeneous cell geometries in tissues and integrate both mechanical and biochemical signals in their local microenvironment to regulate genomic programs via chromatin remodelling. While in connective tissues fibroblasts experience tensile and compressive forces (CFs), the role of compressive forces in regulating cell behavior and, in particular, the impact of cell geometry in modulating transcriptional response to such extrinsic mechanical forces is unclear. Here we show that CF on geometrically well-defined mouse fibroblast cells reduces actomyosin contractility and shuttles histone deacetylase 3 (HDAC3) into the nucleus. HDAC3 then triggers an increase in the heterochromatin content by initiating removal of acetylation marks on the histone tails. This suggests that, in response to CF, fibroblasts condense their chromatin and enter into a transcriptionally less active and quiescent states as also revealed by transcriptome analysis. On removal of CF, the alteration in chromatin condensation was reversed. We also present a quantitative model linking CF-dependent changes in actomyosin contractility leading to chromatin condensation. Further, transcriptome analysis also revealed that the transcriptional response of cells to CF was geometry dependent. Collectively, our results suggest that CFs induce chromatin condensation and geometry-dependent differential transcriptional response in fibroblasts that allows maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Karthik Damodaran
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Saradha Venkatachalapathy
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - A V Radhakrishnan
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Doorgesh Sharma Jokhun
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411, Singapore.,FIRC Institute for Molecular Oncology (IFOM), 20139 Milan, Italy
| |
Collapse
|
269
|
Milanovic M, Yu Y, Schmitt CA. The Senescence-Stemness Alliance - A Cancer-Hijacked Regeneration Principle. Trends Cell Biol 2018; 28:1049-1061. [PMID: 30253901 DOI: 10.1016/j.tcb.2018.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Activated oncogenes or anticancer therapies evoke senescent cell-cycle arrest in (pre-)malignant cells, thereby interrupting tumor formation or progression. Physiologically, cellular senescence contributes to embryonic development and tissue regeneration. These observations and the overlap of numerous gene products in senescence and stem cell signaling prompted investigations into whether epigenetic establishment of the senescent state may concomitantly reprogram the cell into a latent stem-like condition, whose functional impact becomes evident when arrested cells resume proliferation. We review here recent discoveries underscoring the unexpected senescence-stemness alliance, elucidate underlying molecular mechanisms, and discuss its fundamentally different implications in normal tissue repair - to replenish the exhausted repopulation capacity - as compared to cancer biology, where usurpation of this natural principle accounts for particularly aggressive tumor behavior.
Collapse
Affiliation(s)
- Maja Milanovic
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Virchow Campus, 13353 Berlin, Germany
| | - Yong Yu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Clemens A Schmitt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Virchow Campus, 13353 Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.
| |
Collapse
|
270
|
Azad GK, Swagatika S, Kumawat M, Kumawat R, Tomar RS. Modifying Chromatin by Histone Tail Clipping. J Mol Biol 2018; 430:3051-3067. [DOI: 10.1016/j.jmb.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
|
271
|
Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, Llanos S, Chaib S, Muñoz-Martín M, Ucero AC, Garaulet G, Mulero F, Dann SG, VanArsdale T, Shields DJ, Bernardos A, Murguía JR, Martínez-Máñez R, Serrano M. A versatile drug delivery system targeting senescent cells. EMBO Mol Med 2018; 10:e9355. [PMID: 30012580 PMCID: PMC6127887 DOI: 10.15252/emmm.201809355] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal β-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.
Collapse
Affiliation(s)
- Daniel Muñoz-Espín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Miguel Rovira
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina Giménez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Marta Paez-Ribes
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Susana Llanos
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Selim Chaib
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maribel Muñoz-Martín
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alvaro C Ucero
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stephen G Dann
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Todd VanArsdale
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - David J Shields
- Oncology R&D Group, Pfizer Worldwide Research & Development, Pfizer Inc., La Jolla, CA, USA
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
272
|
DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
|
273
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
274
|
Dmitrijeva M, Ossowski S, Serrano L, Schaefer MH. Tissue-specific DNA methylation loss during ageing and carcinogenesis is linked to chromosome structure, replication timing and cell division rates. Nucleic Acids Res 2018; 46:7022-7039. [PMID: 29893918 PMCID: PMC6101545 DOI: 10.1093/nar/gky498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.
