251
|
Cao L, Gao CH, Zhu J, Zhao L, Wu Q, Li M, Sun B. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus. Int J Med Microbiol 2016; 306:686-696. [PMID: 27600408 DOI: 10.1016/j.ijmm.2016.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats [CRISPR]-CRISPR associated proteins [Cas]) system can provide prokaryote with immunity against invading mobile genetic elements (MGEs) such as phages and plasmids, which are the main sources of staphylococcal accessory genes. To date, only a few Staphylococcus aureus strains containing CRISPR-Cas systems have been identified, but no functional study in these strains has been reported. In this study, 6 clinical isolates of S. aureus with type III-A CRISPR-Cas systems were identified, and whole-genome sequencing and functional study were conducted subsequently. Genome sequence analysis revealed a close linkage between the CRISPR-Cas system and the staphylococcal cassette chromosome mec (SCCmec) element in five strains. Comparative sequence analysis showed that the type III-A repeats are conserved within staphylococci, despite of the decreased conservation in trailer-end repeats. Highly homologous sequences of some spacers were identified in staphylococcal MGEs, and partially complementary sequences of spacers were mostly found in the coding strand of lytic regions in staphylococcal phages. Transformation experiments showed that S. aureus type III-A CRISPR-Cas system can specifically prevent plasmid transfer in a transcription-dependent manner. Base paring between crRNA and target sequence, the endoribonuclease, and the Csm complex were proved to be necessary for type III-A CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Linyan Cao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chun-Hui Gao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiade Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Liping Zhao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qingfa Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Baolin Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
252
|
Yao S, Hart DJ, An Y. Recent advances in universal TA cloning methods for use in function studies. Protein Eng Des Sel 2016; 29:551-556. [PMID: 27578885 DOI: 10.1093/protein/gzw047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 01/08/2023] Open
Abstract
As one of the simplest and most efficient cloning methods, T-vector-based TA cloning has been widely used for cloning of single genes and construction of DNA libraries. This approach is especially suitable for high-throughput cloning of diverse DNA fragments since inserts can be cloned without knowledge of their sequence; it is therefore an ideal tool for high-throughput analysis of protein structure and function. Although most of the currently available T-vectors can only be used for cloning purposes, some novel variants with improved functions have be developed. This review focuses on recent developments of universal TA cloning methods and T-vectors constructed for function studies.
Collapse
Affiliation(s)
- Shuo Yao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble38044, France
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
253
|
A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Sci Rep 2016; 6:31360. [PMID: 27511873 PMCID: PMC4980769 DOI: 10.1038/srep31360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/18/2016] [Indexed: 01/03/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of skin and soft tissue infections. One of the highly successful and rapidly disseminating clones is MRSA ST22 commonly associated with skin tropism. Here we show that a naturally occurring single amino acid substitution (tyrosine to cysteine) at position 223 of AgrC determines starkly different ST22 S. aureus virulence phenotypes, e.g. cytotoxic or colonizing, as evident in both in vitro and in vivo skin infections. Y223C amino acid substitution destabilizes AgrC-AgrA interaction leading to a colonizing phenotype characterized by upregulation of bacterial surface proteins. The colonizing phenotype strains cause less severe skin tissue damage, show decreased susceptibility towards the antimicrobial LL-37 and induce autophagy. In contrast, cytotoxic strains with tyrosine at position 223 of AgrC cause infections characterized by inflammasome activation and severe skin tissue pathology. Taken together, the study demonstrates how a single amino acid substitution in the histidine kinase receptor AgrC of ST22 strains determines virulence properties and infection outcome.
Collapse
|
254
|
Abstract
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology--including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits--and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products.
Collapse
|
255
|
Characterizing seamless ligation cloning extract for synthetic biological applications. Anal Biochem 2016; 509:24-32. [PMID: 27311554 DOI: 10.1016/j.ab.2016.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/21/2022]
Abstract
Synthetic biology aims at designing and engineering organisms. The engineering process typically requires the establishment of suitable DNA constructs generated through fusion of multiple protein coding and regulatory sequences. Conventional cloning techniques, including those involving restriction enzymes and ligases, are often of limited scope, in particular when many DNA fragments must be joined or scar-free fusions are mandatory. Overlap-based-cloning methods have the potential to overcome such limitations. One such method uses seamless ligation cloning extract (SLiCE) prepared from Escherichia coli cells for straightforward and efficient in vitro fusion of DNA fragments. Here, we systematically characterized extracts prepared from the unmodified E. coli strain DH10B for SLiCE-mediated cloning and determined DNA sequence-associated parameters that affect cloning efficiency. Our data revealed the virtual absence of length restrictions for vector backbone (up to 13.5 kbp) and insert (90 bp to 1.6 kbp). Furthermore, differences in GC content in homology regions are easily tolerated and the deletion of unwanted vector sequences concomitant with targeted fragment insertion is straightforward. Thus, SLiCE represents a highly versatile DNA fusion method suitable for cloning projects in virtually all molecular and synthetic biology projects.
Collapse
|
256
|
García-Nafría J, Watson JF, Greger IH. IVA cloning: A single-tube universal cloning system exploiting bacterial In Vivo Assembly. Sci Rep 2016; 6:27459. [PMID: 27264908 PMCID: PMC4893743 DOI: 10.1038/srep27459] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022] Open
Abstract
In vivo homologous recombination holds the potential for optimal molecular cloning, however, current strategies require specialised bacterial strains or laborious protocols. Here, we exploit a recA-independent recombination pathway, present in widespread laboratory E.coli strains, to develop IVA (In Vivo Assembly) cloning. This system eliminates the need for enzymatic assembly and reduces all molecular cloning procedures to a single-tube, single-step PCR, performed in <2 hours from setup to transformation. Unlike other methods, IVA is a complete system, and offers significant advantages over alternative methods for all cloning procedures (insertions, deletions, site-directed mutagenesis and sub-cloning). Significantly, IVA allows unprecedented simplification of complex cloning procedures: five simultaneous modifications of any kind, multi-fragment assembly and library construction are performed in approximately half the time of current protocols, still in a single-step fashion. This system is efficient, seamless and sequence-independent, and requires no special kits, enzymes or proprietary bacteria, which will allow its immediate adoption by the academic and industrial molecular biology community.
Collapse
Affiliation(s)
- Javier García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jake F. Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
257
|
Cavalli M, Pan G, Nord H, Wallén Arzt E, Wallerman O, Wadelius C. Allele-specific transcription factor binding in liver and cervix cells unveils many likely drivers of GWAS signals. Genomics 2016; 107:248-54. [PMID: 27126307 DOI: 10.1016/j.ygeno.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies (GWAS) point to regions with associated genetic variants but rarely to a specific gene and therefore detailed knowledge regarding the genes contributing to complex traits and diseases remains elusive. The functional role of GWAS-SNPs is also affected by linkage disequilibrium with many variants on the same haplotype and sometimes in the same regulatory element almost equally likely to mediate the effect. Using ChIP-seq data on many transcription factors, we pinpointed genetic variants in HepG2 and HeLa-S3 cell lines which show a genome-wide significant difference in binding between alleles. We identified a collection of 3713 candidate functional regulatory variants many of which are likely drivers of GWAS signals or genetic difference in expression. A recent study investigated many variants before finding the functional ones at the GALNT2 locus, which we found in our genome-wide screen in HepG2. This illustrates the efficiency of our approach.
Collapse
Affiliation(s)
- Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Helena Nord
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emelie Wallén Arzt
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ola Wallerman
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
258
|
Celie PHN, Parret AHA, Perrakis A. Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 2016; 38:145-54. [DOI: 10.1016/j.sbi.2016.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
|
259
|
SpoVG Regulates Cell Wall Metabolism and Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus Strain N315. Antimicrob Agents Chemother 2016; 60:3455-61. [PMID: 27001809 DOI: 10.1128/aac.00026-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing cases of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains in healthy individuals have raised concerns worldwide. MRSA strains are resistant to almost the entire family of β-lactam antibiotics due to the acquisition of an extra penicillin-binding protein, PBP2a. Studies have shown that spoVG is involved in oxacillin resistance, while the regulatory mechanism remains elusive. In this study, we have found that SpoVG plays a positive role in oxacillin resistance through promoting cell wall synthesis and inhibiting cell wall degradation in MRSA strain N315. Deletion of spoVG in strain N315 led to a significant decrease in oxacillin resistance and a dramatic increase in Triton X-100-induced autolytic activity simultaneously. Real-time quantitative reverse transcription-PCR revealed that the expression of 8 genes related to cell wall metabolism or oxacillin resistance was altered in the spoVG mutant. Electrophoretic mobility shift assay indicated that SpoVG can directly bind to the putative promoter regions of lytN (murein hydrolase), femA, and lytSR (the two-component system). These findings suggest a molecular mechanism in which SpoVG modulates oxacillin resistance by regulating cell wall metabolism in MRSA.
Collapse
|
260
|
Zhang S, Shu X, Sun B. SigmaB regulates ccrAB expression and SCCmec excision in methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 2016; 306:406-14. [PMID: 27247101 DOI: 10.1016/j.ijmm.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide pathogen that is resistant to practically the entire class of β-lactam antibiotics due to the presence of the mecA gene. The mecA gene is located on a large mobile genetic element referred to as staphylococcal cassette chromosome mec (SCCmec), and the excision and integration of SCCmec are mediated by the Ccr recombinase encoded by ccrAB or ccrC, which are also located on SCCmec. Previous studies have shown that the ccrAB genes are only expressed in a minority of cells and that their expression levels can be affected by certain environmental stimuli, but the molecular mechanisms controlling these phenotypes remain elusive. Here, we found that overexpression of SigB can dramatically enhance ccrA transcription and SCCmec excision in MRSA strain N315, revealing an important role for this alternative sigma factor in the lateral transfer of SCCmec. Further primer extension-blot analysis and 5'RACE (Rapid Amplification of cDNA Ends) indicated that an unrecognized SigB-dependent promoter region, which exists in certain SCCmec type II and IV strains, is responsible for the enhancement, and the ccrAB genes are in fact transcribed in a two-promoter pattern with a low activity of the SigB-dependent promoter under normal growth conditions.
Collapse
Affiliation(s)
- Shijie Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xueqin Shu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Baolin Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
261
|
Kobayashi Y, Ando H, Hanaoka M, Tanaka K. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2016; 57:953-60. [PMID: 27044672 DOI: 10.1093/pcp/pcw054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/09/2016] [Indexed: 05/08/2023]
Abstract
ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Hiroyuki Ando
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Mitsumasa Hanaoka
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012 Japan
| |
Collapse
|
262
|
Scranton MA, Ostrand JT, Georgianna DR, Lofgren SM, Li D, Ellis RC, Carruthers DN, Dräger A, Masica DL, Mayfield SP. Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
263
|
Philippe C, Vargas-Landin DB, Doucet AJ, van Essen D, Vera-Otarola J, Kuciak M, Corbin A, Nigumann P, Cristofari G. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 2016; 5. [PMID: 27016617 PMCID: PMC4866827 DOI: 10.7554/elife.13926] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/25/2016] [Indexed: 12/26/2022] Open
Abstract
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI:http://dx.doi.org/10.7554/eLife.13926.001 Retrotransposons, also known as jumping genes, have invaded the genomes of most living organisms. These fragments of DNA have the ability to move or copy themselves from one location of a chromosome to another. Depending on where they insert themselves, retrotransposons can modify the sequence of nearby genes, which can alter or even abolish their activity. Although these genetic modifications have contributed significantly to the evolution of different species, retrotransposons can also have detrimental effects; for example, by causing new cases of genetic diseases. Adult human cells have a number of mechanisms that work to keep the activity of retrotransposons at a very low level. However, in many types of cancers retrotransposons escape these defense mechanisms and ‘jump’ actively. This is thought to contribute to the development and spread of cancerous tumors. To understand how jumping genes are mobilized, a fundamental question must be answered: is the high jumping gene activity observed in some cell types a result of activating many copies of the retrotransposons, or only a few of them? This question has been difficult to address because there are more than one hundred copies of retrotransposons that could potentially move in humans, many of which have not even been referenced in the human genome map. Furthermore, each copy is almost identical to another one, making it difficult to discriminate between them. Philippe et al. have now developed an approach that can map where individual retrotransposons are located in the genome of normal and cancerous cells and measure how active these jumping genes are. This revealed that only a very restricted number of them are active in any given cell type. Moreover, different subsets of jumping genes are active in different cell types, and their locations in the genome often do not overlap. Thus, whether jumping genes are activated depends on the cell type and their position in the genome. These results are in contrast to the prevalent view that retrotransposons are activated in a more widespread manner across the genome, at least in cancerous cells. Overall, Philippe et al.’s findings pave the way towards characterizing the chromosome regions in which retrotransposons are frequently activated and understanding how they contribute to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.13926.002
Collapse
Affiliation(s)
- Claude Philippe
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dulce B Vargas-Landin
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure, Paris, France
| | - Aurélien J Doucet
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| | - Dominic van Essen
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Jorge Vera-Otarola
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Monika Kuciak
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Pilvi Nigumann
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France
| | - Gaël Cristofari
- INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France.,Faculty of Medicine, University of Nice-Sophia Antipolis, Nice, France.,FHU OncoAge, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
264
|
Juhas M, Ajioka JW. High molecular weight DNA assembly in vivo for synthetic biology applications. Crit Rev Biotechnol 2016; 37:277-286. [PMID: 26863154 DOI: 10.3109/07388551.2016.1141394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.
