251
|
Grob P, Zhang TT, Hannah R, Yang H, Hefferin ML, Tomkinson AE, Nogales E. Electron microscopy visualization of DNA-protein complexes formed by Ku and DNA ligase IV. DNA Repair (Amst) 2011; 11:74-81. [PMID: 22088982 DOI: 10.1016/j.dnarep.2011.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/13/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
The repair of DNA double-stranded breaks (DSBs) is essential for cell viability and genome stability. Aberrant repair of DSBs has been linked with cancer predisposition and aging. During the repair of DSBs by non-homologous end joining (NHEJ), DNA ends are brought together, processed and then joined. In eukaryotes, this repair pathway is initiated by the binding of the ring-shaped Ku heterodimer and completed by DNA ligase IV. The DNA ligase IV complex, DNA ligase IV/XRRC4 in humans and Dnl4/Lif1 in yeast, is recruited to DNA ends in vitro and in vivo by an interaction with Ku and, in yeast, Dnl4/Lif1 stabilizes the binding of yKu to in vivo DSBs. Here we have analyzed the interactions of these functionally conserved eukaryotic NHEJ factors with DNA by electron microscopy. As expected, the ring-shaped Ku complex bound stably and specifically to DNA ends at physiological salt concentrations. At a ratio of 1 Ku molecule per DNA end, the majority of DNA ends were occupied by a single Ku complex with no significant formation of linear DNA multimers or circular loops. Both Dnl4/Lif1 and DNA ligase IV/XRCC4 formed complexes with Ku-bound DNA ends, resulting in intra- and intermolecular DNA end bridging, even with non-ligatable DNA ends. Together, these studies, which provide the first visualization of the conserved complex formed by Ku and DNA ligase IV at juxtaposed DNA ends by electron microscopy, suggest that the DNA ligase IV complex mediates end-bridging by engaging two Ku-bound DNA ends.
Collapse
Affiliation(s)
- Patricia Grob
- Howard Hughes Medical Institute, UC Berkeley, CA 94720-3220, United States
| | | | | | | | | | | | | |
Collapse
|
252
|
Kasparek TR, Humphrey TC. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol 2011; 22:886-97. [PMID: 22027614 DOI: 10.1016/j.semcdb.2011.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 01/12/2023]
Abstract
Chromosomal rearrangements, which can lead to oncogene activation and tumour suppressor loss, are a hallmark of cancer cells. Such outcomes can result from both the repair and misrepair of DNA ends, which arise from a variety of lesions including DNA double strand breaks (DSBs), collapsed replication forks and dysfunctional telomeres. Here we review the mechanisms by which non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways can both promote chromosomal rearrangements and also suppress them in response to such lesions, in accordance with their increasingly recognised tumour suppressor function. Further, we consider how chromosomal rearrangements, together with a modular approach towards understanding their etiology, may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Torben R Kasparek
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
253
|
Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol Cell Biol 2011; 31:4735-45. [PMID: 21947284 DOI: 10.1128/mcb.06182-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin modifications/remodeling are important mechanisms by which cells regulate various functions through providing accessibility to chromatin DNA. Recent studies implicated INO80, a conserved chromatin-remodeling complex, in the process of DNA repair. However, the precise underlying mechanism by which this complex mediates repair in mammalian cells remains enigmatic. Here, we studied the effect of silencing of the Ino80 subunit of the complex on double-strand break repair in mammalian cells. Comet assay and homologous recombination repair reporter system analyses indicated that Ino80 is required for efficient double-strand break repair. Ino80 association with chromatin surrounding double-strand breaks suggested the direct involvement of INO80 in the repair process. Ino80 depletion impaired focal recruitment of 53BP1 but did not impede Rad51 focus formation, suggesting that Ino80 is required for the early steps of repair. Further analysis by using bromodeoxyuridine (BrdU)-labeled single-stranded DNA and replication protein A (RPA) immunofluorescent staining showed that INO80 mediates 5'-3' resection of double-strand break ends.
Collapse
|
254
|
Postow L. Destroying the ring: Freeing DNA from Ku with ubiquitin. FEBS Lett 2011; 585:2876-82. [PMID: 21640108 PMCID: PMC3172340 DOI: 10.1016/j.febslet.2011.05.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/20/2022]
Abstract
The Ku heterodimer, consisting of the proteins Ku70 and Ku80, is the central component of the non-homologous end joining (NHEJ) pathway of double strand break (DSB) repair. Ku is able to recognize and bind a DSB by virtue of its ring-like structure. Both pre-repair and topologically trapped post-repair Ku heterodimers are thought to be inhibitory to multiple cellular processes. Thus, a regulated mechanism for the removal of Ku from chromatin was predicted to exist. Recent evidence shows that Ku80 is removed from DNA through a ubiquitin-mediated process. Similar processes have been shown to be involved in the regulated dissociation of a host of other proteins from chromatin, and this appears to be a general and conserved mechanism for the regulation of chromatin-associated factors. A potential mechanism for this pathway is discussed.