Collapse
Affiliation(s)
- Marija Dmitrijeva
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Martin H Schaefer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
275
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
276
|
Sharma A, Alswillah T, Singh K, Chatterjee P, Willard B, Venere M, Summers MK, Almasan A. USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination. Autophagy 2018; 14:1976-1990. [PMID: 29995557 PMCID: PMC6152509 DOI: 10.1080/15548627.2018.1496877] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 01/13/2023] Open
Abstract
Recent reports have made important revelations, uncovering direct regulation of DNA damage response (DDR)-associated proteins and chromatin ubiquitination (Ubn) by macroautophagy/autophagy. Here, we report a previously unexplored connection between autophagy and DDR, via a deubiquitnase (DUB), USP14. Loss of autophagy in prostate cancer cells led to unrepaired DNA double-strand breaks (DSBs) as indicated by persistent ionizing radiation (IR)-induced foci (IRIF) formation for γH2AFX, and decreased protein levels and IRIF formation for RNF168, an E3-ubiquitin ligase essential for chromatin Ubn and recruitment of critical DDR effector proteins in response to DSBs, including TP53BP1. Consistently, RNF168-associated Ubn signaling and TP53BP1 IRIF formation were reduced in autophagy-deficient cells. An activity assay identified several DUBs, including USP14, which showed higher activity in autophagy-deficient cells. Importantly, inhibiting USP14 could overcome DDR defects in autophagy-deficient cells. USP14 IRIF formation and protein stability were increased in autophagy-deficient cells. Co-immunoprecipitation and colocalization of USP14 with MAP1LC3B and the UBA-domain of SQSTM1 identified USP14 as a substrate of autophagy and SQSTM1. Additionally, USP14 directly interacted with RNF168, which depended on the MIU1 domain of RNF168. These findings identify USP14 as a novel substrate of autophagy and regulation of RNF168-dependent Ubn and TP53BP1 recruitment by USP14 as a critical link between DDR and autophagy. Given the role of Ubn signaling in non-homologous end joining (NHEJ), the major pathway for repair of IR-induced DNA damage, these findings provide unique insights into the link between autophagy, DDR-associated Ubn signaling and NHEJ DNA repair. ABBREVIATIONS ATG7: autophagy related 7; CQ: chloroquine; DDR: DNA damage response; DUB: deubiquitinase; HR: homologous recombination; IR: ionizing radiation; IRIF: ionizing radiation-induced foci; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MIU1: motif interacting with ubiquitin; NHEJ: non homologous end-joining; PCa: prostate cancer; TP53BP1/53BP1: tumor protein p53 binding protein 1; RNF168: ring finger protein 168; SQSTM1/p62 sequestosome 1; γH2AFX/γH2AX: H2A histone family member X: phosphorylated, UBA: ubiquitin-associated; Ub: ubiquitin; Ubn: ubiquitination; USP14: ubiquitin specific peptidase 14.
Collapse
Affiliation(s)
- Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Turkeya Alswillah
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Kamini Singh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Monica Venere
- Department of Radiation Oncology and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew K. Summers
- Department of Radiation Oncology and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
277
|
The three-dimensional organization of the genome in cellular senescence and age-associated diseases. Semin Cell Dev Biol 2018; 90:154-160. [PMID: 30031215 DOI: 10.1016/j.semcdb.2018.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/17/2018] [Indexed: 01/18/2023]
Abstract
Recent advances in genomics and imaging technologies have increased our ability to interrogate the 3D conformation of chromosomes and to better understand principles of organization and dynamics, as well as how their alteration can lead to disease. In this review we describe how these technologies have shed new light into the role of the 3D organization of the genome in defining cellular states in aging and age-associated diseases. We compare the genomic organization in cellular senescence and cancer, discuss the role of the lamina in maintaining the structural and functional integrity of the genome, and we highlight the recent findings on how this organization breaks down in disease states.