Collapse
Affiliation(s)
- Mario Juhas
- a Department of Pathology , University of Cambridge , Tennis Court Road , Cambridge , UK
| | - James W Ajioka
- a Department of Pathology , University of Cambridge , Tennis Court Road , Cambridge , UK
| |
Collapse
|
265
|
Xu Z, Brown WRA. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnol 2016; 16:13. [PMID: 26860416 PMCID: PMC4748531 DOI: 10.1186/s12896-016-0241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phage-encoded serine integrases, such as ϕC31 integrase, are widely used for genome engineering but have not been optimized for use in Saccharomyces cerevisiae although this organism is a widely used organism in biotechnology. RESULTS The activities of derivatives of fourteen serine integrases that either possess or lack a nuclear localization signal were compared using a standardized recombinase mediated cassette exchange reaction. The relative activities of these integrases in S. cerevisiae and in mammalian cells suggested that the major determinant of the activity of an integrase is the enzyme itself and not the cell in which it is working. We used an inducible promoter to show that six integrases were toxic as judged by their effects upon the proliferative ability of transformed yeast. We show that in general the active phage-encoded serine integrases were an order of magnitude more efficient in promoting genome integration reactions than a simple homologous recombination. CONCLUSIONS The results of our study allow us to identify the integrases of the phage ϕBT1, TP901 ~ nls, R4, Bxb1, MR11, A118, ϕK38, ϕC31 ~ nls, Wβ and SPBC ~ nls as active in S. cerevisiae and indicate that vertebrate cells are more restricted than yeast in terms of which integrases are active.
Collapse
Affiliation(s)
- Zhengyao Xu
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| | - William R A Brown
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| |
Collapse
|
266
|
Cavalli M, Pan G, Nord H, Eriksson N, Wadelius C, Wadelius M. Novel regulatory variant detected on the VKORC1 haplotype that is associated with warfarin dose. Pharmacogenomics 2016; 17:1305-14. [PMID: 26847243 DOI: 10.2217/pgs-2015-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Warfarin dose requirement is associated with VKORC1 rs9923231, and we studied whether it is a functional variant. MATERIALS & METHODS We selected variants in linkage disequilibrium with rs9923231 that bind transcription factors in an allele-specific way. Representative haplotypes were cloned or constructed, nuclear protein binding and transcriptional activity were evaluated. RESULTS rs56314408C>T and rs2032915C>T were detected in a liver enhancer in linkage disequilibrium with rs9923231. The rs56314408-rs2032915 C-C haplotype preferentially bound nuclear proteins and had higher transcriptional activity than T-T and the African-specific T-C. A motif for TFAP2A/C was disrupted by rs56314408T. No difference in transcriptional activity was detected for rs9923231G>A. CONCLUSION Our results supported an activating role for rs56314408C, while rs9923231G>A had no evidence of being functional.
Collapse
Affiliation(s)
- Marco Cavalli
- Department of Immunology, Genetics & Pathology, & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics & Pathology, & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Nord
- Department of Immunology, Genetics & Pathology, & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niclas Eriksson
- Uppsala Clinical Research Center & Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics & Pathology, & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences & Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
267
|
Tools and Principles for Microbial Gene Circuit Engineering. J Mol Biol 2016; 428:862-88. [DOI: 10.1016/j.jmb.2015.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
|
268
|
Kanigowska P, Shen Y, Zheng Y, Rosser S, Cai Y. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology. JOURNAL OF LABORATORY AUTOMATION 2016; 21:49-56. [PMID: 26163567 PMCID: PMC4814025 DOI: 10.1177/2211068215593754] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/04/2022]
Abstract
Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries.
Collapse
Affiliation(s)
- Paulina Kanigowska
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, UK
| | - Yue Shen
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, UK BGI-Shenzhen, Shenzhen, China
| | - Yijing Zheng
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, UK
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, UK
| |
Collapse
|
269
|
Cavalli M, Pan G, Nord H, Wadelius C. Looking beyond GWAS: allele-specific transcription factor binding drives the association of GALNT2 to HDL-C plasma levels. Lipids Health Dis 2016; 15:18. [PMID: 26817450 PMCID: PMC4728761 DOI: 10.1186/s12944-016-0183-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/15/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Plasma levels of high-density lipoprotein cholesterol (HDL-C) have been associated to cardiovascular disease. The high heritability of HDL-C plasma levels has been an incentive for several genome wide association studies (GWASs) which identified, among others, variants in the first intron of the GALNT2 gene strongly associated to HDL-C levels. However, the lead GWAS SNP associated to HDL-C levels in this genomic region, rs4846914, is located outside of transcription factor (TF) binding sites defined by chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) experiments in the ENCODE project and is therefore unlikely to be functional. In this study we apply a bioinformatics approach which rely on the premise that ChIP-seq reads can identify allele specific binding of a TF at cell specific regulatory elements harboring allele specific SNPs (AS-SNPs). EMSA and luciferase assays were used to validate the allele specific binding and to test the enhancer activity of the regulatory element harboring the AS-SNP rs4846913 as well as the neighboring rs2144300 which are in high LD with rs4846914. FINDINGS Using luciferase assays we found that rs4846913 and the neighboring rs2144300 displayed allele specific enhancer activity. We propose that an inhibitor binds preferentially to the rs4846913-C allele with an inhibitory boost from the synergistic binding of other TFs at the neighboring SNP rs2144300. These events influence the transcription level of GALNT2. CONCLUSIONS The results suggest that rs4846913 and rs2144300 drive the association to HDL-C plasma levels through an inhibitory regulation of GALNT2 rather than the reported lead GWAS SNP rs4846914.
Collapse
Affiliation(s)
- Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Helena Nord
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
270
|
REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering. Sci Rep 2016; 6:19121. [PMID: 26750263 PMCID: PMC4707547 DOI: 10.1038/srep19121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamless assembly systems using purified enzymes for multiple-fragment cloning as well as mutagenesis is gaining ground. Although these in vitro isothermal reactions are useful when cloning multiple fragments, for site-directed mutagenesis it is unnecessary. Moreover, the use of purified enzymes in vitro is not only expensive but also more inaccurate than the high-fidelity recombination inside bacteria. Here we present a single-step method, named REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for creating mutations (deletions, substitutions and additions) in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves transformation of PCR products in bacteria expressing Red/ET recombineering proteins. Modifications in a variety of plasmids up to bacterial artificial chromosomes (BACs; 144 kb deletion) have been achieved by this method. The presented method is more robust, involves fewer steps and is cost-efficient.
Collapse
|
271
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
272
|
Ibata H, Nagatani A, Mochizuki N. CHLH/GUN5 Function in Tetrapyrrole Metabolism Is Correlated with Plastid Signaling but not ABA Responses in Guard Cells. FRONTIERS IN PLANT SCIENCE 2016; 7:1650. [PMID: 27872634 PMCID: PMC5098175 DOI: 10.3389/fpls.2016.01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 05/20/2023]
Abstract
Expression of Photosynthesis-Associated Nuclear Genes (PhANGs) is controlled by environmental stimuli and plastid-derived signals ("plastid signals") transmitting the developmental and functional status of plastids to the nucleus. Arabidopsis genomes uncoupled (gun) mutants exhibit defects in plastid signaling, leading to ectopic expression of PhANGs in the absence of chloroplast development. GUN5 encodes the plastid-localized Mg-chelatase enzyme subunit (CHLH), and recent studies suggest that CHLH is a multifunctional protein involved in tetrapyrrole biosynthesis, plastid signaling and ABA responses in guard cells. To understand the basis of CHLH multifunctionality, we investigated 15 gun5 missense mutant alleles and transgenic lines expressing a series of truncated CHLH proteins in a severe gun5 allele (cch) background (tCHLHs, 10 different versions). Here, we show that Mg-chelatase function and plastid signaling are generally correlated; in contrast, based on the analysis of the gun5 missense mutant alleles, ABA-regulated stomatal control is distinct from these two other functions. We found that none of the tCHLHs could restore plastid-signaling or Mg-chelatase functions. Additionally, we found that both the C-terminal half and N-terminal half of CHLH function in ABA-induced stomatal movement.
Collapse
|
273
|
ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:27-42. [DOI: 10.1007/978-3-319-27216-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
274
|
Peykov S, Berkel S, Schoen M, Weiss K, Degenhardt F, Strohmaier J, Weiss B, Proepper C, Schratt G, Nöthen MM, Boeckers TM, Rietschel M, Rappold GA. Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol Psychiatry 2015; 20:1489-98. [PMID: 25560758 PMCID: PMC4653611 DOI: 10.1038/mp.2014.172] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/30/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Recent genetic data on schizophrenia (SCZ) have suggested that proteins of the postsynaptic density of excitatory synapses have a role in its etiology. Mutations in the three SHANK genes encoding for postsynaptic scaffolding proteins have been shown to represent risk factors for autism spectrum disorders and other neurodevelopmental disorders. To address if SHANK2 variants are associated with SCZ, we sequenced SHANK2 in 481 patients and 659 unaffected individuals. We identified a significant increase in the number of rare (minor allele frequency<1%) SHANK2 missense variants in SCZ individuals (6.9%) compared with controls (3.9%, P=0.039). Four out of fifteen non-synonymous variants identified in the SCZ cohort (S610Y, R958S, P1119T and A1731S) were selected for functional analysis. Overexpression and knockdown-rescue experiments were carried out in cultured primary hippocampal neurons with a major focus on the analysis of morphological changes. Furthermore, the effect on actin polymerization in fibroblast cell lines was investigated. All four variants revealed functional impairment to various degrees, as a consequence of alterations in spine volume and clustering at synapses and an overall loss of presynaptic contacts. The A1731S variant was identified in four unrelated SCZ patients (0.83%) but not in any of the sequenced controls and public databases (P=4.6 × 10(-5)). Patients with the A1731S variant share an early prodromal phase with an insidious onset of psychiatric symptoms. A1731S overexpression strongly decreased the SHANK2-Bassoon-positive synapse number and diminished the F/G-actin ratio. Our results strongly suggest a causative role of rare SHANK2 variants in SCZ and underline the contribution of SHANK2 gene mutations in a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- S Peykov
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - S Berkel
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - M Schoen
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - K Weiss
- Institute of Physiological Chemistry, Phillipps-University Marburg, Marburg, Germany
| | - F Degenhardt
- Institute of Human Genetics, Bonn University, Bonn, Germany
| | - J Strohmaier
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - B Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - C Proepper
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - G Schratt
- Institute of Physiological Chemistry, Phillipps-University Marburg, Marburg, Germany
| | - M M Nöthen
- Institute of Human Genetics, Bonn University, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - T M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - G A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany,Interdisciplinary Center of Neurosciences (IZN), Heidelberg University, Heidelberg, Germany,Department of Human Molecular Genetics, Institute of Human Genetics, Im Neuenheimer Feld 366, Heidelberg 69120, Germany. E-mail:
| |
Collapse
|
275
|
Marquart GD, Tabor KM, Brown M, Strykowski JL, Varshney GK, LaFave MC, Mueller T, Burgess SM, Higashijima SI, Burgess HA. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies. Front Neural Circuits 2015; 9:78. [PMID: 26635538 PMCID: PMC4656851 DOI: 10.3389/fncir.2015.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3′ untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish.
Collapse
Affiliation(s)
- Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| | - Kathryn M Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Mary Brown
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Jennifer L Strykowski
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas Mueller
- Division of Biology, Kansas State University Manhattan, KS, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences Aichi, Japan
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Neuroscience and Cognitive Science Program, University of Maryland College Park, MD, USA
| |
Collapse
|
276
|
Liu R, Bassalo MC, Zeitoun RI, Gill RT. Genome scale engineering techniques for metabolic engineering. Metab Eng 2015; 32:143-154. [PMID: 26453944 DOI: 10.1016/j.ymben.2015.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/15/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications.
Collapse
Affiliation(s)
- Rongming Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Marcelo C Bassalo
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ramsey I Zeitoun
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
277
|
A strategy for seamless cloning of large DNA fragments from Streptomyces. Biotechniques 2015; 59:193-4, 196, 198-200. [PMID: 26458547 DOI: 10.2144/000114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique.
Collapse
|
278
|
Okegawa Y, Motohashi K. A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem Biophys Rep 2015; 4:148-151. [PMID: 29124198 PMCID: PMC5668909 DOI: 10.1016/j.bbrep.2015.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022] Open
Abstract
The seamless ligation cloning extract (SLiCE) method is a novel seamless DNA cloning tool that utilizes homologous recombination activities in Escherichia coli cell lysates to assemble DNA fragments into a vector. Several laboratory E. coli strains can be used as a source for the SLiCE extract; therefore, the SLiCE-method is highly cost-effective.The SLiCE has sufficient cloning ability to support conventional DNA cloning, and can simultaneously incorporate two unpurified DNA fragments into vector. Recently, many seamless DNA cloning kits have become commercially available; these are generally very convenient, but expensive. In this study, we evaluated the cloning efficiencies between a simple and highly cost-effective SLiCE-method and a commercial kit under various molar ratios of insert DNA fragments to vector DNA. This assessment identified that the SLiCE from a laboratory E. coli strain yielded 30−85% of the colony formation rate of a commercially available seamless DNA cloning kit. The cloning efficiencies of both methods were highly effective, exhibiting over 80% success rate under all conditions examined. These results suggest that SLiCE from a laboratory E. coli strain can efficiently function as an effective alternative to commercially available seamless DNA cloning kits.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
279
|
Beyer HM, Gonschorek P, Samodelov SL, Meier M, Weber W, Zurbriggen MD. AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach. PLoS One 2015; 10:e0137652. [PMID: 26360249 PMCID: PMC4567319 DOI: 10.1371/journal.pone.0137652] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022] Open
Abstract
Assembly cloning is increasingly replacing conventional restriction enzyme and DNA-ligase-dependent cloning methods for reasons of efficiency and performance. Here, we describe AQUA (advanced quick assembly), a simple and versatile seamless assembly cloning approach. We demonstrate the applicability and versatility of AQUA Cloning in selected proof-of-principle applications including targeted insertion-, deletion- and site-directed point-mutagenesis, and combinatorial cloning. Furthermore, we show the one pot de novo assembly of multiple DNA fragments into a single circular plasmid encoding a complex light- and chemically-regulated Boolean A NIMPLY B logic operation. AQUA Cloning harnesses intrinsic in vivo processing of linear DNA fragments with short regions of homology of 16 to 32 bp mediated by Escherichia coli. It does not require any kits, enzymes or preparations of reagents and is the simplest assembly cloning protocol to date.
Collapse
Affiliation(s)
- Hannes M. Beyer
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | | | - Sophia L. Samodelov
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matthias Meier
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- IMTEK, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Matias D. Zurbriggen
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
280
|
Kostylev M, Otwell AE, Richardson RE, Suzuki Y. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. PLoS One 2015; 10:e0137466. [PMID: 26348330 PMCID: PMC4562628 DOI: 10.1371/journal.pone.0137466] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work.
Collapse
Affiliation(s)
- Maxim Kostylev
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail: (YS), (MK)
| | - Anne E. Otwell
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ruth E. Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail: (YS), (MK)
| |
Collapse
|
281
|
Hornsby M, Paduch M, Miersch S, Sääf A, Matsuguchi T, Lee B, Wypisniak K, Doak A, King D, Usatyuk S, Perry K, Lu V, Thomas W, Luke J, Goodman J, Hoey RJ, Lai D, Griffin C, Li Z, Vizeacoumar FJ, Dong D, Campbell E, Anderson S, Zhong N, Gräslund S, Koide S, Moffat J, Sidhu S, Kossiakoff A, Wells J. A High Through-put Platform for Recombinant Antibodies to Folded Proteins. Mol Cell Proteomics 2015; 14:2833-47. [PMID: 26290498 PMCID: PMC4597156 DOI: 10.1074/mcp.o115.052209] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade.
Collapse
Affiliation(s)
- Michael Hornsby
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Marcin Paduch
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Shane Miersch
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Annika Sääf
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Tet Matsuguchi
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Brian Lee
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Karolina Wypisniak
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Allison Doak
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158
| | - Daniel King
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Svitlana Usatyuk
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Kimberly Perry
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Vince Lu
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - William Thomas
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Judy Luke
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jay Goodman
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Robert J Hoey
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Darson Lai
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Carly Griffin
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Zhijian Li
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Franco J Vizeacoumar
- **Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, S7N 4H4, Canada
| | - Debbie Dong
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Elliot Campbell
- ‖Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Stephen Anderson
- ‖Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Nan Zhong
- ‡‡Structural Genomics Consortium, Toronto, M5G Il7, Canada
| | | | - Shohei Koide
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Jason Moffat
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada
| | - Sachdev Sidhu
- ¶Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, MG5 1L6, Canada;
| | - Anthony Kossiakoff
- §Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - James Wells
- From the ‡Department of Pharmaceutical Chemistry University of California, San Francisco, California 94158;
| |
Collapse
|
282
|
Zhang D, Glotzer M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. eLife 2015; 4. [PMID: 26252513 PMCID: PMC4552957 DOI: 10.7554/elife.08898] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/06/2015] [Indexed: 12/29/2022] Open
Abstract
Cytokinesis requires activation of the GTPase RhoA. ECT-2, the exchange factor responsible for RhoA activation, is regulated to ensure spatiotemporal control of contractile ring assembly. Centralspindlin, composed of the Rho family GTPase-activating protein (RhoGAP) MgcRacGAP/CYK-4 and the kinesin MKLP1/ZEN-4, is known to activate ECT-2, but the underlying mechanism is not understood. We report that ECT-2-mediated RhoA activation depends on the ability of CYK-4 to localize to the plasma membrane, bind RhoA, and promote GTP hydrolysis by RhoA. Defects resulting from loss of CYK-4 RhoGAP activity can be rescued by activating mutations in ECT-2 or depletion of RGA-3/4, which functions as a conventional RhoGAP for RhoA. Consistent with CYK-4 RhoGAP activity contributing to GEF activation, the catalytic domains of CYK-4 and ECT-2 directly interact. Thus, counterintuitively, CYK-4 RhoGAP activity promotes RhoA activation. We propose that the most active form of the cytokinetic RhoGEF involves complex formation between ECT-2, centralspindlin and RhoA. DOI:http://dx.doi.org/10.7554/eLife.08898.001 Cell division is a process in which a cell splits to form two daughter cells. In most cases, the cell first duplicates its genetic material and then the two copies are pulled to opposite ends of the cell. A ring of protein filaments—called the contractile ring—then assembles to form a band around the cell at the site of the division. This ring contracts and the force generated separates the cells in a step known as cytokinesis. A protein belonging to the Rho family, called RhoA, is essential for cytokinesis because it controls the formation of the contractile ring. Rho proteins are switched on by the activities of other proteins called guanine nucleotide exchange factors. Another group of proteins known as ‘GTPase activating proteins’ (or GAPs for short) generally act to promote the ability of Rho proteins to turn themselves off. In animals and other multicellular organisms, a GAP called CYK-4 largely concentrates on the spindle midzone, but some of the protein also moves to part of the cell membrane near the future site of cell division. It binds to a guanine nucleotide exchange factor called ECT-2 to switch RhoA on, which in turn promotes the formation of the contractile ring. However, it is not clear why a protein that activates RhoA is also able to trigger its inactivation. In this study, Zhang and Glotzer studied cell division in a roundworm called Caenorhabditis elegans. The experiments show that cells that lacked the GAP activity of CYK-4 were unable to complete cytokinesis because RhoA was not fully switched on. This requirement could be bypassed in cells with mutant forms of ECT-2 that were overactive. Therefore, an activity that was thought to inactivate RhoA actually promotes its activation. Further experiments show that the section (or ‘domain’) of CYK-4 that has GAP activity interacts directly with the guanine nucleotide exchange domain of ECT2. Zhang and Glotzer suggest that this interaction stimulates ECT2 and thereby promotes the activation of RhoA. Further experiments will reveal how CYK-4 stimulates ECT-2. In addition, it will be important to determine whether other proteins with GAP domains also work in this unconventional way. DOI:http://dx.doi.org/10.7554/eLife.08898.002
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
283
|
Modulation of ccrAB Expression and SCCmec Excision by an Inverted Repeat Element and SarS in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:6223-32. [PMID: 26248371 DOI: 10.1128/aac.01041-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious human pathogen that can cause a broad spectrum of infections. MRSA strains are resistant to almost the entire family of β-lactam antibiotics due to the acquisition of staphylococcal cassette chromosome mec (SCCmec). The chromosome cassette recombinases A and B, encoded by ccrAB genes located on SCCmec, play a key role in the excision of SCCmec. Studies have shown that ccrAB genes are expressed in only a minority of cells, suggesting the involvement of a subtle regulatory mechanism in ccrAB expression which has not been uncovered. Here, we found that an inverted repeat (IR) element, existing extensively and conservatively within the ccrAB promoter of different SCCmec types, played a repressive role in ccrAB expression and SCCmec excision in MRSA strain N315. Replacement of the IR sequence led to a significant increase in ccrAB expression and curing of SCCmec from strain N315 cells. In addition, we identified the transcriptional regulator SarS using DNA-affinity chromatography and further demonstrated that SarS can bind to the IR sequence and upregulate ccrAB expression and SCCmec excision. These findings reveal a molecular mechanism regulating ccrAB expression and SCCmec excision and may provide mechanic insights into the lateral transfer of SCCmec and spread of antibiotic resistance in S. aureus.
Collapse
|
284
|
Inobe T, Genmei R. N-Terminal Coiled-Coil Structure of ATPase Subunits of 26S Proteasome Is Crucial for Proteasome Function. PLoS One 2015. [PMID: 26208326 PMCID: PMC4514846 DOI: 10.1371/journal.pone.0134056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The proteasome is an essential proteolytic machine in eukaryotic cells, where it removes damaged proteins and regulates many cellular activities by degrading ubiquitinated proteins. Its heterohexameric AAA+ ATPase Rpt subunits play a central role in proteasome activity by the engagement of substrate unfolding and translocation for degradation; however, its detailed mechanism remains poorly understood. In contrast to AAA+ ATPase domains, their N-terminal regions of Rpt subunits substantially differ from each other. Here, to investigate the requirements and roles of the N-terminal regions of six Rpt subunits derived from Saccharomyces cerevisiae, we performed systematic mutational analysis using conditional knockdown yeast strains for each Rpt subunit and bacterial heterologous expression system of the base subcomplex. We showed that the formation of the coiled-coil structure was the most important for the N-terminal region of Rpt subunits. The primary role of coiled-coil structure would be the maintenance of the ring structure with the defined order. However, the coiled-coil region would be also be involved in substrate recognition and an interaction between lid and base subcomplexes.
Collapse
Affiliation(s)
- Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyma-shi, Toyama, 930-8555, Japan
| | - Reiko Genmei
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyma-shi, Toyama, 930-8555, Japan
| |
Collapse
|
285
|
Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi. PLoS One 2015; 10:e0133085. [PMID: 26177455 PMCID: PMC4503723 DOI: 10.1371/journal.pone.0133085] [Citation(s) in RCA: 412] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022] Open
Abstract
The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.
Collapse
Affiliation(s)
- Christina S. Nødvig
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Jakob B. Nielsen
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Martin E. Kogle
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Uffe H. Mortensen
- Eukaryotic Molecular Cell Biology, Section for Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| |
Collapse
|
286
|
Vogl T, Ahmad M, Krainer FW, Schwab H, Glieder A. Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris. Microb Cell Fact 2015; 14:103. [PMID: 26169367 PMCID: PMC4501187 DOI: 10.1186/s12934-015-0293-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tagging proteins is a standard method facilitating protein detection, purification or targeting. When tagging a certain protein of interest, it is challenging to predict which tag will give optimal results and will not interfere with protein folding, activity or yields. Ideally, multiple tags and positions are tested which however complicates molecular cloning and expression vector generation. In conventional cloning, tags are either added on PCR primers (requiring a distinct primer and PCR product per tag) or provided on the vector (typically leaving a restriction site scar). RESULTS Here we report a vector family of 40 plasmids allowing simple, seamless fusions of a single PCR product with various N- and C-terminal tags, signal sequences and promoters. The restriction site free cloning (RSFC) strategy presented in this paper relies on seamless cloning using type IIS restriction endonucleases. After cutting out a stuffer (placeholder) fragment from the vectors, a single PCR product can be directly inserted in frame into all 40 plasmids using blunt end or TA ligations, requiring only verification of the orientation. We have established a RSFC vector family for the commonly used protein expression host Pichia pastoris and demonstrated the system with the secretory expression of horseradish peroxidase (HRP). HRP fusions to four tags (Myc, FLAG, His, Strep) and two fusion proteins (GFP and MBP) showed a 31-fold difference in volumetric activities. C-terminal tagging caused in some cases almost a complete loss of function, whereas N-terminal tags showed moderate differences. CONCLUSIONS The RSFC vectors provide an unprecedented toolbox for expression optimization in P. pastoris. The results obtained with HRP underline the importance of comparing different tags to maximize activities of fusion proteins. In a similar fashion the RSFC strategy can be applied in other expression hosts to screen for optimal promoters, signal sequences or to facilitate the evaluation of (iso-) enzyme families.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria. .,Queensland University of Technology, 2 George St., Brisbane, QLD, 4000, Australia.
| | - Mudassar Ahmad
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Florian W Krainer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
287
|
Krishnamurthy VV, Khamo JS, Cho E, Schornak C, Zhang K. Multiplex gene removal by two-step polymerase chain reactions. Anal Biochem 2015; 481:7-9. [DOI: 10.1016/j.ab.2015.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
|
288
|
Evaluation of seamless ligation cloning extract preparation methods from an Escherichia coli laboratory strain. Anal Biochem 2015; 486:51-3. [PMID: 26133399 DOI: 10.1016/j.ab.2015.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/22/2022]
Abstract
Seamless ligation cloning extract (SLiCE) is a simple and efficient method for DNA cloning without the use of restriction enzymes. Instead, SLiCE uses homologous recombination activities from Escherichia coli cell lysates. To date, SLiCE preparation has been performed using an expensive commercially available lytic reagent. To expand the utility of the SLiCE method, we evaluated different methods for SLiCE preparation that avoid using this reagent. Consequently, cell extracts prepared with buffers containing Triton X-100, which is a common and low-cost nonionic detergent, exhibited sufficient cloning activity for seamless gene incorporation into a vector.
Collapse
|
289
|
Casini A, Storch M, Baldwin GS, Ellis T. Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 2015; 16:568-76. [DOI: 10.1038/nrm4014] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
290
|
Zampini M, Stevens PR, Pachebat JA, Kingston-Smith A, Mur LAJ, Hayes F. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli. Sci Rep 2015; 5:11302. [PMID: 26062748 PMCID: PMC4462754 DOI: 10.1038/srep11302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli.
Collapse
Affiliation(s)
- Massimiliano Zampini
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Justin A Pachebat
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Alison Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
291
|
Large Scale Bacterial Colony Screening of Diversified FRET Biosensors. PLoS One 2015; 10:e0119860. [PMID: 26061878 PMCID: PMC4464885 DOI: 10.1371/journal.pone.0119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/16/2015] [Indexed: 11/30/2022] Open
Abstract
Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors.
Collapse
|
292
|
Motohashi K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol 2015; 15:47. [PMID: 26037246 PMCID: PMC4453199 DOI: 10.1186/s12896-015-0162-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/05/2015] [Indexed: 12/03/2022] Open
Abstract
Background Seamless ligation cloning extract (SLiCE) is a simple and efficient method for DNA assembly that uses cell extracts from the Escherichia coli PPY strain, which expresses the components of the λ prophage Red/ET recombination system. This method facilitates restriction endonuclease cleavage site-free DNA cloning by performing recombination between short stretches of homologous DNA (≥15 base pairs). Results To extend the versatility of this system, I examined whether, in addition to bacterial extracts from the PPY strain, other E. coli laboratory strains were suitable for the SLiCE protocol. Indeed, carefully prepared cell extracts from several strains exhibited sufficient cloning activity for seamless gene incorporation into vectors with short homology lengths (approximately 15–20 bp). Furthermore, SLiCE was applied to the polymerase chain reaction (PCR)-based site-directed mutagenesis method, in a process termed “SLiCE-mediated PCR-based site-directed mutagenesis (SLiP site-directed mutagenesis)”. SLiP site-directed mutagenesis simplifies the steps of PCR-based site-directed mutagenesis, as it exploits the capability of the SLiCE method to insert multiple fragments. Conclusions SLiCE can be performed in the laboratory with no requirement for a special E. coli strain, and the technique is easily established. This method increases the cloning efficiency, shortens the time for DNA manipulation, and greatly reduces the cost of seamless DNA cloning. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Motohashi
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
293
|
Zhang P, Du E, Ma J, Wang W, Zhang L, Tikoo SK, Yang Z. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression. PLoS One 2015; 10:e0127958. [PMID: 26011074 PMCID: PMC4444375 DOI: 10.1371/journal.pone.0127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (ZY); (SKT)
| | - Zengqi Yang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
- * E-mail: (ZY); (SKT)
| |
Collapse
|
294
|
Tsuge K, Sato Y, Kobayashi Y, Gondo M, Hasebe M, Togashi T, Tomita M, Itaya M. Method of preparing an equimolar DNA mixture for one-step DNA assembly of over 50 fragments. Sci Rep 2015; 5:10655. [PMID: 25990947 PMCID: PMC4438487 DOI: 10.1038/srep10655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
In the era of synthetic biology, techniques for rapidly constructing a designer long DNA from short DNA fragments are desired. To realize this, we attempted to establish a method for one-step DNA assembly of unprecedentedly large numbers of fragments. The basic technology is the Ordered Gene Assembly in Bacillus subtilis (OGAB) method, which uses the plasmid transformation system of B. subtilis. Since this method doesn’t require circular ligation products but needs tandem repeat ligation products, the degree of deviation in the molar concentration of the material DNAs is the only determinant that affects the efficiency of DNA assembly. The strict standardization of the size of plasmids that clone the DNA block and the measurement of the block in the state of intact plasmid improve the reliability of this step, with the coefficient of variation of the molar concentrations becoming 7%. By coupling this method with the OGAB method, one-step assembly of more than 50 DNA fragments becomes feasible.
Collapse
Affiliation(s)
- Kenji Tsuge
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Yukari Sato
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Yuka Kobayashi
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Maiko Gondo
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Masako Hasebe
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Takashi Togashi
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | - Mitsuhiro Itaya
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
295
|
Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD. Designer Microorganisms for Optimized Redox Cascade Reactions - Challenges and Future Perspectives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500202] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
296
|
Wang JW, Wang A, Li K, Wang B, Jin S, Reiser M, Lockey RF. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. Biotechniques 2015; 58:161-70. [PMID: 25861928 DOI: 10.2144/000114261] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/08/2014] [Indexed: 11/23/2022] Open
Abstract
Restriction enzymes have two major limitations for cloning: they cannot cleave at any desired location in a DNA sequence and may not cleave uniquely within a DNA sequence. In contrast, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme 9 (Cas9), when coupled with single guide RNAs (sgRNA), has been used in vivo to cleave the genomes of many species at a single site, enabling generation of mutated cell lines and animals. The Cas9/sgRNA complex recognizes a 17-20 base target site, which can be of any sequence as long as it is located 5' of the protospacer adjacent motif (PAM; sequence 5'-NRG, where R = G or A). Thus, it can be programmed to cleave almost anywhere with a stringency higher than that of one cleavage in a sequence of human genome size. Here, the Cas9 enzyme and a specific sgRNA were used to linearize a 22 kb plasmid in vitro. A DNA fragment was then inserted into the linearized vector seamlessly through Gibson assembly. Our technique can be used to directly, and seamlessly, clone fragments into vectors of any size as well as to modify existing constructs where no other methods are available.
Collapse
Affiliation(s)
- Jia-Wang Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Amy Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Kunyu Li
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Bangmei Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Shunqian Jin
- Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michelle Reiser
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
- James A. Haley Veterans' Hospital, Tampa, FL
| |
Collapse
|
297
|
Reddy TR, Fevat LMS, Munson SE, Stewart AF, Cowley SM. Lambda red mediated gap repair utilizes a novel replicative intermediate in Escherichia coli. PLoS One 2015; 10:e0120681. [PMID: 25803509 PMCID: PMC4372340 DOI: 10.1371/journal.pone.0120681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination.
Collapse
Affiliation(s)
- Thimma R. Reddy
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Léna M. S. Fevat
- Center for Fisheries, Environment and Aquaculture Sciences, Lowestoft, United Kingdom
| | - Sarah E. Munson
- ES Cell Facility, Centre for Core Biotechnology Services, University of Leicester, Leicester, United Kingdom
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Technische Universitaet Dresden, Dresden, Germany
| | - Shaun M. Cowley
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
298
|
Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One 2015; 10:e0119221. [PMID: 25774528 PMCID: PMC4361335 DOI: 10.1371/journal.pone.0119221] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/27/2015] [Indexed: 01/27/2023] Open
Abstract
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.
Collapse
|
299
|
Lundqvist M, Edfors F, Sivertsson Å, Hallström BM, Hudson EP, Tegel H, Holmberg A, Uhlén M, Rockberg J. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts. Nucleic Acids Res 2015; 43:e49. [PMID: 25618848 PMCID: PMC4402512 DOI: 10.1093/nar/gkv036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 11/14/2022] Open
Abstract
We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.
Collapse
Affiliation(s)
- Magnus Lundqvist
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Fredrik Edfors
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Åsa Sivertsson
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Björn M Hallström
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Elton P Hudson
- KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm 17165, Sweden
| | - Hanna Tegel
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Anders Holmberg
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| | - Mathias Uhlén
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm 17165, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
| | - Johan Rockberg
- KTH-Royal Institute of Technology, School of Biotechnology, AlbaNova University Center, Stockholm 10691, Sweden
| |
Collapse
|
300
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|