251
|
Park KH, Kang JW, Lee EM, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG, Kim SH. Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 2011; 51:187-94. [PMID: 21470302 DOI: 10.1111/j.1600-079x.2011.00875.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although melatonin has a variety of biological actions such as antitumor, antiangiogenic, and antioxidant activities, the osteogenic mechanism of melatonin still remains unclear. Thus, in the present study, the molecular mechanism of melatonin was elucidated in the differentiation of mouse osteoblastic MC3T3-E1 cells. Melatonin enhanced osteoblastic differentiation and mineralization compared to untreated controls in preosteoblastic MC3T3-E1 cells. Also, melatonin increased wound healing and dose-dependently activated osteogenesis markers such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), bone morphogenic protein (BMP)-2 and -4 in MC3T3-E1 cells. Of note, melatonin activated Wnt 5 α/β, β-catenin and the phosphorylation of c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a time-dependent manner while it attenuated phosphorylation of glycogen synthase kinase 3 beta (GSK-3β) in MC3T3-E1 cells. Consistently, confocal microscope observation revealed that BMP inhibitor Noggin blocked melatonin-induced nuclear localization of β-catenin. Furthermore, Western blotting showed that Noggin reversed activation of β-catenin and Wnt5 α/β and suppression of GSK-3β induced by melatonin in MC3T3-E1 cells, which was similarly induced by ERK inhibitor PD98059. Overall, these findings demonstrate that melatonin promotes osteoblastic differentiation and mineralization in MC3T3-E1 cells via the BMP/ERK/Wnt pathways.
Collapse
Affiliation(s)
- Ki-Ho Park
- Department of Orthodondritics, Kyung-Hee University College of Dental Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
da Silva CMB, Macías-García B, Miró-Morán A, González-Fernández L, Morillo-Rodriguez A, Ortega-Ferrusola C, Gallardo-Bolaños JM, Stilwell G, Tapia JA, Peña FJ. Melatonin reduces lipid peroxidation and apoptotic-like changes in stallion spermatozoa. J Pineal Res 2011; 51:172-9. [PMID: 21486367 DOI: 10.1111/j.1600-079x.2011.00873.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation (LPO) has been claimed as a major factor involved in stallion damage during storage or cryopreservation. Because melatonin is a well-known potent antioxidant, the aim of the present study was to investigate the effect of melatonin during in vitro incubation. Furthermore, we investigated the presence of specific melatonin receptors (MT1 and MT2) using specific polyclonal antibodies and western blotting. Stallion spermatozoa were incubated up to 3 hr at 37°C in the presence of different concentrations of melatonin (0, 50 pm, 100 pm, 200 pm, or 1 μm). At the beginning and at the end of the incubation period, sperm motility (using computer-assisted sperm analysis), membrane integrity and permeability, fluidity of the sperm membrane, LPO, and mitochondrial membrane potential (Δψm) were flow cytometrically evaluated. Melatonin reduced changes in the spermatozoa related to apoptosis (increased sperm membrane permeability and lowered Δψm) (P < 0.05). Furthermore, LPO was dramatically reduced (P < 0.01) while no effect was observed on sperm motility or kinematics. Interestingly, melatonin helped maintain a more fluid sperm plasmalemma (P < 0.05). Our results clearly show the absence of MT1 and MT2 receptors in the stallion spermatozoa. It is concluded that melatonin is a useful tool to improve the quality of stored stallion sperm, increasing their life span and reducing premature aging, this likely relates to melatonin's antioxidant properties.