Collapse
|
278
|
Etemad S, Petit M, Weiss AKH, Schrattenholz A, Baraldo G, Jansen-Dürr P. Oxaloacetate decarboxylase FAHD1 - a new regulator of mitochondrial function and senescence. Mech Ageing Dev 2018; 177:22-29. [PMID: 30055189 DOI: 10.1016/j.mad.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022]
Abstract
FAHD1, a member of the FAH superfamily of enzymes, was identified in a proteomic screen for mitochondrial proteins with differential expression in young versus senescent human endothelial cells. FAHD1 acts as oxaloacetate decarboxylase, and recent observations suggest that FAHD1 plays an important role in regulating mitochondrial function. Thus, mutation of the nematode homolog, fahd-1, impairs mitochondrial function in Caenorhabditis elegans. When FAHD1 gene expression was silenced in human cells, activity of the mitochondrial electron transport (ETC) system was reduced and the cells entered premature senescence-like growth arrest. These findings suggest a model where FAHD1 regulates mitochondrial function and in consequence senescence. These findings are discussed here in the context of a new concept where senescence is divided into deep senescence and less severe forms of senescence. We propose that genetic inactivation of FAHD1 in human cells induces a specific form of cellular senescence, which we term senescence light and discuss it in the context of mitochondrial dysfunction associated senescence (MiDAS) described by others. Together these findings suggest the existence of a continuum of cellular senescence phenotypes, which may be at least in part reversible.
Collapse
Affiliation(s)
- Solmaz Etemad
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michèle Petit
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | | | - Giorgia Baraldo
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Ageing Research, Rennweg 10, A-6020 Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
279
|
Czarkwiani A, Yun MH. Out with the old, in with the new: senescence in development. Curr Opin Cell Biol 2018; 55:74-80. [PMID: 30007129 DOI: 10.1016/j.ceb.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a ubiquitous stress response that restricts the proliferative capacity of cells. During ageing, senescent cells accumulate in various tissues leading to a number of age-related pathologies and physiological decline. Previously thought to be a process restricted to adult organisms, cellular senescence has been recently demonstrated to occur during embryonic development of animals ranging from fish to mammals. Together, these studies suggest that developmentally programmed senescence is a transient but intrinsic biological process that contributes to the remodelling of developing structures by promoting immune-mediated cell clearance of particular cell populations or modifying the tissue microenvironment. These observations have important implications for the evolutionary origins of this essential, yet paradoxical mechanism.
Collapse
Affiliation(s)
- Anna Czarkwiani
- DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Cluster of Excellence, Dresden, Germany
| | - Maximina H Yun
- DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Cluster of Excellence, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
280
|
Li M, You L, Xue J, Lu Y. Ionizing Radiation-Induced Cellular Senescence in Normal, Non-transformed Cells and the Involved DNA Damage Response: A Mini Review. Front Pharmacol 2018; 9:522. [PMID: 29872395 PMCID: PMC5972185 DOI: 10.3389/fphar.2018.00522] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is identified by a living cell in irreversible and persistent cell cycle arrest in response to various cellular stresses. Senescent cells secrete senescence-associated secretory phenotype factors that can amplify cellular senescence and alter the microenvironments. Radiotherapy, via ionizing radiation, serves as an effective treatment for local tumor control with side effects on normal cells, which can induce inflammation and fibrosis in irradiated and nearby regions. Research has revealed that senescent phenotype is observable in irradiated organs. This process starts with DNA damage mediated by radiation, after which a G2 arrest occurs in virtually all eukaryotic cells and a mitotic bypass is possibly necessary to ultimately establish cellular senescence. Within this complex DNA damage response signaling network, ataxia telangiectasia-mutated protein, p53, and p21 stand out as the crucial mediators. Senolytic agents, a class of small molecules that can selectively kill senescent cells, hold great potential to substantially reduce the side effects caused by radiotherapy while reasonably steer clear of carcinogenesis.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liting You
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
281
|
Sun L, Yu R, Dang W. Chromatin Architectural Changes during Cellular Senescence and Aging. Genes (Basel) 2018; 9:genes9040211. [PMID: 29659513 PMCID: PMC5924553 DOI: 10.3390/genes9040211] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Chromatin 3D structure is highly dynamic and associated with many biological processes, such as cell cycle progression, cellular differentiation, cell fate reprogramming, cancer development, cellular senescence, and aging. Recently, by using chromosome conformation capture technologies, tremendous findings have been reported about the dynamics of genome architecture, their associated proteins, and the underlying mechanisms involved in regulating chromatin spatial organization and gene expression. Cellular senescence and aging, which involve multiple cellular and molecular functional declines, also undergo significant chromatin structural changes, including alternations of heterochromatin and disruption of higher-order chromatin structure. In this review, we summarize recent findings related to genome architecture, factors regulating chromatin spatial organization, and how they change during cellular senescence and aging.
Collapse
Affiliation(s)
- Luyang Sun
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ruofan Yu
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
282
|
Song S, Johnson FB. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes (Basel) 2018; 9:genes9040201. [PMID: 29642537 PMCID: PMC5924543 DOI: 10.3390/genes9040201] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres.
Collapse
Affiliation(s)
- Shufei Song
- Biochemistry and Molecular Biophysics Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
283
|
Abstract
Cellular senescence is a highly stable cell cycle arrest that is elicited in response to different stresses. By imposing a growth arrest, senescence limits the replication of old or damaged cells. Besides exiting the cell cycle, senescent cells undergo many other phenotypic alterations such as metabolic reprogramming, chromatin rearrangement, or autophagy modulation. In addition, senescent cells produce and secrete a complex combination of factors, collectively referred as the senescence-associated secretory phenotype, that mediate most of their non-cell-autonomous effects. Because senescent cells influence the outcome of a variety of physiological and pathological processes, including cancer and age-related diseases, pro-senescent and anti-senescent therapies are actively being explored. In this Review, we discuss the mechanisms regulating different aspects of the senescence phenotype and their functional implications. This knowledge is essential to improve the identification and characterization of senescent cells in vivo and will help to develop rational strategies to modulate the senescence program for therapeutic benefit.
Collapse
Affiliation(s)
- Nicolás Herranz
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jesús Gil
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
284
|
Abstract
Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs.
Collapse
|
285
|
Takahashi A, Loo TM, Okada R, Kamachi F, Watanabe Y, Wakita M, Watanabe S, Kawamoto S, Miyata K, Barber GN, Ohtani N, Hara E. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun 2018; 9:1249. [PMID: 29593264 PMCID: PMC5871854 DOI: 10.1038/s41467-018-03555-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence indicates that the senescence-associated secretory phenotype (SASP) contributes to many aspects of physiology and disease. Thus, controlling the SASP will have tremendous impacts on our health. However, our understanding of SASP regulation is far from complete. Here, we show that cytoplasmic accumulation of nuclear DNA plays key roles in the onset of SASP. Although both DNase2 and TREX1 rapidly remove the cytoplasmic DNA fragments emanating from the nucleus in pre-senescent cells, the expression of these DNases is downregulated in senescent cells, resulting in the cytoplasmic accumulation of nuclear DNA. This causes the aberrant activation of cGAS-STING cytoplasmic DNA sensors, provoking SASP through induction of interferon-β. Notably, the blockage of this pathway prevents SASP in senescent hepatic stellate cells, accompanied by a decline of obesity-associated hepatocellular carcinoma development in mice. These findings provide valuable new insights into the roles and mechanisms of SASP and possibilities for their control. Activation of DNA damage response induces the acquisition of senescence-associated secretory phenotype (SASP) in senescent cells, but precise mechanisms remain unclear. Here, the authors show that the cytoplasmic accumulation of nuclear DNA activated cytoplasmic DNA sensors to provoke SASP.
Collapse
Affiliation(s)
- Akiko Takahashi
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,PRESTO, JST, Kawaguchi, Saitama, 332-0012, Japan
| | - Tze Mun Loo
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Ryo Okada
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Fumitaka Kamachi
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Yoshihiro Watanabe
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan
| | - Masahiro Wakita
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Sugiko Watanabe
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan
| | - Kenichi Miyata
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Glen N Barber
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Naoko Ohtani
- Faculty of Science & Technology, Tokyo University of Science, Noda-shi, Chiba, 278-8510, Japan.,Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka, 545-8585, Japan
| | - Eiji Hara
- The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan. .,Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
286
|
Ito T, Teo YV, Evans SA, Neretti N, Sedivy JM. Regulation of Cellular Senescence by Polycomb Chromatin Modifiers through Distinct DNA Damage- and Histone Methylation-Dependent Pathways. Cell Rep 2018; 22:3480-3492. [PMID: 29590617 PMCID: PMC5915310 DOI: 10.1016/j.celrep.2018.03.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Polycomb group (PcG) factors maintain facultative heterochromatin and mediate many important developmental and differentiation processes. EZH2, a PcG histone H3 lysine-27 methyltransferase, is repressed in senescent cells. We show here that downregulation of EZH2 promotes senescence through two distinct mechanisms. First, depletion of EZH2 in proliferating cells rapidly initiates a DNA damage response prior to a reduction in the levels of H3K27me3 marks. Second, the eventual loss of H3K27me3 induces p16 (CDKN2A) gene expression independent of DNA damage and potently activates genes of the senescence-associated secretory phenotype (SASP). The progressive depletion of H3K27me3 marks can be viewed as a molecular "timer" to provide a window during which cells can repair DNA damage. EZH2 is regulated transcriptionally by WNT and MYC signaling and posttranslationally by DNA damage-triggered protein turnover. These mechanisms provide insights into the processes that generate senescent cells during aging.
Collapse
Affiliation(s)
- Takahiro Ito
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Shane A Evans
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
287
|
Huang M, Garcia JS, Thomas D, Zhu L, Nguyen LXT, Chan SM, Majeti R, Medeiros BC, Mitchell BS. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget 2018; 7:74917-74930. [PMID: 27732946 PMCID: PMC5342712 DOI: 10.18632/oncotarget.12493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying activation of the BET pathway in AML cells remain poorly understood. We have discovered that autophagy is activated in acute leukemia cells expressing mutant nucleophosmin 1 (NPMc+) or MLL-fusion proteins. Autophagy activation results in the degradation of NPM1 and HEXIM1, two negative regulators of BET pathway activation. Inhibition of autophagy with pharmacologic inhibitors or through knocking down autophagy-related gene 5 (Atg5) expression increases the expression of both NPM1 and HEXIM1. The Brd4 inhibitors JQ1 and I-BET-151 also inhibit autophagy and increase NPM1 and HEXIM1 expression. We conclude that the degradation of NPM1 and HEXIM1 through autophagy in certain AML subsets contributes to the activation of the BET pathway in these cells.
