251
|
Iron chelating properties of Eltrombopag: Investigating its role in thalassemia-induced osteoporosis. PLoS One 2018; 13:e0208102. [PMID: 30507954 PMCID: PMC6277068 DOI: 10.1371/journal.pone.0208102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic blood transfusions are responsible to cause iron overload, which leads to several complications to end organs and osteoporosis. Iron chelation is needed to remove iron excess and to contain bone-mass loss. Deferasirox is the most recent oral iron chelator that prevents transfusion related iron overload complications. Recently Eltrombopag (ELT) iron chelating properties are emerging. ELT is an agonist at Thrombopoietin receptor, used in treatment of thrombocytopenia. We tested ELT and Deferasirox in iron overloaded osteoclasts from thalassemic patients and donors measuring intracellular iron, TRAP expression and osteoclast activity. We confirmed ELT iron chelation capacity also in bone tissue and a synergic effect when used with Deferasirox. Moreover, having demonstrated its effects on osteoclast activity, we suggest for the first time that ELT could ameliorate bone tissue’s health reducing bone mass loss.
Collapse
|
252
|
Mercadante CJ, Prajapati M, Parmar JH, Conboy HL, Dash ME, Pettiglio MA, Herrera C, Bu JT, Stopa EG, Mendes P, Bartnikas TB. Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherited iron excess. Haematologica 2018; 104:678-689. [PMID: 30409795 PMCID: PMC6442972 DOI: 10.3324/haematol.2018.198382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
The current paradigm in the field of mammalian iron biology states that body iron levels are determined by dietary iron absorption, not by iron excretion. Iron absorption is a highly regulated process influenced by iron levels and other factors. Iron excretion is believed to occur at a basal rate irrespective of iron levels and is associated with processes such as turnover of intestinal epithelium, blood loss, and exfoliation of dead skin. Here we explore iron excretion in a mouse model of iron excess due to inherited transferrin deficiency. Iron excess in this model is attributed to impaired regulation of iron absorption leading to excessive dietary iron uptake. Pharmacological correction of transferrin deficiency not only normalized iron absorption rates and halted progression of iron excess but also reversed body iron excess. Transferrin treatment did not alter the half-life of 59Fe in mutant mice. 59Fe-based studies indicated that most iron was excreted via the gastrointestinal tract and suggested that iron-loaded mutant mice had increased rates of iron excretion. Direct measurement of urinary iron levels agreed with 59Fe-based predictions that urinary iron levels were increased in untreated mutant mice. Fecal ferritin levels were also increased in mutant mice relative to wild-type mice. Overall, these data suggest that mice have a significant capacity for iron excretion. We propose that further investigation into iron excretion is warranted in this and other models of perturbed iron homeostasis, as pharmacological targeting of iron excretion may represent a novel means of treatment for diseases of iron excess.
Collapse
Affiliation(s)
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Jignesh H Parmar
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Heather L Conboy
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Miriam E Dash
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Michael A Pettiglio
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Carolina Herrera
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Julia T Bu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Edward G Stopa
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Pedro Mendes
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| |
Collapse
|
253
|
Abstract
The liver orchestrates systemic iron balance by producing and secreting hepcidin. Known as the iron hormone, hepcidin induces degradation of the iron exporter ferroportin to control iron entry into the bloodstream from dietary sources, iron recycling macrophages, and body stores. Under physiologic conditions, hepcidin production is reduced by iron deficiency and erythropoietic drive to increase the iron supply when needed to support red blood cell production and other essential functions. Conversely, hepcidin production is induced by iron loading and inflammation to prevent the toxicity of iron excess and limit its availability to pathogens. The inability to appropriately regulate hepcidin production in response to these physiologic cues underlies genetic disorders of iron overload and deficiency, including hereditary hemochromatosis and iron-refractory iron deficiency anemia. Moreover, excess hepcidin suppression in the setting of ineffective erythropoiesis contributes to iron-loading anemias such as β-thalassemia, whereas excess hepcidin induction contributes to iron-restricted erythropoiesis and anemia in chronic inflammatory diseases. These diseases have provided key insights into understanding the mechanisms by which the liver senses plasma and tissue iron levels, the iron demand of erythrocyte precursors, and the presence of potential pathogens and, importantly, how these various signals are integrated to appropriately regulate hepcidin production. This review will focus on recent insights into how the liver senses body iron levels and coordinates this with other signals to regulate hepcidin production and systemic iron homeostasis.