Collapse
Affiliation(s)
- Carolina M Balao da Silva
- Laboratory of Equine Reproduction, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA. Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 2011; 51:195-206. [PMID: 21470303 DOI: 10.1111/j.1600-079x.2011.00876.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis or programmed cell death plays a critical role in both inflammatory and immune responses. Recent evidence demonstrates that control of leukocyte apoptosis is one of the most striking immune system-related roles of melatonin. For this reason, this study evaluated the protective effects of melatonin on human leukocyte apoptosis induced by sustained cytosolic calcium increases. Such protective effects are likely mediated by melatonin's free-radical scavenging actions. Treatments with the specific inhibitor of cytosolic calcium re-uptake, thapsigargin (TG), and/or the calcium-mobilizing agonist, N-formyl-methionyl-leucyl-phenylalanine (FMLP), induced intracellular reactive oxygen species (ROS) production, caspase activation as well as DNA fragmentation in human leukocytes. Also, TG- and/or FMLP-induced apoptosis was dependent on both cytosolic calcium increases and calcium uptake into mitochondria, because when cells were preincubated with the cytosolic calcium chelator, dimethyl BAPTA, and the inhibitor of mitochondrial calcium uptake, Ru360, TG- and FMLP-induced apoptosis was largely inhibited. Importantly, melatonin treatment substantially prevented intracellular ROS production, reversed caspase activation, and forestalled DNA fragmentation induced by TG and FMLP. Similar results were obtained by preincubating the cells with another well-known antioxidant, i.e., N-acetyl-L-cysteine. To sum up, depletion of intracellular calcium stores induced by TG and/or FMLP triggers different apoptotic events in human leukocytes that are dependent on calcium signaling. The protective effects resulting from melatonin administration on leukocyte apoptosis likely depend on melatonin's antioxidant action because we proved that this protection is melatonin receptor independent. These findings help to understand how melatonin controls apoptosis in cells of immune/inflammatory relevance.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
254
|
Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer's disease progression. Curr Neuropharmacol 2011; 8:218-27. [PMID: 21358972 PMCID: PMC3001215 DOI: 10.2174/157015910792246209] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/14/2010] [Accepted: 03/28/2010] [Indexed: 12/31/2022] Open
Abstract
Melatonin secretion decreases in Alzheimer´s disease (AD) and this decrease has been postulated as responsible for the circadian disorganization, decrease in sleep efficiency and impaired cognitive function seen in those patients. Half of severely ill AD patients develop chronobiological day-night rhythm disturbances like an agitated behavior during the evening hours (so-called “sundowning”). Melatonin replacement has been shown effective to treat sundowning and other sleep wake disorders in AD patients. The antioxidant, mitochondrial and antiamyloidogenic effects of melatonin indicate its potentiality to interfere with the onset of the disease. This is of particularly importance in mild cognitive impairment (MCI), an etiologically heterogeneous syndrome that precedes dementia. The aim of this manuscript was to assess published evidence of the efficacy of melatonin to treat AD and MCI patients. PubMed was searched using Entrez for articles including clinical trials and published up to 15 January 2010. Search terms were “Alzheimer” and “melatonin”. Full publications were obtained and references were checked for additional material where appropriate. Only clinical studies with empirical treatment data were reviewed. The analysis of published evidence made it possible to postulate melatonin as a useful ad-on therapeutic tool in MCI. In the case of AD, larger randomized controlled trials are necessary to yield evidence of effectiveness (i.e. clinical and subjective relevance) before melatonin´s use can be advocated.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | | | | |
Collapse
|
255
|
Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. ZYGOTE 2011; 20:199-207. [DOI: 10.1017/s0967199411000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMelatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10−7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10−7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.