Collapse
Affiliation(s)
- Lisa Postow
- Laboratory of Chromosome and Cell Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
255
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that can result in mutagenic events or cell death if left unrepaired or repaired inappropriately. Cells use two major pathways for DSB repair: nonhomologous end joining (NHEJ) and homologous recombination (HR). The choice between these pathways depends on the phase of the cell cycle and the nature of the DSB ends. A critical determinant of repair pathway choice is the initiation of 5'-3' resection of DNA ends, which commits cells to homology-dependent repair, and prevents repair by classical NHEJ. Here, we review the components of the end resection machinery, the role of end structure, and the cell-cycle phase on resection and the interplay of end processing with NHEJ.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
256
|
Chan F, Hauswirth WW, Wensel TG, Wilson JH. Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice. Nucleic Acids Res 2011; 39:5955-66. [PMID: 21478169 PMCID: PMC3152346 DOI: 10.1093/nar/gkr196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/24/2011] [Accepted: 03/17/2011] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in the rhodopsin gene, which is expressed in rod photoreceptor cells, are a major cause of the hereditary-blinding disease, autosomal dominant retinitis pigmentosa. Therapeutic strategies designed to edit such mutations will likely depend on the introduction of double-strand breaks and their subsequent repair by homologous recombination or non-homologous end joining. At present, the break repair capabilities of mature neurons, in general, and rod cells, in particular, are undefined. To detect break repair, we generated mice that carry a modified human rhodopsin-GFP fusion gene at the normal mouse rhodopsin locus. The rhodopsin-GFP gene carries tandem copies of exon 2, with an ISceI recognition site situated between them. An ISceI-induced break can be repaired either by non-homologous end joining or by recombination between the duplicated segments, generating a functional rhodopsin-GFP gene. We introduced breaks using recombinant adeno-associated virus to transduce the gene encoding ISceI nuclease. We found that virtually 100% of transduced rod cells were mutated at the ISceI site, with ∼85% of the genomes altered by end joining and ∼15% by the single-strand annealing pathway of homologous recombination. These studies establish that the genomes of terminally differentiated rod cells can be efficiently edited in living organisms.
Collapse
Affiliation(s)
- Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 and Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - William W. Hauswirth
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 and Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 and Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 and Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
257
|
Kais Z, Barsky SH, Mathsyaraja H, Zha A, Ransburgh DJR, He G, Pilarski RT, Shapiro CL, Huang K, Parvin JD. KIAA0101 interacts with BRCA1 and regulates centrosome number. Mol Cancer Res 2011; 9:1091-9. [PMID: 21673012 PMCID: PMC3157549 DOI: 10.1158/1541-7786.mcr-10-0503] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To find genes and proteins that collaborate with BRCA1 or BRCA2 in the pathogenesis of breast cancer, we used an informatics approach and found a candidate BRCA interactor, KIAA0101, to function like BRCA1 in exerting a powerful control over centrosome number. The effect of KIAA0101 on centrosomes is likely direct, as its depletion does not affect the cell cycle, KIAA0101 localizes to regions coincident with the centrosomes, and KIAA0101 binds to BRCA1. We analyzed whether KIAA0101 protein is overexpressed in breast cancer tumor samples in tissue microarrays, and we found that overexpression of KIAA0101 correlated with positive Ki67 staining, a biomarker associated with increased disease severity. Furthermore, overexpression of the KIAA0101 gene in breast tumors was found to be associated with significantly decreased survival time. This study identifies KIAA0101 as a protein important for breast tumorigenesis, and as this factor has been reported as a UV repair factor, it may link the UV damage response to centrosome control.
Collapse
Affiliation(s)
- Zeina Kais
- Molecular, Cellular, and Development Program, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Dumitrache LC, Hu L, Son MY, Li H, Wesevich A, Scully R, Stark J, Hasty P. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair. Genetics 2011; 188:787-97. [PMID: 21546543 PMCID: PMC3176084 DOI: 10.1534/genetics.111.129833] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 12/15/2022] Open
Abstract
Trex2 is a 3' → 5' exonuclease that removes 3'-mismatched sequences in a biochemical assay; however, its biological function remains unclear. To address biology we previously generated trex2(null) mouse embryonic stem (ES) cells and expressed in these cells wild-type human TREX2 cDNA (Trex2(hTX2)) or cDNA with a single-amino-acid change in the catalytic domain (Trex2(H188A)) or in the DNA-binding domain (Trex2(R167A)). We found the trex2(null) and Trex2(H188A) cells exhibited spontaneous broken chromosomes and trex2(null) cells exhibited spontaneous chromosomal rearrangements. We also found ectopically expressed human TREX2 was active at the 3' ends of I-SceI-induced chromosomal double-strand breaks (DSBs). Therefore, we hypothesized Trex2 participates in DNA DSB repair by modifying 3' ends. This may be especially important for ends with damaged nucleotides. Here we present data that are unexpected and prompt a new model. We found Trex2-altered cells (null, H188A, and R167A) were not hypersensitive to camptothecin, a type-1 topoisomerase inhibitor that induces DSBs at replication forks. In addition, Trex2-altered cells were not hypersensitive to γ-radiation, an agent that causes DSBs throughout the cell cycle. This observation held true even in cells compromised for one of the two major DSB repair pathways: homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Trex2 deletion also enhanced repair of an I-SceI-induced DSB by both HDR and NHEJ without affecting pathway choice. Interestingly, however, trex2(null) cells exhibited reduced spontaneous sister chromatid exchanges (SCEs) but this was not due to a defect in HDR-mediated crossing over. Therefore, reduced spontaneous SCE could be a manifestation of the same defect that caused spontaneous broken chromosomes and spontaneous chromosomal rearrangements. These unexpected data suggest Trex2 does not enable DSB repair and prompt a new model that posits Trex2 suppresses the formation of broken chromosomes.
Collapse
Affiliation(s)
- Lavinia C. Dumitrache
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| | - Lingchuan Hu
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| | - Mi Young Son
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| | - Han Li
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| | - Austin Wesevich
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| | - Ralph Scully
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center Division of Hematology–Oncology/Cancer Biology Program, Boston, Massachusetts 02115
| | - Jeremy Stark
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Paul Hasty
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207
| |
Collapse
|
259
|
Couto CAM, Wang HY, Green JCA, Kiely R, Siddaway R, Borer C, Pears CJ, Lakin ND. PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. ACTA ACUST UNITED AC 2011; 194:367-75. [PMID: 21807880 PMCID: PMC3153639 DOI: 10.1083/jcb.201012132] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly ADP-ribosylation polymerases are necessary for recruitment and/or retention of Ku at double-strand breaks during nonhomologous end-joining DNA repair. Poly adenosine diphosphate (ADP)–ribosylation (PARylation) by poly ADP-ribose (PAR) polymerases (PARPs) is an early response to DNA double-strand breaks (DSBs). In this paper, we exploit Dictyostelium discoideum to uncover a novel role for PARylation in regulating nonhomologous end joining (NHEJ). PARylation occurred at single-strand breaks, and two PARPs, Adprt1b and Adprt2, were required for resistance to this kind of DNA damage. In contrast, although Adprt1b was dispensable for PARylation at DSBs, Adprt1a and, to a lesser extent, Adprt2 were required for this event. Disruption of adprt2 had a subtle impact on the ability of cells to perform NHEJ. However, disruption of adprt1a decreased the ability of cells to perform end joining with a concomitant increase in homologous recombination. PAR-dependent regulation of NHEJ was achieved through promoting recruitment and/or retention of Ku at DSBs. Furthermore, a PAR interaction motif in Ku70 was required for this regulation and efficient NHEJ. These data illustrate that PARylation at DSBs promotes NHEJ through recruitment or retention of repair factors at sites of DNA damage.
Collapse
|
260
|
Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour JV, Rawlings DJ, Scharenberg AM. Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods 2011; 8:671-6. [PMID: 21743461 PMCID: PMC3415300 DOI: 10.1038/nmeth.1648] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022]
Abstract
Site-specific genome engineering technologies are increasingly important tools in the postgenomic era, where biotechnological objectives often require organisms with precisely modified genomes. Rare-cutting endonucleases, through their capacity to create a targeted DNA strand break, are one of the most promising of these technologies. However, realizing the full potential of nuclease-induced genome engineering requires a detailed understanding of the variables that influence resolution of nuclease-induced DNA breaks. Here we present a genome engineering reporter system, designated 'traffic light', that supports rapid flow-cytometric analysis of repair pathway choice at individual DNA breaks, quantitative tracking of nuclease expression and donor template delivery, and high-throughput screens for factors that bias the engineering outcome. We applied the traffic light system to evaluate the efficiency and outcome of nuclease-induced genome engineering in human cell lines and identified strategies to facilitate isolation of cells in which a desired engineering outcome has occurred.
Collapse
Affiliation(s)
- Michael T. Certo
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Byoung Y. Ryu
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - James E. Annis
- Quellos High Throughput Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Mikhail Garibov
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
| | - Jordan V. Jarjour
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - David J. Rawlings
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - Andrew M. Scharenberg
- Center of Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| |
Collapse
|
261
|
Allen C, Ashley AK, Hromas R, Nickoloff JA. More forks on the road to replication stress recovery. J Mol Cell Biol 2011; 3:4-12. [PMID: 21278446 DOI: 10.1093/jmcb/mjq049] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High-fidelity replication of DNA, and its accurate segregation to daughter cells, is critical for maintaining genome stability and suppressing cancer. DNA replication forks are stalled by many DNA lesions, activating checkpoint proteins that stabilize stalled forks. Stalled forks may eventually collapse, producing a broken DNA end. Fork restart is typically mediated by proteins initially identified by their roles in homologous recombination repair of DNA double-strand breaks (DSBs). In recent years, several proteins involved in DSB repair by non-homologous end joining (NHEJ) have been implicated in the replication stress response, including DNA-PKcs, Ku, DNA Ligase IV-XRCC4, Artemis, XLF and Metnase. It is currently unclear whether NHEJ proteins are involved in the replication stress response through indirect (signaling) roles, and/or direct roles involving DNA end joining. Additional complexity in the replication stress response centers around RPA, which undergoes significant post-translational modification after stress, and RAD52, a conserved HR protein whose role in DSB repair may have shifted to another protein in higher eukaryotes, such as BRCA2, but retained its role in fork restart. Most cancer therapeutic strategies create DNA replication stress. Thus, it is imperative to gain a better understanding of replication stress response proteins and pathways to improve cancer therapy.
Collapse
Affiliation(s)
- Chris Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft Collins, CO 80523, USA
| | | | | | | |
Collapse
|
262
|
Baldeyron C, Soria G, Roche D, Cook AJL, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. ACTA ACUST UNITED AC 2011; 193:81-95. [PMID: 21464229 PMCID: PMC3082177 DOI: 10.1083/jcb.201101030] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
p150CAF-1-mediated recruitment of HP1α to DNA is essential for efficient assembly of DNA damage response complexes and subsequent homologous recombination repair. Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination–mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.
Collapse
|
263
|
Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N. High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 2011; 39:e104. [PMID: 21652640 PMCID: PMC3159483 DOI: 10.1093/nar/gkr436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Collapse
Affiliation(s)
- Mélanie Grandjean
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 2011; 711:87-99. [PMID: 21126526 PMCID: PMC3318975 DOI: 10.1016/j.mrfmmm.2010.11.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/29/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - David J. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
265
|
Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses. Protein Cell 2011; 2:410-22. [PMID: 21637962 DOI: 10.1007/s13238-011-1049-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022] Open
Abstract
The Rad1 gene is evolutionarily conserved from yeast to human. The fission yeast Schizosaccharomyces pombe Rad1 ortholog promotes cell survival against DNA damage and is required for G(2)/M checkpoint activation. In this study, mouse embryonic stem (ES) cells with a targeted deletion of Mrad1, the mouse ortholog of this gene, were created to evaluate its function in mammalian cells. Mrad1 (-/-) ES cells were highly sensitive to ultraviolet-light (UV light), hydroxyurea (HU) and gamma rays, and were defective in G(2)/M as well as S/M checkpoints. These data indicate that Mrad1 is required for repairing DNA lesions induced by UV-light, HU and gamma rays, and for mediating G(2)/M and S/M checkpoint controls. We further demonstrated that Mrad1 plays an important role in homologous recombination repair (HRR) in ES cells, but a minor HRR role in differentiated mouse cells.
Collapse
|
266
|
Fung H, Weinstock DM. Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One 2011; 6:e20514. [PMID: 21633706 PMCID: PMC3102116 DOI: 10.1371/journal.pone.0020514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/02/2011] [Indexed: 11/18/2022] Open
Abstract
Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB) in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs) based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny.
Collapse
Affiliation(s)
- Hua Fung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
267
|
Opposite modifying effects of HR and NHEJ deficiency on cancer risk in Ptc1 heterozygous mouse cerebellum. Oncogene 2011; 30:4740-9. [PMID: 21602895 DOI: 10.1038/onc.2011.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterozygous Patched1 (Ptc1(+/-)) mice are prone to medulloblastoma (MB), and exposure of newborn mice to ionizing radiation dramatically increases the frequency and shortens the latency of MB. In Ptc1(+/-) mice, MB is characterized by loss of the normal remaining Ptc1 allele, suggesting that genome rearrangements may be key events in MB development. Recent evidence indicates that brain tumors may be linked to defects in DNA-damage repair processes, as various combinations of targeted deletions in genes controlling cell-cycle checkpoints, apoptosis and DNA repair result in MB in mice. Non-homologous end joining (NHEJ) and homologous recombination (HR) contribute to genome stability, and deficiencies in either pathway predispose to genome rearrangements. To test the role of defective HR or NHEJ in tumorigenesis, control and irradiated Ptc1(+/-) mice with two, one or no functional Rad54 or DNA-protein kinase catalytic subunit (DNA-PKcs) alleles were monitored for MB development. We also examined the effect of Rad54 or DNA-PKcs deletion on the processing of endogenous and radiation-induced double-strand breaks (DSBs) in neural precursors of the developing cerebellum, the cells of origin of MB. We found that, although HR and NHEJ collaborate in protecting cells from DNA damage and apoptosis, they have opposite roles in MB tumorigenesis. In fact, although Rad54 deficiency increased both spontaneous and radiation-induced MB development, DNA-PKcs disruption suppressed MB tumorigenesis. Together, our data provide the first evidence that Rad54-mediated HR in vivo is important for suppressing tumorigenesis by maintaining genomic stability.
Collapse
|
268
|
Hsu DW, Kiely R, Couto CAM, Wang HY, Hudson JJR, Borer C, Pears CJ, Lakin ND. DNA double-strand break repair pathway choice in Dictyostelium. J Cell Sci 2011; 124:1655-63. [PMID: 21536833 DOI: 10.1242/jcs.081471] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1(-) cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1(-) cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.
Collapse
Affiliation(s)
- Duen-Wei Hsu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 2011; 145:529-42. [PMID: 21565612 PMCID: PMC3261725 DOI: 10.1016/j.cell.2011.03.041] [Citation(s) in RCA: 992] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/27/2011] [Accepted: 03/22/2011] [Indexed: 01/11/2023]
Abstract
Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.
Collapse
Affiliation(s)
- Katharina Schlacher
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 USA
| | - Nicole Christ
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Nicolas Siaud
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Akinori Egashira
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095 USA
- Institute for Molecular Medicine, University of California, Los Angeles, CA 90095 USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
270
|
Medová M, Aebersold DM, Zimmer Y. MET inhibition in tumor cells by PHA665752 impairs homologous recombination repair of DNA double strand breaks. Int J Cancer 2011; 130:728-34. [PMID: 21400509 DOI: 10.1002/ijc.26058] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/23/2011] [Indexed: 11/08/2022]
Abstract
Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.
Collapse
Affiliation(s)
- Michaela Medová
- Department of Radiation Oncology, Inselspital, University of Berne, Berne, Switzerland
| | | | | |
Collapse
|
271
|
Neal JA, Dang V, Douglas P, Wold MS, Lees-Miller SP, Meek K. Inhibition of homologous recombination by DNA-dependent protein kinase requires kinase activity, is titratable, and is modulated by autophosphorylation. Mol Cell Biol 2011; 31:1719-33. [PMID: 21300785 PMCID: PMC3126343 DOI: 10.1128/mcb.01298-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/28/2011] [Indexed: 12/11/2022] Open
Abstract
How a cell chooses between nonhomologous end joining (NHEJ) and homologous recombination (HR) to repair a double-strand break (DSB) is a central and largely unanswered question. Although there is evidence of competition between HR and NHEJ, because of the DNA-dependent protein kinase (DNA-PK)'s cellular abundance, it seems that there must be more to the repair pathway choice than direct competition. Both a mutational approach and chemical inhibition were utilized to address how DNA-PK affects HR. We find that DNA-PK's ability to repress HR is both titratable and entirely dependent on its enzymatic activity. Still, although requisite, robust enzymatic activity is not sufficient to inhibit HR. Emerging data (including the data presented here) document the functional complexities of DNA-PK's extensive phosphorylations that likely occur on more than 40 sites. Even more, we show here that certain phosphorylations of the DNA-PK large catalytic subunit (DNA-PKcs) clearly promote HR while inhibiting NHEJ, and we conclude that the phosphorylation status of DNA-PK impacts how a cell chooses to repair a DSB.
Collapse
Affiliation(s)
- Jessica A. Neal
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
| | - Van Dang
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
| | - Pauline Douglas
- Departments of Biochemistry & Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada T2N4N1
| | - Marc S. Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Susan P. Lees-Miller
- Departments of Biochemistry & Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada T2N4N1
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, and Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
272
|
Nakanishi K, Cavallo F, Perrouault L, Giovannangeli C, Moynahan ME, Barchi M, Brunet E, Jasin M. Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol 2011; 18:500-3. [PMID: 21423196 PMCID: PMC3273992 DOI: 10.1038/nsmb.2029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/18/2011] [Indexed: 12/30/2022]
Abstract
Homologous recombination (also termed homology-directed repair, HDR) is a major pathway for the repair of DNA interstrand cross-links (ICLs) in mammalian cells. Cells from individuals with Fanconi anemia (FA) are characterized by extreme ICL sensitivity, but their reported defect in HDR is mild. Here we examined ICL-induced HDR using a GFP reporter and observed a profound defect in ICL-induced HDR in FA cells, but only when the reporter could replicate.