Collapse
|
254
|
Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals (Basel) 2018; 11:ph11040098. [PMID: 30301142 PMCID: PMC6315993 DOI: 10.3390/ph11040098] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron deficiency is highly prevalent in developing countries, and oral administration of this metal is so far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed iron leave unappreciated side effects at the highly interactive host–microbe interface of the human gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability, and conversely, the influence on dietary iron absorption in the gut. The central part of this review is intended to summarize our current understanding about the effects of luminal iron on host–microbe interactions in the context of human health and disease.
Collapse
|
255
|
Fabiano A, Brilli E, Mattii L, Testai L, Moscato S, Citi V, Tarantino G, Zambito Y. Ex Vivo and in Vivo Study of Sucrosomial ® Iron Intestinal Absorption and Bioavailability. Int J Mol Sci 2018; 19:ijms19092722. [PMID: 30213039 PMCID: PMC6165425 DOI: 10.3390/ijms19092722] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to demonstrate that Sideral® RM (SRM, Sucrosomial® Raw Material Iron) is transported across the excised intestine via a biological mechanism, and to investigate the effect that this transport route may produce on oral iron absorption, which is expected to reduce the gastrointestinal (GI) side effects caused by the bioavailability of non-absorbed iron. Excised rat intestine was exposed to fluorescein isothiocyanate (FITC)-labeled SRM in Ussing chambers followed by confocal laser scanning microscopy to look for the presence of fluorescein-tagged vesicles of the FITC-labeled SRM. To identify FITC-labeled SRM internalizing cells, an immunofluorescence analysis for macrophages and M cells was performed using specific antibodies. Microscopy analysis revealed the presence of fluorescein positive particulate structures in tissues treated with FITC-labeled SRM. These structures do not disintegrate during transit, and concentrate in macrophage cells. Iron bioavailability was assessed by determining the time-course of Fe3+ plasma levels. As references, iron contents in liver, spleen, and bone marrow were determined in healthy rats treated by gavage with SRM or ferric pyrophosphate salt (FP). SRM significantly increased both area under the curve (AUC) and clearance maxima (Cmax) compared to FP, thus increasing iron bioavailability (AUCrel = 1.8). This led to increased iron availability in the bone marrow at 5 h after single dose gavage.
Collapse
Affiliation(s)
- Angela Fabiano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy.
| | - Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
256
|
Wang T, Xiang P, Ha JH, Wang X, Doguer C, Flores SRL, Kang YJ, Collins JF. Copper supplementation reverses dietary iron overload-induced pathologies in mice. J Nutr Biochem 2018; 59:56-63. [PMID: 29960117 DOI: 10.1016/j.jnutbio.2018.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023]
Abstract
Dietary iron overload in rodents impairs growth and causes cardiac hypertrophy, serum and tissue copper depletion, depression of serum ceruloplasmin (Cp) activity and anemia. Notably, increasing dietary copper content to ~25-fold above requirements prevents the development of these physiological perturbations. Whether copper supplementation can reverse these high-iron-related abnormalities has, however, not been established. The current investigation was thus undertaken to test the hypothesis that supplemental copper will mitigate negative outcomes associated with dietary iron loading. Weanling mice were thus fed AIN-93G-based diets with high (>100-fold in excess) or adequate (~80 ppm) iron content. To establish the optimal experimental conditions, we first defined the time course of iron loading, and assessed the impact of supplemental copper (provided in drinking water) on the development of high-iron-related pathologies. Copper supplementation (20 mg/L) for the last 3 weeks of a 7-week high-iron feeding period reversed the anemia, normalized serum copper levels and Cp activity, and restored tissue copper concentrations. Growth rates, cardiac copper concentrations and heart size, however, were only partially normalized by copper supplementation. Furthermore, high dietary iron intake reduced intestinal 64Cu absorption (~60%) from a transport solution provided to mice by oral, intragastric gavage. Copper supplementation of iron-loaded mice enhanced intestinal 64Cu transport, thus allowing sufficient assimilation of dietary copper to correct many of the noted high-iron-related physiological perturbations. We therefore conclude that high- iron intake increases the requirement for dietary copper (to overcome the inhibition of intestinal copper absorption).