Collapse
Affiliation(s)
- Min Huang
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Jacqueline S Garcia
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Daniel Thomas
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Steven M Chan
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Bruno C Medeiros
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
288
|
Benedetti D, Lopes Alderete B, de Souza CT, Ferraz Dias J, Niekraszewicz L, Cappetta M, Martínez-López W, Da Silva J. DNA damage and epigenetic alteration in soybean farmers exposed to complex mixture of pesticides. Mutagenesis 2018; 33:87-95. [PMID: 29244183 DOI: 10.1093/mutage/gex035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exposure to pesticides can trigger genotoxic and mutagenic processes through different pathways. However, epidemiological studies are scarce, and further work is needed to find biomarkers sensitive to the health of exposed populations. Considering that there are few evaluations of soybean farmers, the aim of this study was to assess the effects of human exposure to complex mixtures of pesticides. The alkaline comet assay modified with restriction enzyme (hOGG1: human 8-oxoguanine DNA glycosylase) was used to detect oxidised guanine, and compared with the buccal micronucleus cytome assay, global methylation, haematological parameters, biochemical analyses (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, gamma-glutamyl-transferase and butyrylcholinesterase), and particle-induced X-ray emission (PIXE) for the analysis of inorganic elements. Farm workers (n = 137) exposed to different types of pesticides were compared with a non-exposed reference group (control; n = 83). Results of the enzyme-modified comet assay suggest oxidation of guanine in DNA generated by pesticides exposure. It was observed that DNA damage (comet assay and micronucleus test) was significantly increased in exposed individuals compared to the unexposed group. The micronucleus test demonstrated elimination of nuclear material by budding, defective cytokinesis and dead cells. Occupationally exposed individuals also showed genomic hypermethylation of DNA, which correlated with micronucleus frequency. No differences were detected regarding the haematological and biochemical parameters. Finally, significantly higher concentrations of Al and P were observed in the urine of the soybean farmers. DNA damage could be a consequence of the ability of the complex mixture, including Al and P, to cause oxidative damage. These data indicate that persistent genetic instability associated with hypermethylation of DNA in soybean workers after long-term exposure to a low-level to pesticides mixtures may be critical for the development of adverse health effects such as cancer.
Collapse
Affiliation(s)
- Danieli Benedetti
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha, Prédio, Canoas, RS, Brazil
| | - Barbara Lopes Alderete
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha, Prédio, Canoas, RS, Brazil
| | - Claudia Telles de Souza
- Laboratory of Environmental Chemistry and Oleochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liana Niekraszewicz
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mónica Cappetta
- Laboratory of Genetic Epidemiology, Genetics Department, Medicine School, Universidad de la República, Montevideo, Uruguay
| | - Wilner Martínez-López
- Department of Genetic Toxicology and Chromosome Pathology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | |
Collapse
|
289
|
Abstract
Mammalian cells harness autophagy to eliminate physiological byproducts of metabolism and cope with microenvironmental perturbations. Moreover, autophagy connects cellular adaptation with extracellular circuitries that impinge on immunity and metabolism. As it links transformed and non-transformed components of the tumour microenvironment, such an autophagic network is important for cancer initiation, progression and response to therapy. Here, we discuss the mechanisms whereby the autophagic network interfaces with multiple aspects of malignant disease.
Collapse
|
290
|
Bafilomycin A1 triggers proliferative potential of senescent cancer cells in vitro and in NOD/SCID mice. Oncotarget 2018; 8:9303-9322. [PMID: 28030837 PMCID: PMC5354733 DOI: 10.18632/oncotarget.14066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023] Open
Abstract
Anticancer therapies that induce DNA damage tend to trigger senescence in cancer cells, a process known as therapy-induced senescence (TIS). Such cells may undergo atypical divisions, thus contributing to tumor re-growth. Accumulation of senescent cancer cells reduces survival of patients after chemotherapy. As senescence interplays with autophagy, a dynamic recycling process, we sought to study whether inhibition of autophagy interferes with divisions of TIS cells. We exposed human colon cancer HCT116 cells to repeated cycles of a chemotherapeutic agent – doxorubicin (doxo) and demonstrated induction of hallmarks of TIS (e.g. growth arrest, hypertrophy, poliploidization and secretory phenotype) and certain properties of cancer stem cells (increased NANOG expression, percentages of CD24+ cells and side population). Colonies of small and highly proliferative progeny appeared shortly after drug removal. Treatment with bafilomycin A1 (BAF A1), an autophagy inhibitor, postponed short term in vitro cell re-population. It was associated with reduction in the number of diploid and increase in the number of poliploid cells. In a long term, a pulse of BAF A1 resulted in reactivation of autophagy in a subpopulation of HCT116 cells and increased proliferation. Accordingly, the senescent HCT116 cells treated with BAF A1 when injected into NOD/SCID mice formed tumors, in contrast to the controls. Our results suggest that senescent cancer cells that appear during therapy, can be considered as dormant cells that contribute to cancer re-growth, when chemotherapeutic treatment is stopped. These data unveil new mechanisms of TIS-related cancer maintenance and re-population, triggered by a single pulse of BAF A1 treatment.
Collapse
|
291
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1500] [Impact Index Per Article: 214.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
292
|
Hatch EM. Nuclear envelope rupture: little holes, big openings. Curr Opin Cell Biol 2018; 52:66-72. [PMID: 29459181 DOI: 10.1016/j.ceb.2018.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
The nuclear envelope (NE), which is a critical barrier between the DNA and the cytosol, is capable of extensive dynamic membrane remodeling events in interphase. One of these events, interphase NE rupture and repair, can occur in both normal and disease states and results in the loss of nucleus compartmentalization. NE rupture is not lethal, but new research indicates that it could have broad impacts on genome stability and activate innate immune responses. These observations suggest a new model for how changes in NE structure could be pathogenic in cancer, laminopathies, and autoinflammatory syndromes, and redefine the functions of nucleus compartmentalization.
Collapse
Affiliation(s)
- Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
293
|
Lukášová E, Kovařík A, Kozubek S. Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence. Cells 2018; 7:cells7020011. [PMID: 29415520 PMCID: PMC5850099 DOI: 10.3390/cells7020011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/28/2023] Open
Abstract
Anchoring of heterochromatin to the nuclear envelope appears to be an important process ensuring the spatial organization of the chromatin structure and genome function in eukaryotic nuclei. Proteins of the inner nuclear membrane (INM) mediating these interactions are able to recognize lamina-associated heterochromatin domains (termed LAD) and simultaneously bind either lamin A/C or lamin B1. One of these proteins is the lamin B receptor (LBR) that binds lamin B1 and tethers heterochromatin to the INM in embryonic and undifferentiated cells. It is replaced by lamin A/C with specific lamin A/C binding proteins at the beginning of cell differentiation and in differentiated cells. Our functional experiments in cancer cell lines show that heterochromatin in cancer cells is tethered to the INM by LBR, which is downregulated together with lamin B1 at the onset of cell transition to senescence. The downregulation of these proteins in senescent cells leads to the detachment of centromeric repetitive sequences from INM, their relocation to the nucleoplasm, and distension. In cells, the expression of LBR and LB1 is highly coordinated as evidenced by the reduction of both proteins in LBR shRNA lines. The loss of the constitutive heterochromatin structure containing LADs results in changes in chromatin architecture and genome function and can be the reason for the permanent loss of cell proliferation in senescence.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Aleš Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, Brno 61265, Czech Republic.
| |
Collapse
|
294
|
Robijns J, Houthaeve G, Braeckmans K, De Vos WH. Loss of Nuclear Envelope Integrity in Aging and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:205-222. [DOI: 10.1016/bs.ircmb.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
295
|
Wang Z, Long QY, Chen L, Fan JD, Wang ZN, Li LY, Wu M, Chen X. Inhibition of H3K4 demethylation induces autophagy in cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2428-2437. [DOI: 10.1016/j.bbamcr.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/29/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
|
296
|
Kwon S, Chin K, Nederlof M, Gray JW. Quantitative, in situ analysis of mRNAs and proteins with subcellular resolution. Sci Rep 2017; 7:16459. [PMID: 29184166 PMCID: PMC5705767 DOI: 10.1038/s41598-017-16492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
We describe here a method, termed immunoFISH, for simultaneous in situ analysis of the composition and distribution of proteins and individual RNA transcripts in single cells. Individual RNA molecules are labeled by hybridization and target proteins are concurrently stained using immunofluorescence. Multicolor fluorescence images are acquired and analyzed to determine the abundance, composition, and distribution of hybridized probes and immunofluorescence. We assessed the ability of immunoFISH to simultaneous quantify protein and transcript levels and distribution in cultured HER2 positive breast cancer cells and human breast tumor samples. We demonstrated the utility of this assay in several applications including demonstration of the existence of a layer of normal myoepithelial KRT14 expressing cells that separate HER2+ cancer cells from the stromal and immune microenvironment in HER2+ invasive breast cancer. Our studies show that immunoFISH provides quantitative information about the spatial heterogeneity in transcriptional and proteomic features that exist between and within cells.
Collapse
Affiliation(s)
- Sunjong Kwon
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Koei Chin
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Michel Nederlof
- Quantitative Imaging Systems, Inc., 1502 Fox Chapel Road, Pittsburgh, PA 15238, USA
| | - Joe W Gray
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA.
| |
Collapse
|
297
|
Abstract
Two recent papers report the activation of a pro-inflammatory response by cytoplasmic DNA from aberrant nuclear structures called micronuclei. The findings have implications for tumor immunity, immunotherapy biomarker discovery, and possibly the many-sided effects of senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Alexander Spektor
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neil T Umbreit
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
298
|
Huang CJ, Das U, Xie W, Ducasse M, Tucker HO. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence. Aging (Albany NY) 2017; 8:3356-3374. [PMID: 27992859 PMCID: PMC5270673 DOI: 10.18632/aging.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Ching-Jung Huang
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Utsab Das
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Weijun Xie
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Miryam Ducasse
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Haley O Tucker
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
299
|
Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 2017; 7:15678. [PMID: 29142250 PMCID: PMC5688158 DOI: 10.1038/s41598-017-15901-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Skin ageing is an inevitable consequence of life and accelerated by exposure to ultraviolet (UV) rays. Senescence is an irreversible growth arrest and senescent cells accumulate in ageing tissues, at sites of age-related pathologies and in pre-neoplastic lesions. Conventionally, senescent cells have been detected by senescence associated-β-galactosidase (SA-β-gal) staining, a procedure that requires enzymatic activity, which is lost in fixed tissue samples. We previously demonstrated that loss of lamin B1 is a novel marker to identify senescent cells. Here, we demonstrate that loss of lamin B1 facilitates the detection and quantification of senescent cells upon UV-exposure in vitro and upon chronic UV-exposure and skin regeneration in vivo. Taken together, this marker enables the study of environmental conditions on tissue ageing and regeneration in vivo, serves as a diagnostic tool to distinguish senescent from proliferating cells in pre-neoplastic lesions, and facilitates investigating the role of senescent cells in various age-related pathologies.
Collapse
Affiliation(s)
- Audrey Shimei Wang
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Peh Fern Ong
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Alexandre Chojnowski
- Developmental and Regenerative Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Carlos Clavel
- Hair & Pigment Development, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| | - Oliver Dreesen
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| |
Collapse
|
300
|
Di Micco R. Sensing the Breaks: Cytosolic Chromatin in Senescence and Cancer. Trends Mol Med 2017; 23:1067-1070. [PMID: 29133134 DOI: 10.1016/j.molmed.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Cellular senescence constitutes a stable growth arrest characterized by DNA damage response (DDR) activation and by the senescence-associated secretory phenotype (SASP). SASP, through its paracrine effects, stimulates the immune system for senescence eradication. Similarly, chemotherapy-treated cancers activate an interferon-mediated response to induce anti-tumor immunity. Recent studies now uncover a new role for the innate DNA sensing pathway in the recognition of cytosolic chromatin in senescence and cancer.
Collapse
Affiliation(s)
- Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|