Collapse
|
256
|
Tripathi A, PremKumar KV, Pandey AN, Khatun S, Mishra SK, Shrivastav TG, Chaube SK. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. Eur J Pharmacol 2011; 667:419-24. [PMID: 21693115 DOI: 10.1016/j.ejphar.2011.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | | | | | |
Collapse
|
257
|
Ayala C, Valdez SR, Morero MLN, Soaje M, Carreño NB, Sanchez MS, Bittencourt JC, Jahn GA, Celis ME. Hypo- and hyperthyroidism affect NEI concentration in discrete brain areas of adult male rats. Peptides 2011; 32:1249-54. [PMID: 21530599 DOI: 10.1016/j.peptides.2011.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and l-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of l-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
de Almeida EA, Di Mascio P, Harumi T, Warren Spence D, Moscovitch A, Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Measurement of melatonin in body fluids: standards, protocols and procedures. Childs Nerv Syst 2011; 27:879-91. [PMID: 21104186 PMCID: PMC3128751 DOI: 10.1007/s00381-010-1278-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The circadian rhythm of melatonin in saliva or plasma, or of the melatonin metabolite 6-sulfatoxymelatonin (a6MTs) in urine, is a defining feature of suprachiasmatic nucleus (SCN) function, the body's endogenous oscillatory pacemaker. The primary objective of this review is to ascertain the clinical benefits and limitations of current methodologies employed for detection and quantification of melatonin in biological fluids and tissues. DATA IDENTIFICATION A search of the English-language literature (Medline) and a systematic review of published articles were carried out. STUDY SELECTION Articles that specified both the methodology for quantifying melatonin and indicated the clinical purpose were chosen for inclusion in the review. DATA EXTRACTION The authors critically evaluated the methodological issues associated with various tools and techniques (e.g. standards, protocols, and procedures). RESULTS OF DATA SYNTHESIS Melatonin measurements are useful for evaluating problems related to the onset or offset of sleep and for assessing phase delays or advances of rhythms in entrained individuals. They have also become an important tool for psychiatric diagnosis, their use being recommended for phase typing in patients suffering from sleep and mood disorders. Additionally, there has been a continuous interest in the use of melatonin as a marker for neoplasms of the pineal region. Melatonin decreases such as found with aging are or post pinealectomy can cause alterations in the sleep/wake cycle. The development of sensitive and selective methods for the precise detection of melatonin in tissues and fluids has increasingly been shown to have direct relevance for clinical decision making. CONCLUSIONS Due to melatonin's low concentration, as well as the coexistence of numerous other compounds in the blood, the routine determination of melatonin has been an analytical challenge. The available evidence indicates however that these challenges can be overcome and consequently that evaluation of melatonin's presence and activity can be an accessible and useful tool for clinical diagnosis.
Collapse
Affiliation(s)
- Eduardo Alves de Almeida
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, Rua Cristóvão Colombo 2265, CEP 15054-000 São José do Rio Preto, SP Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, USP Av. Prof. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP Brazil
| | - Tatsuo Harumi
- Department of Anatomy, Asahikawa Medical College, Nishikagura, Asahikawa Japan
| | | | - Adam Moscovitch
- Sleep and Fatigue Institute, 106 Codsell Ave, Toronto, ON Canada M3H 3W1
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Daniel P. Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Gregory M. Brown
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON Canada M5T 1R8
| | | |
Collapse
|
259
|
The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology 2011; 75:1550-60. [DOI: 10.1016/j.theriogenology.2010.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/14/2010] [Accepted: 12/19/2010] [Indexed: 01/01/2023]
|
260
|
Cutando A, Aneiros-Fernández J, López-Valverde A, Arias-Santiago S, Aneiros-Cachaza J, Reiter RJ. A new perspective in Oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity. Arch Oral Biol 2011; 56:944-50. [PMID: 21459362 DOI: 10.1016/j.archoralbio.2011.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/17/2011] [Accepted: 03/08/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is involved in many physiological processes in mammals, amongst others; it is implicated in sleep-wake regulation. It has antioxidant and anti-inflammatory properties. It also acts as an immunomodulator, stimulates bone metabolism and inhibits various tumours. Additionally an abnormal melatonin rhythm may contribute to depression and insomnia. The mechanisms of action of melatonin include the involvement of membrane receptors (MT1, MT2), cytosolic binding sites (MT3 and calmodulin), and nuclear receptors of the RZR/ROR family. Melatonin also has receptor-independent activity and can directly scavenge free radicals. The current review addresses the functions of melatonin in the oral cavity in relation to its receptors. METHODS An extensive search was conducted on the following scientific databases Pub Med, Science Direct, ISI Web of Knowledge and Cochrane database in order to review all pertinent literature. RESULTS Melatonin from the blood into the saliva may play an important role in suppressing oral diseases. It may have beneficial effects in periodontal disease, herpes and oral cancer, amongst others. CONCLUSIONS Melatonin contributes to protecting of oral cavity from tissue damage due to its action of different receptors. From the reviewed literature it is concluded that experimental evidence suggests that melatonin can be useful in treating several common diseases of the oral cavity. Specific studies are necessary to extend the therapeutic possibilities of melatonin to other oral diseases.
Collapse
Affiliation(s)
- Antonio Cutando
- Departamento de Estomatología, Facultad de Odontología, Universidad de Granada, Spain.
| | | | | | | | | | | |
Collapse
|
261
|
Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50:310-8. [PMID: 21214627 DOI: 10.1111/j.1600-079x.2010.00843.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryopreservation harms spermatozoa at different levels and thus impairs their fertilizing ability. The role of melatonin in protecting spermatozoa from different kind injuries has been widely reported. Thus, this study tested whether the addition of melatonin to ram semen freezing extender could exert a protective effect and ameliorate postthawing sperm function. Melatonin was added to recommended ram extender to yield five different final concentrations: 0.001, 0.01, 0.1, 1, and 10 mm. A control group without melatonin supplementation was included. Spermatozoa viability, motility parameters, and intracellular ATP concentrations were evaluated both before and after cryopreservation, while DNA integrity and in vitro fertilizing ability were evaluated only after thawing. Obtained results showed that the concentration of 1 mm melatonin led to higher viability rates, higher percentages of total motile and progressive motile spermatozoa, higher percentages of spermatozoa with average rapid and medium velocity, higher intracellular ATP concentrations, and higher DNA integrity among semen frozen in control and melatonin-supplemented extenders (P<0.05). In addition, results obtained after the IVF test showed that at 1 mm concentration, melatonin led to a faster first embryonic division and to higher total cleavage rates compared to the other experimental groups (P<0.05). No difference in embryo output was observed among the six experimental groups. In conclusion, the addition of melatonin to ram semen freezing extender protected spermatozoa during cryopreservation in a dose-dependent manner. These results are likely to be mediated by its well-known antioxidant properties, even if a direct action of the indolamine cannot be ruled out.
Collapse
Affiliation(s)
- Sara Succu
- Department of Animal Biology, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
262
|
Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM. Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 2011; 50:159-70. [PMID: 21062353 DOI: 10.1111/j.1600-079x.2010.00825.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute bacterial meningitis caused by Klebsiella pneumoniae (K. pneumoniae) is a major health threat with a high mortality rate and severe neuro-cognitive sequelae. The intense pro-inflammatory cytokine released from calcium-mediated microglial activation plays an important role in eliciting neuronal damage in the hippocampal region. Considering melatonin possesses anti-inflammatory and immuno-modulatory properties, the present study determined whether melatonin can effectively decrease inflammatory responses and prevent hippocampal damage in animals subjected to K. pneumoniae. Adult rats inoculated with K. pneumoniae received a melatonin injection immediately thereafter at doses of 5, 25, 50, or 100 mg/kg. Following 24 h of survival, all experimental animals were processed for time-of-flight secondary ion mass spectrometry (for detecting glial calcium intensity), isolectin-B4 histochemistry (reliable marker for microglial activation), pro-inflammatory cytokine measurement as well as cytochrome oxidase and in situ dUTP end-labeling (representing neuronal bio-energetic status and apoptotic changes, respectively). Results indicate that in K. pneumoniae-infected rats, numerous calcium-enriched microglia, enhanced pro-inflammatory cytokine, and various apoptotic neurons with low bio-energetic activity were detected in hippocampus. Following melatonin administration, however, all parameters including glial calcium intensity, microglial activation, pro-inflammatory cytokine levels, and number of apoptotic neurons were successfully decreased with maximal change observed at a melatonin dose of 100 mg/kg. Enzymatic data corresponded well with above findings in which all surviving neurons displayed high bio-energetic activity. As effectively reducing glia-mediated inflammatory response is neuro-protective to hippocampal neurons, the present study supports the clinical use of melatonin as a potential therapeutic agent to counteract K. pneumoniae meningitis-induced neuro-cognitive damage.