Collapse
Affiliation(s)
- Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Ping Xiang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA; School of the Environment, Nanjing University, Nanjing, China
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Xiaoyu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Shireen R L Flores
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Yujian James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
257
|
Iron loading, alcohol and mortality: A prospective study. Clin Nutr 2018; 38:1262-1268. [PMID: 29803668 DOI: 10.1016/j.clnu.2018.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/26/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS The relationship between total body iron and cardiovascular disease remains controversial and information absent in black sub-Saharan Africans in whom alcohol consumption tends to be high. The level of total body iron is tightly regulated, however this regulation is compromised by high alcohol intake causing iron loading. The aim of this study is to investigate total body iron, as represented by serum ferritin, and its interaction with measures of alcohol intake in predicting all-cause and cardiovascular mortality. METHODS We followed health outcomes for a median of 9.22 years in 877 randomly selected HIV negative African women (mean age: 50.4 years). RESULTS One hundred and five deaths occurred of which 40 were cardiovascular related. Ferritin averaged 84.0 (5th to 95th percentile interval, 7.5-533.3) ng/ml and due to the augmenting effect of inflammation, lowered to 75.3 (6.9-523.2) ng/ml after excluding 271 participants with high-sensitivity C-reactive protein (CRP) levels (above 8 mg/l). CRP increased by quartiles of ferritin in the total group (P trend = 0.002), but this relationship was absent after excluding the 271 participants with high CRP values (P trend = 0.10). Ferritin, gamma-glutamyl transferase and carbohydrate deficient transferrin (all P < 0.0001) were higher in drinkers compared to non-drinkers, but CRP was similar (P = 0.77). In multivariable-adjusted analyses, ferritin predicted both all-cause (hazard ratio, 2.08; 95% confidence interval, 1.62-2.68; P < 0.0001) and cardiovascular (1.94; 1.29-2.92; P = 0.002) mortality. In participants with CRP levels below or equal to 8 mg/l, the significant relationship remained between ferritin and all-cause (2.51; 1.81-3.49; P < 0.0001) and cardiovascular mortality (2.34; 1.45-3.76; P = 0.0005). In fully adjusted models, interactions existed between ferritin and gamma-glutamyl transferase, self-reported alcohol use and carbohydrate deficient transferrin in predicting all-cause (P ≤ 0.012) and cardiovascular mortality (P ≤ 0.003). CONCLUSIONS Iron loading in African women predicted all-cause and cardiovascular mortality and the intake of alcohol seems mechanistically implicated.
Collapse
|
258
|
Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem Toxicol 2018; 114:190-203. [PMID: 29432835 DOI: 10.1016/j.fct.2018.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
Iron is a life-supporting micronutrient that is required in the human diet, and is essential for maintaining physiological homeostasis. Properly harnessing a redox-active metal such as iron is a great challenge for cells and organisms because an excess of highly reactive iron catalyzes the formation of reactive oxygen species and can lead to cell and tissue damage. Quercetin is a typical flavonoid that is commonly found in fruits and vegetables and has versatile biological effects. From a classical viewpoint, owing to its unique chemical characteristics, quercetin has long been associated with iron metabolism only in the context of its iron-chelating and ROS-scavenging activities. However, within the field of human iron biology, expanding concepts of the roles of quercetin are flourishing, and great strides are being made in understanding the interactions between quercetin and iron. This progress highlights the varied roles of quercetin in iron metabolism, which involve much more than iron chelation alone. A review of these studies provides an ideal context to summarize recent progress and discuss compelling evidence for therapeutic opportunities that could arise from a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
259
|
First biochemical and crystallographic characterization of a fast-performing ferritin from a marine invertebrate. Biochem J 2017; 474:4193-4206. [PMID: 29127253 DOI: 10.1042/bcj20170681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Ferritin, a multimeric cage-like enzyme, is integral to iron metabolism across all phyla through the sequestration and storage of iron through efficient ferroxidase activity. While ferritin sequences from ∼900 species have been identified, crystal structures from only 50 species have been reported, the majority from bacterial origin. We recently isolated a secreted ferritin from the marine invertebrate Chaetopterus sp. (parchment tube worm), which resides in muddy coastal seafloors. Here, we present the first ferritin from a marine invertebrate to be crystallized and its biochemical characterization. The initial ferroxidase reaction rate of recombinant Chaetopterus ferritin (ChF) is 8-fold faster than that of recombinant human heavy-chain ferritin (HuHF). To our knowledge, this protein exhibits the fastest catalytic performance ever described for a ferritin variant. In addition to the high-velocity ferroxidase activity, ChF is unique in that it is secreted by Chaetopterus in a bioluminescent mucus. Previous work has linked the availability of Fe2+ to this long-lived bioluminescence, suggesting a potential function for the secreted ferritin. Comparative biochemical analyses indicated that both ChF and HuHF showed similar behavior toward changes in pH, temperature, and salt concentration. Comparison of their crystal structures shows no significant differences in the catalytic sites. Notable differences were found in the residues that line both 3-fold and 4-fold pores, potentially leading to increased flexibility, reduced steric hindrance, or a more efficient pathway for Fe2+ transportation to the ferroxidase site. These suggested residues could contribute to the understanding of iron translocation through the ferritin shell to the ferroxidase site.
Collapse
|
260
|
Zhao M, Li MY, Gao XF, Jia SJ, Gao KQ, Zhou Y, Zhang HH, