251
|
Wells J, Held P, Illenye S, Heintz NH. Protein-DNA interactions at the major and minor promoters of the divergently transcribed dhfr and rep3 genes during the Chinese hamster ovary cell cycle. Mol Cell Biol 1996; 16:634-47. [PMID: 8552092 PMCID: PMC231043 DOI: 10.1128/mcb.16.2.634] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In mammals, two TATA-less bidirectional promoters regulate expression of the divergently transcribed dihydrofolate reductase (dhfr) and rep3 genes. In CHOC 400 cells, dhfr mRNA levels increase about fourfold during the G1-to-S phase transition of the cell cycle, whereas the levels of rep3 transcripts vary less than twofold during this time. To assess the role of DNA-binding proteins in transcriptional regulation of the dhfr and rep3 genes, the major and minor dhfr-rep3 promoter regions were analyzed by high-resolution genomic footprinting during the cell cycle. At the major dhfr promoter, prominent DNase I footprints over four upstream Sp1 binding sites did not vary throughout G1 and entry into the S phase. Genomic footprinting revealed that a protein is constitutively bound to the overlapping E2F sites throughout the G1-to-S phase transition, an interaction that is most evident on the transcribed template strand. On the nontranscribed strand, multiple changes in the DNase I cleavage pattern are observed during transit through G1 and entry into the S phase. By using gel mobility shift assays and a series of sequence-specific probes, two different species of E2F were shown to interact with the dhfr promoter during the cell cycle. The DNA binding activity of one E2F species, which preferentially recognizes the sequence TTTGGCGC, did not vary significantly during the cell cycle. The DNA binding activity of the second E2F species, which preferentially recognizes the sequence TTTCGCGC, increased during the G1-to-S phase transition. Together, these results indicate that Sp1 and the species of E2F that binds TTTGGCGC participate in the formation of a basal transcription complex, while the species of E2F that binds TTTCGCGC regulates dhfr gene expression during the G1-to-S phase transition. At the minor promoter, DNase I footprints at a consensus c-Myc binding site and three Sp1 binding sites showed little variation during the G1-to-S phase transition. In addition to protein binding at sequences known to be involved in the regulation of transcription, genomic footprinting of the entire promoter region also showed that a protein factor is constitutively bound to the first intron of the rep3 gene.
Collapse
Affiliation(s)
- J Wells
- Program in Cell and Molecular Biology, University of Vermont College of Medicine, Burlington 05405, USA
| | | | | | | |
Collapse
|
252
|
Shan B, Durfee T, Lee WH. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis. Proc Natl Acad Sci U S A 1996; 93:679-84. [PMID: 8570615 PMCID: PMC40112 DOI: 10.1073/pnas.93.2.679] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression.
Collapse
Affiliation(s)
- B Shan
- Center for Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio 78245, USA
| | | | | |
Collapse
|
253
|
Abstract
We present heuristic-based predictions of the secondary and tertiary structures of cyclins A, B, and D, representatives of the cyclin superfamily. The list of suggested constraints for tertiary structure assembly was left unrefined in order to submit this report before an announced crystal structure for cyclin A becomes available. To predict these constraints, a master sequence alignment over 270 positions of cyclin types A, B, and D was adjusted based on individual secondary structure predictions for each type. We used new heuristics for predicting aromatic residues at protein-protein interfaces and to identify sequentially distinct regions in the protein chain that cluster in the folded structure. The boundaries of two conjectured domains in the cyclin fold were predicted based on experimental data in the literature. The domain that is important for interaction of the cyclins with cyclin-dependent kinases (CDKs) is predicted to contain six helices; the second domain in the consensus model contains both helices and a beta-sheet that is formed by sequentially distant regions in the protein chain. A plausible phosphorylation site is identified. This work represents a blinded test of the method for prediction of secondary and, to a lesser extent, tertiary structure from a set of homologous protein sequences. Evaluation of our predictions will become possible with the publication of the announced crystal structure.
Collapse
Affiliation(s)
- D L Gerloff
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 94143-0450, USA
| | | |
Collapse
|
254
|
Abstract
As cells approach S phase, many changes occur to create an environment conducive for DNA synthesis and commitment to cell division. The transcription rate of many genes encoding enzymes involved in DNA synthesis, including the dihydrofolate reductase (dhfr) gene, increases at the G1/S boundary of the cell cycle. Although a number of transcription factors interact to finely tune the levels of dhfr RNA produced, two families of transcription factors, Sp1 and E2F, play central roles in modulating dhfr levels. A region containing several Sp1-binding sites is required for both regulated and basal transcription levels. In contrast, the E2F-binding sites near the transcription start site are required only for regulated transcription. A model is presented for the regulation of the dhfr gene which may also pertain to other cell cycle-associated genes.
Collapse
Affiliation(s)
- J E Slansky
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
255
|
Abstract
The product of the retinoblastoma tumor-suppressor gene (RB) is a ubiquitously expressed, 105-kDa nuclear phosphoprotein (pRB). The pRB protein negatively regulates the cellular G1/S phase transition, and it is at this point in the cell cycle that it is thought to play its role as a tumor suppressor. The growth-inhibitory effects of pRB are exerted, at least in part, through the E2F family of transcription factors. This chapter reviews the insights into the mechanism of action of the E2F family members that have been obtained through overexpression studies. Studies in RB-/- SAOS-2 cells have provided evidence in support of the hypothesis that the E2F family members are negatively regulated by pRB and the related protein p130. In particular, the results obtained are consistent with the earlier biochemical data which suggested that E2F1 is regulated primarily by pRB, and E2F4 by p130. Results relating to p107 are also discussed. Consistent with the proposed role of pRB and E2F1 as coregulators of entry into S phase, experiments have demonstrated that overexpression of E2F1 is sufficient to override the cell cycle arrests caused by serum deprivation of fibroblasts or transforming growth factor-beta (TGF-beta) treatment of mink lung epithelial cells. However, at least in the case of the serum deprivation induced arrest, the ultimate result of E2F1 overexpression is death by p53-dependent apoptosis. In light of this and other data, a model is discussed as to how functional inactivation of pRB and p53 might cooperate to promote tumorigenesis. A number of studies have demonstrated the oncogenic potential of E2F family members, at least under certain conditions. This is, again, in keeping with the notion that these proteins play a critical role in controlling proliferation.
Collapse
Affiliation(s)
- P D Adams
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
256
|
Dou QP, Pardee AB. Transcriptional activation of thymidine kinase, a marker for cell cycle control. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:197-217. [PMID: 8650303 DOI: 10.1016/s0079-6603(08)60145-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Q P Dou
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | |
Collapse
|
257
|
Rifkind RA, Richon VM, Marks PA. Induced differentiation, the cell cycle, and the treatment of cancer. Pharmacol Ther 1996; 69:97-102. [PMID: 8984510 DOI: 10.1016/0163-7258(95)02044-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hybrid polar compounds, of which hexamethylene bisacetamide (HMBA) is the prototype, have been shown to be potent inducers of differentiation of many types of transformed cells. With virus-transformed murine erythroleukemia cells as a model, HMBA was shown to cause these cells to arrest in G1 phase and express globin genes. HMBA action involves modulation of factors regulating G1 to S phase progression, including a decrease in the G1 cyclin-dependent kinase 4 accumulation of underphosphorylated retinoblastoma protein, and an increase in the level of both retinoblastoma protein and the related protein, p107. In turn, p107 complexes with transcription factors such as E2F and, presumably, inhibits transcriptional activity of these factors for genes whose products are required for DNA synthesis. This provides a possible mechanism for HMBA-induced terminal cell division of transformed cells. Evidence that hybrid polar compounds have therapeutic potential for cancer treatment is also reviewed.
Collapse
Affiliation(s)
- R A Rifkind
- Dewitt Wallace Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
258
|
Muschel RJ, McKenna WG. Alterations in cell cycle control during tumor progression: effects on apoptosis and the response to therapeutic agents. Curr Top Microbiol Immunol 1996; 213 ( Pt 2):197-213. [PMID: 9053291 DOI: 10.1007/978-3-642-61109-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R J Muschel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-6082, USA
| | | |
Collapse
|
259
|
Affiliation(s)
- D Cobrinik
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
260
|
Slansky JE, Farnham PJ. Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol 1996; 208:1-30. [PMID: 8575210 DOI: 10.1007/978-3-642-79910-5_1] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
E2F is a heterodimer composed of two partners, such as E2F1 and DP1. Although E2F1 can bind DNA as a homodimer and increase promoter activity, optimal DNA-binding and transcriptional activity occurs in the heterodimeric form. A model (Fig. 3) for the involvement of E2F activity in cell growth control that incorporates viral oncoproteins, positive regulators of cell growth (cyclins) and negative regulators of cell growth (tumor suppressor proteins) can now be advanced. Each aspect of this model is addressed in subsequent chapters of this book. It is likely that binding of growth-suppressing proteins, such as Rb, can inhibit the transactivation potential of E2F1, either by blocking the interaction of E2F1 with a separate component of the transcription complex or by bringing a repressor domain to the transcription complex (Flemington et al. 1993; Helin et al. 1993; Weintraub et al. 1992; Zamanian and La Thangue 1993; Zhu et al. 1993). Phosphorylation or sequestration of Rb by viral oncoproteins can free E2F. The influence of viral oncoproteins on E2F activity and the regulation of the different E2F complexes is the focus of the contributions by Cobrinik and by Cress and Nevens. The interaction of the free E2F induces a bend in the DNA that may also play a role in transactivation, perhaps by bringing proteins (such as an Sp1 or CCAAT family member) separated by distance on the promoter DNA into contact (Huber et al. 1994). Because E2F target genes encode proteins critical for cell growth, deregulation of E2F activity can have severe consequences, such as apoptosis or uncontrolled proliferation. The effect of altered expression of E2F activity on the cell cycle and on tumorigenicity is the focus of the contribution by Adams and Kaelin. Finally, a comparison of E2F to the genetically well-characterized factors that regulate G1/S phase transcription in yeast is the subject of the chapter by Breeden. This volume concludes with Farnham's summary of the rapid gains in knowledge concerning the E2F gene family that have been made in the past several years and provides a series of questions and lines of investigation that will be the focus of future studies.
Collapse
Affiliation(s)
- J E Slansky
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
261
|
Krek W, Xu G, Livingston DM. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 1995; 83:1149-58. [PMID: 8548802 DOI: 10.1016/0092-8674(95)90141-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Commitment of mammalian cells to enter S phase enables the transcription factor E2F-1 to activate certain genes whose products mediate cell cycle advance. In S phase, E2F-1 forms stable complexes with cyclin A-kinase, which in turn eliminates E2F-1DNA binding function. Here, we show that suppression of E2F-1 DNA-binding activity by cyclin A-kinase is linked to orderly S phase progression. Disruption of this linkage resulted in S phase delay/arrest followed by regrowth or apoptosis, depending upon whether the DNA-bound E2F-1 could transactivate. Hence, the unscheduled presence of E2F-1 on specific DNA sequences during S phase can activate a specific S phase checkpoint, thereby linking transcription, DNA replication, and cell cycle control.
Collapse
Affiliation(s)
- W Krek
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | |
Collapse
|
262
|
Margolis MJ, Pajovic S, Wong EL, Wade M, Jupp R, Nelson JA, Azizkhan JC. Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol 1995; 69:7759-67. [PMID: 7494286 PMCID: PMC189718 DOI: 10.1128/jvi.69.12.7759-7767.1995] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Three polypeptides are produced from the major immediate-early (IE) region of human cytomegalovirus by alternative splicing. The IE gene products regulate subsequent viral and cellular gene expression. We previously reported that cotransfection of a genomic clone of the major IE region stimulated transient expression of chloramphenicol acetyltransferase driven by the dihydrofolate reductase (DHFR) promoter and that an intact E2F site was required for the trans activation (M. Wade, T. F. Kowalik, M. Mudryj, E.-S. Huang, and J. C. Azizkhan, Mol. Cell. Biol. 12:4364-4374, 1992). With the availability of cDNA clones for the individual major IE proteins, we sought to determine which of these proteins exerted this effect and whether the IE protein(s) interacted with E2F. In this study, we use cotransfection to demonstrate that the 55- and 86-kDa major IE proteins from the IE2 region can each moderately trans activate the DHFR promoter and that the 72-kDa IE1 protein stimulates DHFR transcription to a much higher level. Furthermore, trans activation through the 72-kDa IE1 protein is in part E2F dependent, while activation by the 55- and 86-kDa IE proteins is E2F independent. We also demonstrate by in vitro pull-down assays that the 72-kDa IE1 protein can specifically interact with the DNA binding domain of E2F1 (amino acids 88 to 191) in the presence of nuclear extract. Moreover, antibodies to either E2F1 or IE72 will immunoprecipitate both E2F and IE72 from cells that stably express IE72, and antibody to E2F1 will immunoprecipitate IE72 from normal human fibroblast cells infected with human cytomegalovirus.
Collapse
Affiliation(s)
- M J Margolis
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | |
Collapse
|
263
|
DeGregori J, Leone G, Ohtani K, Miron A, Nevins JR. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev 1995; 9:2873-87. [PMID: 7498785 DOI: 10.1101/gad.9.23.2873] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous experiments have defined a critical role for the G1 cyclins and associated kinases in allowing a normal progression of cells from a quiescent state, through G1, and into S phase. We now demonstrate that G1 cyclin-dependent kinase activity is critical for the accumulation of E2F activity late in G1. Moreover, E2F-1 overexpression can overcome a G1 arrest caused by the inhibition of G1 cyclin-dependent kinase activity, consistent with E2F activation being an important consequence of the action of G1 cyclins. E2F-1 also overcomes a G1 block caused by gamma irradiation and leads to an apparent complete replication of the cellular genome and entry into mitosis. This E2F-1-mediated induction of S phase and mitosis is not accompanied by the rise in either cyclin D-associated kinase activity or cdk2 activity that is normally observed during the G1 phase of the cell cycle. We conclude that one key function for G1 cyclin-dependent kinase activity is the activation of E2F-1, that the accumulation of E2F activity may be sufficient to allow initiation and completion of S phase, but that additional events, including G1 cyclin kinase activity, are likely necessary for a normal proliferative event.
Collapse
Affiliation(s)
- J DeGregori
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
264
|
Tommasi S, Pfeifer GP. In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol Cell Biol 1995; 15:6901-13. [PMID: 8524257 PMCID: PMC230945 DOI: 10.1128/mcb.15.12.6901] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In quiescent cells, cdc2 mRNA is almost undetectable. Stimulation of cells to reenter the cell cycle results in induction of cdc2 expression, beginning at the G1-to-S transition and reaching maximum levels during late S and G2 phases. To investigate cdc2 transcriptional regulation throughout cell cycle progression, we monitored protein-DNA interactions by in vivo footprinting along 800 bp of the human cdc2 promoter in quiescent fibroblasts and at different time points following serum stimulation. We found 11 in vivo protein-binding sites, but no protein binding was observed at a high-affinity E2F site that had previously been implicated in cdc2 regulation. Nine of the identified in vivo binding sites (among them were two inverted CCAAT boxes, two Sp1 sites, and one ets-2 site) bind transcription factors constitutively throughout the cell cycle. However, at two elements located at positions -60 and -20 relative to the transcription start site, the binding pattern changes significantly as the cells are entering S phase. A G0- and G1-specific protein complex disappears at the -20 element at the beginning of S phase. This sequence deviates at one base position from known E2F consensus binding sites. We found that the major E2F activity in human fibroblasts contains E2F-4 and p130. The -20 element of the cdc2 gene specifically interacts with a subset of E2F-4-p130 complexes present in G0 cells but does not interact with S-phase-specific E2F complexes. Transient-transfection experiments with wild-type and mutant cdc2 promoter constructs indicate that the -20 element is involved in suppressing cdc2 activity in quiescent cells. We suggest that the presence of the p130-E2F-4 complex in G0/G1 blocks access of components of the basal transcription machinery or prevents transaction by the constitutively bound upstream activator proteins.
Collapse
Affiliation(s)
- S Tommasi
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | |
Collapse
|
265
|
Abstract
The recent determination of the crystal structures of both cyclin A and the cyclin a-CDK2 complex provides new insight into the cyclin- dependent activation of cyclin-dependent protein kinases.
Collapse
Affiliation(s)
- K Levine
- Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
266
|
Yang ZY, Perkins ND, Ohno T, Nabel EG, Nabel GJ. The p21 cyclin-dependent kinase inhibitor suppresses tumorigenicity in vivo. Nat Med 1995; 1:1052-6. [PMID: 7489362 DOI: 10.1038/nm1095-1052] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The p21 gene encodes a cyclin-dependent kinase inhibitor that affects cell-cycle progression, but the potential of this gene product to serve as a tumour suppressor in vivo has not been established. In this report, we show that the growth of malignant cells in vitro and in vivo is inhibited by expression of p21. Expression of p21 resulted in an accumulation of cells in G0/G1, altered morphology, and cell differentiation, but apoptosis was not induced. Introduction of p21 with adenoviral vectors into malignant cells completely suppressed their growth in vivo and also reduced the growth of established pre-existing tumours. Gene transfer of p21 may provide a molecular genetic approach to arresting cancer cell growth by committing malignant cells irreversibly to a pathway of terminal differentiation.
Collapse
Affiliation(s)
- Z Y Yang
- Howard Hughes Medical Institute, University of Michigan Medical Center, Department of Internal Medicine, Ann Arbor 48109-0650, USA
| | | | | | | | | |
Collapse
|
267
|
Shen WJ, Kim HS, Tsai SY. Stimulation of human insulin receptor gene expression by retinoblastoma gene product. J Biol Chem 1995; 270:20525-9. [PMID: 7657628 DOI: 10.1074/jbc.270.35.20525] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Multiple cis-acting elements have been defined to be important for the transcriptional regulation of the human insulin receptor (hIR) gene expression. We report here that one of these elements also mediated the stimulation of hIR promoter activity by the retinoblastoma gene product (Rb). The cis-element responsible for Rb stimulation was localized to the GA and GC boxes situated between -643 to -607 of the hIR gene. We have previously demonstrated that these GA and GC boxes bind Sp1 with high affinity and are responsible for E1a activation of hIR promoter activity. Mutation of these sequences completely abolished Rb-dependent enhancement of hIR promoter activity. In addition, we localized three regions in the N-terminal domain of Rb to be involved in stimulation of hIR promoter activity. Our results represent one of the first studies to demonstrate a functional importance assigned to the multiple phosphorylation sites in the N terminus of Rb. Finally, the mechanism by which Rb activates the hIR promoter are presented.
Collapse
Affiliation(s)
- W J Shen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
268
|
Resnitzky D, Hengst L, Reed SI. Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol Cell Biol 1995; 15:4347-52. [PMID: 7623829 PMCID: PMC230674 DOI: 10.1128/mcb.15.8.4347] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have created fibroblast cell lines that express cyclin A under the control of a tetracycline-repressible promoter. When stimulated to reenter the cell cycle after serum withdrawal, these cells were advanced prematurely into S phase by induction of cyclin A. In an asynchronous population, induction of cyclin A caused a decrease in the percentage of cells in G1. These results demonstrate that expression of cyclin A is rate limiting for the G1-to-S transition and suggest that cyclin A can function as a G1 cyclin. Although the level of exogenous cyclin A was constant throughout the cell cycle, its associated kinase activity increased as cells approached S phase. Low kinase activity in early G1 was found to correlate with the presence of p27Kip1 in cyclin A-associated complexes, while high kinase activity in late G1 was correlated with its absence. These results suggest that a function of p27Kip1 in G1 is to prevent premature activation of cyclin A-associated kinase. Cyclin A expression in early G1 led to phosphorylation of the product of the retinoblastoma susceptibility gene (pRb). Thus, cyclin A expression can be rate limiting for pRb phosphorylation, implicating pRb as a physiological substrate of the cyclin A-dependent kinase. Taken together, these results demonstrate that deregulated expression of cyclin A can perturb the normal regulation of the G1-to-S transition.
Collapse
Affiliation(s)
- D Resnitzky
- Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
269
|
Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995; 376:313-20. [PMID: 7630397 DOI: 10.1038/376313a0] [Citation(s) in RCA: 1055] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of the human cyclinA-cyclin-dependent kinase2 (CDK2)-ATP complex has been determined at 2.3 A resolution. CyclinA binds to one side of CDK2's catalytic cleft, inducing large conformational changes in its PSTAIRE helix and T-loop. These changes activate the kinase by realigning active site residues and relieving the steric blockade at the entrance of the catalytic cleft.
Collapse
Affiliation(s)
- P D Jeffrey
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
270
|
Zhu L, Harlow E, Dynlacht BD. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev 1995; 9:1740-52. [PMID: 7622038 DOI: 10.1101/gad.9.14.1740] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The kinase activities of the cyclin/cdk complexes can be regulated in a number of ways. The most recently discovered mechanism of regulation is the association of cdk inhibitors (CKIs), such as p21, p27, and p57, with these complexes. In this report we demonstrate that the pRB-related protein p107, like the p21 family of cdk inhibitors, can inhibit the phosphorylation of target substrates by cyclin A/cdk2 and cyclin E/cdk2 complexes, and the associations of p107 and p21 with cyclin/cdk2 rely on a structurally and functionally related interaction domain. Furthermore, interactions between p107 or p21 with cyclin/cdk2 complexes are mutually exclusive. In cells treated with DNA-damaging agents elevated levels of p21 cause a dissociation of p107/cyclin/cdk2 complexes to yield p21/cyclin/cdk2 complexes. Finally, the consequences of cyclin/cdk2 interactions with p107 have been examined. The activation of the p107-bound cyclin/cdk kinases leads to dissociation of p107 from the transcription factor E2F. Together, these results suggest that cyclin/cdk complexes can be regulated by protein molecules from different families in a mutually exclusive manner in response to certain signals and that these inhibitory proteins may have a potential role in regulating macromolecular assembly.
Collapse
Affiliation(s)
- L Zhu
- Massachusetts General Hospital (MGH) Cancer Center, Charlestown 02129, USA
| | | | | |
Collapse
|
271
|
Wang Y, Prives C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 1995; 376:88-91. [PMID: 7596441 DOI: 10.1038/376088a0] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Central to the role of p53 in cell regulation are its sequence-specific interactions with genes that control the cell cycle and apoptosis. p53 response elements contain two or more copies of a somewhat promiscuous consensus sequence: 5'-XXXC(A,T)(T,A)GYY-3' (where X is a purine and Y is a pyrimidine) (ref. 3). The sequence-specific DNA-binding region of p53 resides in its central conserved region. Although this region itself is not known to be phosphorylated, the amino and carboxy termini of human p53 contain sites for phosphorylation by several protein kinases. We have examined the role of cyclin-dependent kinase (Cdk) shown previously to phosphorylate human p53 at serine 315 (ref. 5). We report here that p53 is efficiently and selectively phosphorylated by S and G2/M Cdks. Such phosphorylation markedly stimulates sequence-specific DNA binding by p53 and also causes a distinctive conformational change in p53 as revealed by partial protease analysis. Strikingly, Cdk phosphorylation also confers binding-site preference on p53. These data suggest a potential regulatory mechanism of p53 activity.
Collapse
Affiliation(s)
- Y Wang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
272
|
Resnitzky D, Reed SI. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 1995; 15:3463-9. [PMID: 7791752 PMCID: PMC230582 DOI: 10.1128/mcb.15.7.3463] [Citation(s) in RCA: 368] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ectopic expression of cyclins D1 and E was previously shown to accelerate the G1/S-phase transition, indicating that both classes of G1 cyclin control an event(s) that is rate limiting for entry into S phase. In order to determine whether cyclins D1 and E control the same or two different rate-limiting events, we have created cell lines that express both cyclins in an inducible manner. We show here that ectopic expression of both cyclins E and D1 in the same cell has an additive effect on shortening of the G1 interval relative to expression of any single cyclin. In order to further explore the molecular basis for G1 cyclin action, we used cell lines capable of expressing cyclin D1, E, or both prematurely and measured the effect of cyclin expression in early G1 on phosphorylation of the retinoblastoma susceptibility gene product (pRb). We show here that while premature expression of either cyclin alone advances the G1/S-phase transition to the same extent, premature expression of cyclin D1 leads to immediate appearance of hyperphosphorylated pRb, while premature expression of cyclin E does not. Ectopic expression of both cyclins E and D1 in the same cell has an additive effect on shortening of the G1 interval, while the effect on pRb phosphorylation is similar to the effect of cyclin D1 alone. These results suggest that cyclins E and D1 control two different events, both rate limiting for the G1/S-phase transition, and that pRb phosphorylation might be the rate-limiting event controlled by cyclin D1.
Collapse
Affiliation(s)
- D Resnitzky
- Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
273
|
Duronio RJ, O'Farrell PH. Developmental control of the G1 to S transition in Drosophila: cyclin Eis a limiting downstream target of E2F. Genes Dev 1995; 9:1456-68. [PMID: 7601350 DOI: 10.1101/gad.9.12.1456] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The E2F transcription factor is required for S phase in Drosophila. While it also triggers expression of replication genes at the G1-S transition, the relevance of this transcription is not clear because many of the induced gene products are sufficiently stable that new expression is not required for S phase. However, one unstable product could couple S phase to E2F activation. Here we show that cyclin E expression at G1-S requires E2F, that activation of E2F without cyclin E is not sufficient for S phase, and that early in G1 ectopic expression of cyclin E alone can bypass E2F and induce S phase. We conclude that cyclin E is the downstream gene that couples E2F activity to G1 control. Not all embryonic cycles are similarly coupled to E2F activation, however. The rapidly proliferating CNS cells, which exhibit no obvious G1, express cyclin E constitutively and independently to E2F. Instead, cyclin E expression activates E2F in the CNS. Thus, this tissue-specific E2F-independent transcription of cyclin E reverses the hierarchical relationship between cyclin E and E2F. Both hierarchies activate expression of the full complement of replication functions controlled by E2F; however, whereas inactivation of E2F can produce a G1 when cyclin E is downstream of E2F, we propose that an E2F-independent source of E eliminates G1.