Collapse
Affiliation(s)
- Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
263
|
Cutando A, Aneiros-Fernández J, Aneiros-Cachaza J, Arias-Santiago S. Melatonin and cancer: current knowledge and its application to oral cavity tumours. J Oral Pathol Med 2011; 40:593-7. [DOI: 10.1111/j.1600-0714.2010.01002.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
264
|
Abstract
Matrix metalloproteinases (MMPs) are part of a superfamily of metal-requiring proteases that play important roles in tissue remodeling by breaking down proteins in the extracellular matrix that provides structural support for cells. The intricate balance in protease/anti-protease stoichiometry is a contributing factor in a number of diseases. Melatonin possesses multifunctional bioactivities including antioxidative, anti-inflammatory, endocrinologic and behavioral effects. As melatonin affects the redox status of tissues, the association of reactive oxygen species (ROS) with tissue injury under different circumstances may be mitigated by melatonin. Redox signaling is expanding into all areas of basic and clinical sciences, and this timely review focuses on the topic of regulation of MMP activities by melatonin. This is a rapidly growing field. Accumulating evidence indicates that oxidative stress plays an important role in regulating the activities of MMPs that are involved in various cellular processes such as cellular proliferation, angiogenesis, apoptosis, invasion and metastasis. This review offers sections on MMPs, melatonin, major physiological and pathophysiological conditions in the context to MMPs, followed by redox signaling mechanisms that are known to influence the cellular processes. Finally, we discuss the emerging molecular mechanisms relevant to regulatory actions of melatonin on the activities of MMPs. The possibility that melatonin might have therapeutic significance via regulation of MMPs may be a novel approach in the treatment of some diseases.
Collapse
Affiliation(s)
- Snehasikta Swarnakar
- Department of Physiology, Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | | | | | | |
Collapse
|
265
|
Abstract
Melatonin, an endogenously produced indoleamine, is a highly effective antioxidant, free radical scavenger, and a primary circadian regulator. Melatonin has important antioxidant properties owing to direct and indirect effects. It directly scavenges reactive oxygen and reactive nitrogen species, prevents molecular oxidation, improves mitochondrial physiology, and restores glutathione homeostasis. Its indirect antioxidant effects stem from its ability to stimulate the activities of the enzymes involved in the glutathione cycling and production. Melatonin, by reducing free radical damage, may be an effective protective agent for the fetus as it is in adults. Several clinical studies on melatonin have shown that it reduces oxidative stress in human newborns with sepsis, hypoxic distress, or other conditions, where there is excessive free radical generation. A role of melatonin in infant development has also been suggested. Pineal dysfunction may be associated with deleterious outcomes in infants and may contribute to an increased prevalence of sudden infant death syndrome. Delayed melatonin production is evident in infants who had experienced an apparent life-threatening event. Melatonin has been used as a pharmacologic treatment for insomnias associated with shift work, jet lag, and delayed sleep onset in adults for decades. In children as well, melatonin has value as a sleep-promoting agent. Evidence suggests that melatonin has utility as an analgesic agent presumably related to its ability to release β-endorphin. The data support the notion that melatonin, or one of its analogs, might find use as an anesthetic agent in children.
Collapse
Affiliation(s)
- Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
266
|
Srinivasan V, Kaur C, Pandi-Perumal S, Brown GM, Cardinali DP. Melatonin and its agonist ramelteon in Alzheimer's disease: possible therapeutic value. Int J Alzheimers Dis 2010; 2011:741974. [PMID: 21197086 PMCID: PMC3004402 DOI: 10.4061/2011/741974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/08/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease characterized by the progressive loss of cognitive function, loss of memory and insomnia, and abnormal behavioral signs and symptoms. Among the various theories that have been put forth to explain the pathophysiology of AD, the oxidative stress induced by amyloid β-protein (Aβ) deposition has received great attention. Studies undertaken on postmortem brain samples of AD patients have consistently shown extensive lipid, protein, and DNA oxidation. Presence of abnormal tau protein, mitochondrial dysfunction, and protein hyperphosphorylation all have been demonstrated in neural tissues of AD patients. Moreover, AD patients exhibit severe sleep/wake disturbances and insomnia and these are associated with more rapid cognitive decline and memory impairment. On this basis, the successful management of