Collapse
Affiliation(s)
- Koji Nakanishi
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Francesca Cavallo
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Loïc Perrouault
- Muséum National d'Histoire Naturelle, CNRS UMR7196, and INSERM U565, Paris, France
| | - Carine Giovannangeli
- Muséum National d'Histoire Naturelle, CNRS UMR7196, and INSERM U565, Paris, France
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marco Barchi
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Erika Brunet
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Muséum National d'Histoire Naturelle, CNRS UMR7196, and INSERM U565, Paris, France
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
273
|
Laulier C, Barascu A, Guirouilh-Barbat J, Pennarun G, Le Chalony C, Chevalier F, Palierne G, Bertrand P, Verbavatz JM, Lopez BS. Bcl-2 Inhibits Nuclear Homologous Recombination by Localizing BRCA1 to the Endomembranes. Cancer Res 2011; 71:3590-602. [DOI: 10.1158/0008-5472.can-10-3119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
274
|
Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M, Jeggo PA. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 2011; 30:1079-92. [PMID: 21317870 PMCID: PMC3061033 DOI: 10.1038/emboj.2011.27] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/19/2011] [Indexed: 01/20/2023] Open
Abstract
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.
Collapse
Affiliation(s)
- Atsushi Shibata
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Sandro Conrad
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Julie Birraux
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Verena Geuting
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Olivia Barton
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Amani Ismail
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | | | - Katheryn Meek
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Gisela Taucher-Scholz
- Biophysics Department, GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| |
Collapse
|
275
|
Coleman KA, Greenberg RA. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem 2011; 286:13669-80. [PMID: 21335604 DOI: 10.1074/jbc.m110.213728] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor suppressor protein BRCA1 is a constituent of several different protein complexes and is required for homology-directed repair (HDR) of DNA double strand breaks (DSBs). The most recently discovered BRCA1-RAP80 complex is recruited to ubiquitin structures on chromatin surrounding the break. Deficiency of any member of this complex confers hypersensitivity to DNA-damaging agents by undefined mechanisms. In striking contrast to other BRCA1-containing complexes that are known to promote HDR, we demonstrate that the BRCA1-RAP80 complex restricts end resection in S/G(2) phase of the cell cycle, thereby limiting HDR. RAP80 or BRCC36 deficiency resulted in elevated Mre11-CtIP-dependent 5' end resection with a concomitant increase in HDR mechanisms that rely on 3' single-stranded overhangs. We propose a model in which the BRCA1-RAP80 complex limits nuclease accessibility to DSBs, thus preventing excessive end resection and potentially deleterious homology-directed DSB repair mechanisms that can impair genome integrity.
Collapse
Affiliation(s)
- Kara A Coleman
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
276
|
Parvin J, Chiba N, Ransburgh D. Identifying the effects of BRCA1 mutations on homologous recombination using cells that express endogenous wild-type BRCA1. J Vis Exp 2011:2468. [PMID: 21372787 PMCID: PMC3197403 DOI: 10.3791/2468] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The functional analysis of missense mutations can be complicated by the presence in the cell of the endogenous protein. Structure-function analyses of the BRCA1 have been complicated by the lack of a robust assay for the full length BRCA1 protein and the difficulties inherent in working with cell lines that express hypomorphic BRCA1 protein1,2,3,4,5. We developed a system whereby the endogenous BRCA1 protein in a cell was acutely depleted by RNAi targeting the 3'-UTR of the BRCA1 mRNA and replaced by co-transfecting a plasmid expressing a BRCA1 variant. One advantage of this procedure is that the acute silencing of BRCA1 and simultaneous replacement allow the cells to grow without secondary mutations or adaptations that might arise over time to compensate for the loss of BRCA1 function. This depletion and add-back procedure was done in a HeLa-derived cell line that was readily assayed for homologous recombination activity. The homologous recombination assay is based on a previously published method whereby a recombination substrate is integrated into the genome (Figure 1)6,7,8,9. This recombination substrate has the rare-cutting I-SceI restriction enzyme site inside an inactive GFP allele, and downstream is a second inactive GFP allele. Transfection of the plasmid that expresses I-SceI results in a double-stranded break, which may be repaired by homologous recombination, and if homologous recombination does repair the break it creates an active GFP allele that is readily scored by flow cytometry for GFP protein expression. Depletion of endogenous BRCA1 resulted in an 8-10-fold reduction in homologous recombination activity, and add-back of wild-type plasmid fully restored homologous recombination function. When specific point mutants of full length BRCA1 were expressed from co-transfected plasmids, the effect of the specific missense mutant could be scored. As an example, the expression of the BRCA1(M18T) protein, a variant of unknown clinical significance10, was expressed in these cells, it failed to restore BRCA1-dependent homologous recombination. By contrast, expression of another variant, also of unknown significance, BRCA1(I21V) fully restored BRCA1-dependent homologous recombination function. This strategy of testing the function of BRCA1 missense mutations has been applied to another biological system assaying for centrosome function (Kais et al, unpublished observations). Overall, this approach is suitable for the analysis of missense mutants in any gene that must be analyzed recessively.
Collapse
Affiliation(s)
- Jeffrey Parvin
- Department of Biomedical Informatics, The Ohio State University, USA.
| | | | | |
Collapse
|
277
|
Delacôte F, Perez C, Guyot V, Mikonio C, Potrel P, Cabaniols JP, Delenda C, Pâques F, Duchateau P. Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011; 2011:947212. [PMID: 21716659 PMCID: PMC3118287 DOI: 10.4061/2011/947212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/23/2011] [Indexed: 12/29/2022] Open
Abstract
Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.
Collapse
Affiliation(s)
- Fabien Delacôte
- Cellectis SA, 102 Avenue Gaston Roussel, 93340 Romainville Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
279
|
Zhang J, Mao Z, Xue W, Li Y, Tang G, Wang A, Zhang Y, Wang H. Ku80 gene is related to non-homologous end-joining and genome stability in Aspergillus niger. Curr Microbiol 2011; 62:1342-6. [PMID: 21225265 DOI: 10.1007/s00284-010-9853-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/13/2010] [Indexed: 11/26/2022]
Abstract
In this study, the ku70 and ku80 homologs from the Aspergillus niger genome were identified and their function was analyzed using targeted mutagenesis. The role of the ku80 gene in non-homologous end-joining (NHEJ) was investigated by calculating the frequency of homologous recombination. The transformation test verified that the frequency of homologous recombination significantly increased, from 1.78 to 65.6% in ku80 single deletion strains and to 100% in ku70/ku80 double deletion strains. These results suggest that the ku80 gene is important for non-homologous end-joining. Although the morphology of the ku deletion strains colonies was similar to that of the wildtype strain, mutants were more sensitive to the mutagen phleomycin. Furthermore, the purified ku80 deletion strain produced some sectored colonies on hygromycin B-containing plates. This result suggests that the ku80 gene deletion leads to genomic instability in A. niger.
Collapse
Affiliation(s)
- Jinxiang Zhang
- CAS Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Zhang Y, Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 2011; 18:80-4. [PMID: 21131978 PMCID: PMC3261752 DOI: 10.1038/nsmb.1940] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/10/2010] [Indexed: 01/20/2023]
Abstract
Chromosomal translocations arise from the misjoining of DNA breaks, but the identity of the DNA repair factors and activities involved in their formation has been elusive. Here we show that depletion of CtIP, a DNA end-resection factor, results in a substantial decrease in chromosomal translocation frequency in mouse cells. Moreover, microhomology usage, a signature of the alternative nonhomologous end-joining pathway (alt-NHEJ), is significantly lower in translocation breakpoint junctions recovered from CtIP-depleted cells than in those from wild-type cells. Thus, we directly demonstrate that CtIP-mediated alt-NHEJ has a primary role in translocation formation. CtIP depletion in Ku70(-/-) cells reduces translocation frequency without affecting microhomology, indicating that Ku70-dependent NHEJ generates a fraction of translocations in wild-type cells. Translocations from both wild-type and Ku70(-/-) cells have smaller deletions on the participating chromosomes when CtIP is depleted, implicating the end-resection activity of CtIP in translocation formation.
Collapse
Affiliation(s)
- Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
281
|
Abstract
DNA interstrand cross-links (ICLs) covalently link both strands of the DNA duplex, impeding cellular processes like DNA replication. Homologous recombination (HR) is considered to be a major pathway for the repair of ICLs in mammalian cells as mutants for HR components are highly sensitive to DNA-damaging agents that cause ICLs. This chapter describes GFP assays to measure HR following site-specific ICL formation with psoralen through DNA triplex technology. This approach can be used to determine the genetic requirements for ICL-induced HR in relation to those involved in HR repair of other DNA lesions such as double-strand breaks.
Collapse
Affiliation(s)
- Koji Nakanishi
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
282
|
Momčilović O, Navara C, Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 2011; 53:415-458. [PMID: 21630155 DOI: 10.1007/978-3-642-19065-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.
Collapse
Affiliation(s)
- Olga Momčilović
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
283
|
O’Donnell L, Panier S, Wildenhain J, Tkach JM, Al-Hakim A, Landry MC, Escribano-Diaz C, Szilard RK, Young JTF, Munro M, Canny MD, Kolas NK, Zhang W, Harding SM, Ylanko J, Mendez M, Mullin M, Sun T, Habermann B, Datti A, Bristow RG, Gingras AC, Tyers MD, Brown GW, Durocher D. The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Mol Cell 2010; 40:619-31. [PMID: 21055983 PMCID: PMC3031522 DOI: 10.1016/j.molcel.2010.10.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/30/2010] [Accepted: 10/19/2010] [Indexed: 01/07/2023]
Abstract
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.
Collapse
Affiliation(s)
- Lara O’Donnell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Stephanie Panier
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jan Wildenhain
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Johnny M. Tkach
- Department of Biochemistry and Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Abdallah Al-Hakim
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Marie-Claude Landry
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Cristina Escribano-Diaz
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Rachel K. Szilard
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Jordan T. F. Young
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meagan Munro
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Marella D. Canny
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Nadine K. Kolas
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Wei Zhang
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shane M. Harding
- Radiation Medicine Program, Princess Margaret Hospital-University Health Network and Campbell Family Cancer Research Institute-Ontario Cancer Institute, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Jarkko Ylanko
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Megan Mendez
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Michael Mullin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Thomas Sun
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
| | - Bianca Habermann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Robert G. Bristow
- Radiation Medicine Program, Princess Margaret Hospital-University Health Network and Campbell Family Cancer Research Institute-Ontario Cancer Institute, 610 University Avenue, Toronto, ON, Canada M5G 2M9
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Tyers
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada M5S 3E1
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
284
|
Sankaranarayanan K, Nikjoo H. Ionising radiation and genetic risks. XVI. A genome-based framework for risk estimation in the light of recent advances in genome research. Int J Radiat Biol 2010; 87:161-78. [DOI: 10.3109/09553002.2010.518214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
285
|
Arnould S, Delenda C, Grizot S, Desseaux C, Pâques F, Silva GH, Smith J. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 2010; 24:27-31. [PMID: 21047873 DOI: 10.1093/protein/gzq083] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Meganucleases (MNs) are highly specific enzymes that can induce homologous recombination in different types of cells, including mammalian cells. Consequently, these enzymes are used as scaffolds for the development of custom gene-targeting tools for gene therapy or cell-line development. Over the past 15 years, the high resolution X-ray structures of several MNs from the LAGLIDADG family have improved our understanding of their protein-DNA interaction and mechanism of DNA cleavage. By developing and utilizing high-throughput screening methods to test a large number of variant-target combinations, we have been able to re-engineer scores of I-CreI derivatives into custom enzymes that target a specific DNA sequence of interest. Such customized MNs, along with wild-type ones, have allowed for exploring a large range of biotechnological applications, including protein-expression cell-line development, genetically modified plants and animals and therapeutic applications such as targeted gene therapy as well as a novel class of antivirals.