Collapse
Affiliation(s)
- R J Duronio
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | |
Collapse
|
274
|
Koh J, Enders GH, Dynlacht BD, Harlow E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 1995; 375:506-10. [PMID: 7777061 DOI: 10.1038/375506a0] [Citation(s) in RCA: 378] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cyclin-dependent kinase inhibitor p16 is a candidate tumour-suppressor protein that maps to a genomic locus strongly associated with familial melanoma and other tumour types. Screening of primary tumours and linkage analysis of familial melanoma pedigrees have identified many potential mutations in p16, but the functional significance of these sequence variants has remained unclear. We report here that p16 can act as a potent and specific inhibitor of progression through the G1 phase of the cell cycle, and we demonstrate that several tumour-derived alleles of p16 encode functionally compromised proteins. The ability of p16 to arrest cell-cycle progression generally correlates with inhibition of cyclin D1/Cdk4 kinase activity in vitro, with two exceptions among the alleles tested. In vivo, the presence of functional retinoblastoma protein appears to be necessary but may not be sufficient to confer full sensitivity to p16-mediated growth arrest. Our results provide support for the notion that p16 is an important cell-cycle regulator whose inactivation contributes to the outgrowth of human tumours.
Collapse
Affiliation(s)
- J Koh
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | |
Collapse
|
275
|
Beijersbergen RL, Carlée L, Kerkhoven RM, Bernards R. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev 1995; 9:1340-53. [PMID: 7797074 DOI: 10.1101/gad.9.11.1340] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The orderly progression through the cell cycle is mediated by the sequential activation of several cyclin/cyclin-dependent kinase (cdk) complexes. These kinases phosphorylate a number of cellular substrates, among which is the product of the retinoblastoma gene, pRb. Phosphorylation of pRb in late G1 causes the release of the transcription factor E2F from pRb, resulting in the transcriptional activation of E2F-responsive genes. We show here that phosphorylation of the pRb-related p107 is also cell cycle regulated. p107 is first phosphorylated at 8 hr following serum stimulation of quiescent fibroblasts, which coincides with an increase in cyclin D1 protein levels. Consistent with this, we show that a cyclin D1/cdk4 complex, but not a cyclin E/cdk2 complex, can phosphorylate p107 in vivo. Furthermore, phosphorylation of p107 can be abolished by the overexpression of a dominant-negative form of cdk4. Phosphorylation of p107 results in the loss of the ability to associate with E2F-4, a transcription factor with growth-promoting and oncogenic activity. A p107-induced cell cycle block can be released by cyclin D1/cdk4 but not by cyclin E/cdk2. These data indicate that the activity of p107 is regulated by phosphorylation through D-type cyclins.
Collapse
Affiliation(s)
- R L Beijersbergen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
276
|
Affiliation(s)
- R A Weinberg
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|
277
|
Abstract
Progression of the cell cycle in mammalian cells, as in all other organisms, is associated with the phase-specific transcription of defined sets of genes. Such periodically expressed genes frequently encode proteins that either directly control cell-cycle progression or function in metabolic processes linked to the cell cycle, such as nucleotide and DNA biosynthesis. Here, I summarize our current knowledge and views of the mechanisms governing the coupling of cell-cycle control mechanisms to transcriptional regulation, with particular emphasis on the transcription factor E2F and its connections with cyclin-dependent kinases and the retinoblastoma gene family.
Collapse
Affiliation(s)
- R Müller
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps-Universität Marburg, Germany
| |
Collapse
|
278
|
Vairo G, Livingston DM, Ginsberg D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev 1995; 9:869-81. [PMID: 7705662 DOI: 10.1101/gad.9.7.869] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Little is known of the mechanisms controlling the G0/G1 transition of the cell cycle. The induction of immediate early gene expression, thought to be important for this process, suggests that the key factors controlling this transition preexist in quiescent cells. The E2F family of transcription factors likely play an important role in this process, because E2F DNA-binding activity exists in quiescent cells, and the induction of at least some immediate early genes requires intact E2F regulatory promoter sites. Here, we show that the major G0 E2F activity of primary human T cells, E2F-4, is stably bound to the p130 pocket protein in association with a DP heterodimerization partner. p130-E2F-4 binding has functional implications because p130 effectively suppressed E2F-4-mediated trans-activation, and coexpression of E2F4 overcame p130-mediated G1 arrest more efficiently than RB-induced G1 blockade. Conversely, E2F-1 overrode an RB-induced G1 block more efficiently than E2F-4. Thus, p130 and RB appear to induce cell cycle arrest via biochemically distinct mechanisms that involve different E2F family members.