AD patients requires an ideal drug that besides antagonizing Aβ-induced neurotoxicity could also correct the disturbed sleep-wake rhythm and improve sleep quality. Melatonin is an effective chronobiotic agent and has significant neuroprotective properties preventing Aβ-induced neurotoxic effects in a number of animal experimental models. Since melatonin levels in AD patients are greatly reduced, melatonin replacement has the potential value to be used as a therapeutic agent for treating AD, particularly at the early phases of the disease and especially in those in whom the relevant melatonin receptors are intact. As sleep deprivation has been shown to produce oxidative damage, impaired mitochondrial function, neurodegenerative inflammation, and altered proteosomal processing with abnormal activation of enzymes, treatment of sleep disturbances may be a priority for arresting the progression of AD. In this context the newly introduced melatonin agonist ramelteon can be of much therapeutic value because of its highly selective action on melatonin MT1/MT2 receptors in promoting sleep.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Prasanthi Nilayam, 40- Kovai Thirunagar, Coimbatore 641014, India
| | | | | | | | | |
Collapse
|
267
|
Thakor AS, Herrera EA, Serón-Ferré M, Giussani DA. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J Pineal Res 2010; 49:399-406. [PMID: 20958954 DOI: 10.1111/j.1600-079x.2010.00813.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inadequate umbilical blood flow leads to intrauterine growth restriction, a major killer in perinatal medicine today. Nitric oxide (NO) is important in the maintenance of umbilical blood flow, and antioxidants increase NO bioavailability. What remains unknown is whether antioxidants can increase umbilical blood flow. Melatonin participates in circadian, seasonal, and reproductive physiology, but has also been reported to act as a potent endogenous antioxidant. We tested the hypothesis that treatment during pregnancy with melatonin increases umbilical blood flow via NO-dependent mechanisms. This was tested in pregnant sheep by investigating in vivo the effects on continuous measurement of umbilical blood flow of melatonin before and after NO blockade with a NO clamp. These effects of melatonin were compared with those of the traditional antioxidant, vitamin C. Under anesthesia, 12 pregnant sheep and their fetuses (0.8 of gestation) were fitted with catheters and a Transonic probe around an umbilical artery, inside the fetal abdomen. Following 5 days of recovery, cardiovascular variables were recorded during fetal i.v. treatment with either melatonin (n=6, 0.5±0.1 μg/kg/min) or vitamin C (n=6, 8.9±0.4 mg/kg/min) before and after fetal NO blockade with the NO clamp. Fetal treatment with melatonin or vitamin C increased umbilical blood flow, independent of changes in fetal arterial blood pressure. Fetal NO blockade prevented the increase in umbilical blood flow induced by melatonin or vitamin C. Antioxidant treatment could be a useful clinical tool to increase or maintain umbilical blood flow in complicated pregnancy.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
268
|
Sotthibundhu A, Phansuwan-Pujito P, Govitrapong P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J Pineal Res 2010; 49:291-300. [PMID: 20663047 DOI: 10.1111/j.1600-079x.2010.00794.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, a circadian rhythm-promoting molecule secreted mainly by the pineal gland, has a variety of biological functions and neuroprotective effects including control of sleep-wake cycle, seasonal reproduction, and body temperature as well as preventing neuronal cell death induced by neurotoxic substances. Melatonin also modulates neural stem cell (NSC) function including proliferation and differentiation in embryonic brain tissue. However, the involvement of melatonin in adult neurogenesis is still not clear. Here, we report that precursor cells from adult mouse subventricular zone (SVZ) of the lateral ventricle, the main neurogenic area of the adult brain, express melatonin receptors. In addition, precursor cells derived from this area treated with melatonin exhibited increased proliferative activity. However, when cells were treated with luzindole, a competitive inhibitor of melatonin receptors, or pertussis toxin, an uncoupler of Gi from adenylate cyclase, melatonin-induced proliferation was reduced. Under these conditions, melatonin induced the differentiation of precursor cells to neuronal cells without an upregulation of the number of glia cells. Because stem cell replacement is thought to play an important therapeutic role in neurodegenerative diseases, melatonin might be beneficial for stimulating endogenous neural stem cells.
Collapse
|
269
|
Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JAF. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J Pineal Res 2010; 49:312-20. [PMID: 20738757 DOI: 10.1111/j.1600-079x.2010.00800.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.