Collapse
Affiliation(s)
- S Arnould
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
286
|
Serrano L, Liang L, Chang Y, Deng L, Maulion C, Nguyen S, Tischfield JA. Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells. Stem Cells Dev 2010; 20:363-74. [PMID: 20491544 DOI: 10.1089/scd.2010.0159] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genomic integrity is crucial to embryonic stem cells (ESC) considering the potential for propagating undesirable mutations to the resulting somatic and germ cell lineages. Indeed, mouse ESC (mESC) exhibit a significantly lower mutation frequency compared to differentiated cells. This could be due to more effective elimination of genetically damaged cells via apoptosis, or especially robust, sequence-conserving DNA damage repair mechanisms such as homologous recombination (HR). We used fluorescence microscopy and 3-dimensional image analysis to compare mESC and differentiated cells, with regard to HR-mediated repair of spontaneous and X-ray-induced double-strand breaks (DSBs). Microscopic analysis of repair foci, flow cytometry, and functional assays of the major DSB repair pathways indicate that HR is greater in mESC compared to fibroblasts. Strikingly, HR appears to be the predominant pathway choice to repair induced or spontaneous DNA damage throughout the ESC cycle in contrast to fibroblasts, where it is restricted to replicated chromatin. This suggests that alternative templates, such as homologous chromosomes, are more frequently used to repair DSB in ESC. Relatively frequent HR utilizing homolog chromosome sequences preserves genome integrity in ESC and has distinctive and important genetic consequences to subsequent somatic and germ cell lineages.
Collapse
Affiliation(s)
- Lourdes Serrano
- Department of Genetics, Human Genetics Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8082, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Kabir S, Sfeir A, de Lange T. Taking apart Rap1: an adaptor protein with telomeric and non-telomeric functions. Cell Cycle 2010; 9:4061-7. [PMID: 20948311 PMCID: PMC2995270 DOI: 10.4161/cc.9.20.13579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 11/19/2022] Open
Abstract
Mammalian Rap1, a TRF2-interacting protein in the telomeric shelterin complex, was recently shown to repress homology-directed repair at chromosome ends. In addition, Rap1 plays a role in transcriptional regulation and NFκB signaling. Rap1 is unique among the components of shelterin in that it is conserved in budding yeast and has non-telomeric functions. Comparison of mammalian Rap1 to the Rap1 proteins of several budding yeasts and fission yeast reveal both striking similarities and notable differences. The protean nature of Rap1 is best understood by viewing it as an adaptor that can mediate a variety of protein-protein and protein-DNA interactions depending on the organism and the complex in which it is functioning.
Collapse
Affiliation(s)
- Shaheen Kabir
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
288
|
Nakada S, Tai I, Panier S, Al-Hakim A, Iemura SI, Juang YC, O'Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras AC, Natsume T, Suda T, Durocher D. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466:941-6. [PMID: 20725033 DOI: 10.1038/nature09297] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 06/21/2010] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) pose a potent threat to genome integrity. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DSBs elicit a signalling cascade that modifies the chromatin surrounding the break, first by ATM-dependent phosphorylation and then by RNF8-, RNF168- and BRCA1-dependent regulatory ubiquitination. Here we report that OTUB1, a deubiquitinating enzyme, is an inhibitor of DSB-induced chromatin ubiquitination. Surprisingly, we found that OTUB1 suppresses RNF168-dependent poly-ubiquitination independently of its catalytic activity. OTUB1 does so by binding to and inhibiting UBC13 (also known as UBE2N), the cognate E2 enzyme for RNF168. This unusual mode of regulation is unlikely to be limited to UBC13 because analysis of OTUB1-associated proteins revealed that OTUB1 binds to E2s of the UBE2D and UBE2E subfamilies. Finally, OTUB1 depletion mitigates the DSB repair defect associated with defective ATM signalling, indicating that pharmacological targeting of the OTUB1-UBC13 interaction might enhance the DNA damage response.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Center of Integrated Medical Research, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Kass EM, Jasin M. Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett 2010; 584:3703-8. [PMID: 20691183 PMCID: PMC3954739 DOI: 10.1016/j.febslet.2010.07.057] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
290
|
Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 2010; 584:3682-95. [PMID: 20655309 PMCID: PMC2946096 DOI: 10.1016/j.febslet.2010.07.029] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/25/2022]
Abstract
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA 92093, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
291
|
Kaidi A, Weinert BT, Choudhary C, Jackson SP. RETRACTED: Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010; 329:1348-53. [PMID: 20829486 PMCID: PMC3276839 DOI: 10.1126/science.1192049] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.
Collapse
Affiliation(s)
- Abderrahmane Kaidi
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Brian T. Weinert
- The NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- The NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Stephen P. Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
292
|
Kee Y, D'Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 2010; 24:1680-94. [PMID: 20713514 DOI: 10.1101/gad.1955310] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studying rare human genetic diseases often leads to a better understanding of normal cellular functions. Fanconi anemia (FA), for example, has elucidated a novel DNA repair mechanism required for maintaining genomic stability and preventing cancer. The FA pathway, an essential tumor-suppressive pathway, is required for protecting the human genome from a specific type of DNA damage; namely, DNA interstrand cross-links (ICLs). In this review, we discuss the recent progress in the study of the FA pathway, such as the identification of new FANCM-binding partners and the identification of RAD51C and FAN1 (Fanconi-associated nuclease 1) as new FA pathway-related proteins. We also focus on the role of the FA pathway as a potential regulator of DNA repair choices in response to double-strand breaks, and its novel functions during the mitotic phase of the cell cycle.
Collapse
Affiliation(s)
- Younghoon Kee
- Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
293
|
de Boer P, Bastiaans J, Touw H, Kerkman R, Bronkhof J, van den Berg M, Offringa R. Highly efficient gene targeting in Penicillium chrysogenum using the bi-partite approach in deltalig4 or deltaku70 mutants. Fungal Genet Biol 2010; 47:839-46. [PMID: 20659576 DOI: 10.1016/j.fgb.2010.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Inactivating the non-homologous end-joining (NHEJ) pathway is a well established method to increase gene targeting (GT) efficiencies in filamentous fungi. In this study we have compared the effect of inactivating the NHEJ genes ku70 or lig4 on GT in the industrial penicillin producer Penicillium chrysogenum. Deletion of both genes resulted in strongly increased GT efficiencies at three different loci but not higher than 70%, implying that other, yet uncharacterized, recombination pathways are still active causing a part of the DNA to be integrated via non-homologous recombination. To further increase the GT efficiency we applied the bi-partite approach, in which the DNA fragment for integration was split in two non-functional overlapping parts that via homologous recombination invivo can form a functional selection marker. The combined NHEJ mutant and bi-partite approach further increased GT frequencies up to approximately 90%, which will enable the efficient high throughput engineering of the P. chrysogenum genome. We expect that this combined approach will function with similar high efficiencies in other filamentous fungi.