Collapse
Affiliation(s)
- G Vairo
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
279
|
Shin EK, Shin A, Paulding C, Schaffhausen B, Yee AS. Multiple change in E2F function and regulation occur upon muscle differentiation. Mol Cell Biol 1995; 15:2252-62. [PMID: 7891719 PMCID: PMC230453 DOI: 10.1128/mcb.15.4.2252] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.
Collapse
Affiliation(s)
- E K Shin
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
280
|
Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci U S A 1995; 92:2403-7. [PMID: 7892279 PMCID: PMC42492 DOI: 10.1073/pnas.92.6.2403] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The E2F transcription factors play a role in regulating the expression of genes required for cell proliferation. Their activity appears to be regulated by association with the retinoblastoma protein (pRb) and the pRb-related proteins p107 and p130. In vivo, pRb is found in complex with a subset of E2F components--namely, E2F-1, E2F-2, and E2F-3. Here we describe the characterization of cDNAs encoding two unusual E2Fs, E2F-4 and E2F-5, each identified by the ability of their gene product to interact with p130 in a yeast two-hybrid system. E2F-4 and -5 share common sequences with E2F-1, E2F-2, and E2F-3 and, like these other E2Fs, the ability to heterodimerize with DP-1, thereby acquiring the ability to bind an E2F DNA recognition sequence with high affinity. However, in contrast to E2F-1, E2F-4 and E2F-5 fail to bind pRb in a two-hybrid assay. Moreover, they show a unique pattern of expression in synchronized human keratinocytes: E2F-4 and E2F-5 mRNA expression is maximal in mid-G1 phase before E2F-1 expression is detectable. These findings suggest that E2F-4 and E2F-5 may contribute to the regulation of early G1 events including the G0/G1 transition.
Collapse
Affiliation(s)
- C Sardet
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | | | | | | | | | |
Collapse
|
281
|
Abstract
As key regulators of the cell cycle, the cyclin-dependent kinases must be tightly regulated by extra- and intracellular signals. The activity of cyclin-dependent kinases is controlled by four highly conserved biochemical mechanisms, forming a web of regulatory pathways unmatched in its elegance and intricacy.
Collapse
Affiliation(s)
- D O Morgan
- Department of Physiology, University of California, San Francisco 94143-0444
| |
Collapse
|
282
|
Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 1994. [PMID: 7969176 DOI: 10.1128/mcb.14.12.8420] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2.
Collapse
|
283
|
Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 1994; 14:8420-31. [PMID: 7969176 PMCID: PMC359381 DOI: 10.1128/mcb.14.12.8420-8431.1994] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2.
Collapse
Affiliation(s)
- M Xu
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
284
|
Affiliation(s)
- T Hunter
- Salk Institute, La Jolla, California 92037
| | | |
Collapse
|
285
|
Buchkovich KJ, Ziff EB. Nerve growth factor regulates the expression and activity of p33cdk2 and p34cdc2 kinases in PC12 pheochromocytoma cells. Mol Biol Cell 1994; 5:1225-41. [PMID: 7865886 PMCID: PMC301148 DOI: 10.1091/mbc.5.11.1225] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the absence of serum, nerve growth factor (NGF) promotes the survival and differentiation of the PC12 pheochromocytoma cell line. In the presence of serum, NGF acts primarily as a differentiation factor and negative regulator of cell cycling. To investigate NGF control of cell cycling, we have analyzed the regulation of cyclin dependent kinases during PC12 cell differentiation. NGF treatment leads to a reduction in the steady-state protein levels of p33cdk2 and p34cdc2, two key regulators of cell cycle progression. The decrease in p33cdk2 and p34cdc2 coincides with a decrease in the enzymatic activity of cyclinA-p34cdc2, cyclinB-p34cdc2, cyclinE-p33cdk2, and cyclinA-p33cdk2 kinases. The decline in p33cdk2 and p34cdc2 kinase activity in response to NGF is accelerated in cells that over-express the p140trk NGF receptor, suggesting that the timing of the down- regulation is dependent on the level of p140trk and the strength of the NGF signal. The level of cyclin A, a regulatory subunit of p33cdk2 and p34cdc2, is relatively constant during PC12 differentiation. Nevertheless, the DNA binding activity of the cyclinA-associated transcription factor E2F/DP decreases. Thus, NGF down-regulates the activity of cyclin dependent kinases and cyclin-transcription factor complexes during PC12 differentiation.
Collapse
Affiliation(s)
- K J Buchkovich
- Howard Hughes Medical Institute, Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|