Collapse
Affiliation(s)
- Katherine Forman
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
270
|
Paul S, Bhattacharya P, Das Mahapatra P, Swarnakar S. Melatonin protects against endometriosis via regulation of matrix metalloproteinase-3 and an apoptotic pathway. J Pineal Res 2010; 49:156-68. [PMID: 20609072 DOI: 10.1111/j.1600-079x.2010.00780.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of matrix metalloproteinases (MMPs) in endometriosis, a gynecological disease of women, is unclear. The study investigated the activity of MMP-3 and its interplay with MMP-9 during the onset of endometriosis. Additionally, the importance of MMP-3 on the apoptotic pathway in endometriosis and effect of melatonin thereon were investigated. A Significant increase in the activity of MMP-3 with the severity of endometriosis in human was observed which was found similar in mice also. During the early phase of endometriosis, MMP-3 but not MMP-9 was increased and associated with the expression of transcription factor, c-Fos. Moreover, urokinase plasminogen activator and tissue inhibitor of metalloproteinase (TIMP)-3 were involved in MMP-3 regulation during endometriosis. Furthermore, MMP-3 activity that was parallel to c-Fos expression in endometriosis was reduced by melatonin pretreatment as characterized by diminished activator protein (AP)-1 DNA-binding activity. Because decreased apoptosis is an explanation for the perpetuation of endometriosis, we tested the role of melatonin on apoptotic pathway in preventing endometriosis. Significant regression of glandular epithelium was observed in melatonin-treated when compared to untreated mice. Melatonin treatment increased apoptotic cells in endometriotic zones. This was related to reduced Bcl-2 expression along with increased Bax expression and caspase-9 activation. In summary, early induction of MMP-3 was distinct from MMP-9 during endometriosis, which was regulated by c-Fos and TIMP-3. Melatonin suppressed MMP-3 activity and amplified apoptosis while regressing endometriosis through a caspase-3 mediated pathway. Thus, melatonin may be a therapeutic agent for resolving endometriosis.
Collapse
Affiliation(s)
- Sumit Paul
- Department of Physiology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
271
|
Reiter RJ, Manchester LC, Tan DX. Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 2010; 8:194-210. [PMID: 21358970 PMCID: PMC3001213 DOI: 10.2174/157015910792246236] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/21/2010] [Accepted: 05/30/2010] [Indexed: 12/15/2022] Open
Abstract
Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nitrosative stress and, when the molecular destruction is sufficiently severe, it causes apoptosis or necrosis of neurons and glia. Loss of brain cells compromises the functions of the central nervous system expressed as motor, sensory and cognitive deficits and psychological alterations. In this survey we summarize the publications related to the following neurotoxins and the protective actions of melatonin: aminolevulinic acid, cyanide, domoic acid, kainic acid, metals, methamphetamine, polychlorinated biphenyls, rotenone, toluene and 6-hydroxydopamine. Given the potent direct free radical scavenging activities of melatonin and its metabolites, their ability to indirectly stimulate antioxidative enzymes and their efficacy in reducing electron leakage from mitochondria, it would be expected that these molecules would protect the brain from oxidative and nitrosative molecular mutilation. The studies summarized in this review indicate that this is indeed the case, an action that is obviously assisted by the fact that melatonin readily crosses the blood brain barrier.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|
272
|
Man GCW, Wang WWJ, Yeung BHY, Lee SKM, Ng BKA, Hung WY, Wong JH, Ng TB, Qiu Y, Cheng JCY. Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin. J Pineal Res 2010; 49:69-77. [PMID: 20524972 DOI: 10.1111/j.1600-079x.2010.00768.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Melatonin deficiency has been postulated as an etiologic factors in adolescent idiopathic scoliosis (AIS). In previous studies, melatonin was shown to regulate skeletal growth and bone formation in both humans and rats. Although it remains controversial whether there are differences in serum melatonin level between AIS and control subjects, melatonin signaling pathway dysfunction in osteoblasts has been reported in patients with AIS. Recently, our group found that melatonin receptor 1B (MT2) gene polymorphism was associated with the occurrence of AIS. Hence, the present study investigated the effect of melatonin on AIS osteoblasts. In vitro assays were performed with osteoblasts isolated from 17 severe AIS girls and nine control subjects. The osteoblasts were exposed to different concentrations of melatonin for 3 days. The effects of melatonin on cell proliferation (as evidenced by MTT assay) and differentiation (demonstrated by alkaline phosphatase activity) were determined. In the control group, melatonin significantly stimulated osteoblasts to proliferate and differentiate. However, in the AIS group, the stimulatory effects of melatonin were not discernible. Importantly, this finding demonstrated that there is a significant difference between AIS and control osteoblasts in functional response toward melatonin. Melatonin-stimulated proliferation of control osteoblasts was inhibited by the MT2 antagonist, 4-phenyl-2-propionamidotetraline, as well as by luzindole, a nonselective melatonin receptor antagonist, suggesting that MT2 is associated with the proliferative action of melatonin. The lack of response in AIS osteoblasts might be because of dysfunction of the melatonin signaling pathway, which may contribute to the low bone mineral density and abnormal skeletal growth observed in patients with AIS.
Collapse
Affiliation(s)
- Gene Chi-Wai Man
- Faculty of Medicine, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010; 48:347-52. [PMID: 20374443 DOI: 10.1111/j.1600-079x.2010.00761.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Methamphetamine (METH), the most commonly abused drug, has long been known to induce neurotoxicity. METH causes oxidative stress and inflammation, as well as the overproduction of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). The role of METH-induced brain inflammation remains unclear. Imbroglio activation contributes to the neuronal damage that accompanies injury, disease and inflammation. METH may activate microglia to produce neuroinflammatory molecules. In highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line, METH reduced cell viability in a concentration- and time-dependent manner and initiated the expression of interleukin 1beta (IL-1beta), interleukin 6 (IL-6) and tumor necrosis factor alpha. METH also induced the production of both ROS and RNS in microglial cells. Pretreatment with melatonin, a major secretory product of the pineal gland, abolished METH-induced toxicity, suppressed ROS and RNS formation and also had an inhibitory effect on cytotoxic factor gene expression. The expression of cytotoxic factors produced by microglia may contribute to central nervous system degeneration in amphetamine abusers. Melatonin attenuates METH toxicity and inhibits the expression of cytotoxic factor genes associated with ROS and RNS neutralization in HAPI microglia. Thus, melatonin might be one of the neuroprotective agents induced by METH toxicity and/or other immunogens.
Collapse
Affiliation(s)
- Jiraporn Tocharus
- Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | |
Collapse
|
274
|
Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94:1915-7. [PMID: 20152967 DOI: 10.1016/j.fertnstert.2009.12.082] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/29/2009] [Accepted: 12/29/2009] [Indexed: 11/29/2022]
Abstract
It is assumed somatic cells can die in the apoptotic, the autophagic, or the necrotic way; however, the mechanisms of sperm death are not clear. Here, ejaculated human spermatozoa were evaluated for apoptosis and reactive oxygen species production in the absence or presence of melatonin, and we concluded that melatonin reverses sperm apoptosis due to its free radical scavenging actions.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
275
|
Srinivasan V, Pandi-Perumal SR, Spence DW, Moscovitch A, Trakht I, Brown GM, Cardinali DP. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Res Bull 2010; 81:362-71. [PMID: 20005925 DOI: 10.1016/j.brainresbull.2009.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 12/12/2022]
Abstract
Melatonin is a remarkable molecule with diverse physiological functions. Some of its effects are mediated by receptors while other, like cytoprotection, seem to depend on direct and indirect scavenging of free radicals not involving receptors. Among melatonin's many effects, its antinociceptive actions have attracted attention. When given orally, intraperitoneally, locally, intrathecally or through intracerebroventricular routes, melatonin exerts antinociceptive and antiallodynic actions in a variety of animal models. These effects have been demonstrated in animal models of acute pain like the tail-flick test, formalin test or endotoxin-induced hyperalgesia as well as in models of neuropathic pain like nerve ligation. Glutamate, gamma-aminobutyric acid, and particularly, opioid neurotransmission have been demonstrated to be involved in melatonin's analgesia. Results using melatonin receptor antagonists support the participation of melatonin receptors in melatonin's analgesia. However, discrepancies between the affinity of the receptors and the very high doses of melatonin needed to cause effects in vivo raise doubts about the uniqueness of that physiopathological interpretation. Indeed, melatonin could play a role in pain through several alternative mechanisms including free radicals scavenging or nitric oxide synthase inhibition. The use of melatonin analogs like the MT(1)/MT(2) agonist ramelteon, which lacks free radical scavenging activity, could be useful to unravel the mechanism of action of melatonin in analgesia. Melatonin has a promising role as an analgesic drug that could be used for alleviating pain associated with cancer, headache or surgical procedures.
Collapse
|
276
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
Collapse
|