Collapse
Affiliation(s)
- Paulo de Boer
- Add2X Biosciences B.V., Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
294
|
Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 2010; 329:219-23. [PMID: 20538911 DOI: 10.1126/science.1192277] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A conserved DNA repair response is defective in the human genetic illness Fanconi anemia (FA). Mutation of some FA genes impairs homologous recombination and error-prone DNA repair, rendering FA cells sensitive to DNA cross-linking agents. We found a genetic interaction between the FA gene FANCC and the nonhomologous end joining (NHEJ) factor Ku70. Disruption of both FANCC and Ku70 suppresses sensitivity to cross-linking agents, diminishes chromosome breaks, and reverses defective homologous recombination. Ku70 binds directly to free DNA ends, committing them to NHEJ repair. We show that purified FANCD2, a downstream effector of the FA pathway, might antagonize Ku70 activity by modifying such DNA substrates. These results reveal a function for the FA pathway in processing DNA ends, thereby diverting double-strand break repair away from abortive NHEJ and toward homologous recombination.
Collapse
Affiliation(s)
- Paul Pace
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
295
|
Abstract
Germline mutations in the BRCA1 and BRCA2 genes are characterized by deficient repair of DNA double-strand breaks by homologous recombination. Defective DNA double-strand break repair has been not only implicated as a key contributor to tumorigenesis in mutation carriers but also represents a potential target for therapy. The transcriptional similarities between BRCA1-deficient tumors and sporadic tumors of the basal-like subtype have led to the investigation of homologous recombination repair-directed therapy in triple-negative tumors, which demonstrates overlap with the basal-like subtype. We broaden the scope of this topic by addressing a "repair-defective" rather than "BRCA1-like" phenotype. We discuss structural and functional aspects of key repair proteins including BRCA1, BRCA2, BRCA1 interacting protein C-terminal helicase 1, and partner and localizer of BRCA2 and describe the phenotypic consequences of their loss at the cellular, tissue, and organism level. We review potential mechanisms of repair pathway dysfunction in sporadic tumors and address how the identification of such defects may guide the application of repair-directed therapies.
Collapse
|
296
|
Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141:243-54. [PMID: 20362325 PMCID: PMC2857570 DOI: 10.1016/j.cell.2010.03.012] [Citation(s) in RCA: 1322] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/12/2010] [Accepted: 03/10/2010] [Indexed: 12/18/2022]
Abstract
Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.
Collapse
Affiliation(s)
- Samuel F. Bunting
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Elsa Callén
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Nancy Wong
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Hua-Tang Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Federica Polato
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Amanda Gunn
- Department of Cancer Biology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California USA
| | - Anne Bothmer
- Laboratory of Molecular Immunology, Rockefeller University, New York NY USA
| | - Niklas Feldhahn
- Laboratory of Molecular Immunology, Rockefeller University, New York NY USA
| | | | - Liu Cao
- Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Xiaoling Xu
- Genetics of Development and Disease Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Toren Finkel
- Translational Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York NY USA
- Howard Hughes Medical Institute, Rockefeller University, New York NY USA
| | - Jeremy M. Stark
- Department of Cancer Biology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California USA
| | - André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
297
|
Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 2010; 17:410-6. [PMID: 20208544 PMCID: PMC3893185 DOI: 10.1038/nsmb.1773] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 01/15/2010] [Indexed: 01/09/2023]
Abstract
Chromosomal translocations in hematologic and mesenchymal tumors form overwhelmingly by nonhomologous end-joining (NHEJ). Canonical NHEJ, essential for the repair of radiation-induced and some programmed double-strand breaks (DSBs), requires the Xrcc4-ligase IV complex. For other DSBs, the requirement for Xrcc4-ligase IV is less stringent, suggesting the existence of alternative end-joining (alt-NHEJ) pathways. To understand the contributions of the canonical NHEJ and alt-NHEJ pathways, we examined translocation formation in cells deficient in Xrcc4-ligase IV. We found that Xrcc4-ligase IV is not required for but rather suppresses translocations. Translocation breakpoint junctions have similar characteristics in wild-type cells and cells deficient in Xrcc4-ligase IV, including an unchanged bias toward microhomology, unlike what is observed for intrachromosomal DSB repair. Complex insertions in some junctions show that joining can be iterative, encompassing successive processing steps before joining. Our results imply that alt-NHEJ is the primary mediator of translocation formation in mammalian cells.
Collapse
Affiliation(s)
- Deniz Simsek
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center and Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center and Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
298
|
Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M, Ikura T, Kohno K, Shima H, Suzuki H, Tashiro S, Nakanishi M. Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 2010; 24:333-8. [PMID: 20159953 DOI: 10.1101/gad.1863810] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A balanced deoxyribonucleotide (dNTP) supply is essential for DNA repair. Here, we found that ribonucleotide reductase (RNR) subunits RRM1 and RRM2 accumulated very rapidly at damage sites. RRM1 bound physically to Tip60. Chromatin immunoprecipitation analyses of cells with an I-SceI cassette revealed that RRM1 bound to a damage site in a Tip60-dependent manner. Active RRM1 mutants lacking Tip60 binding failed to rescue an impaired DNA repair in RRM1-depleted G1-phase cells. Inhibition of RNR recruitment by an RRM1 C-terminal fragment sensitized cells to DNA damage. We propose that Tip60-dependent recruitment of RNR plays an essential role in dNTP supply for DNA repair.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University Medical School, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
300
|
Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 PMCID: PMC3261768 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 703] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|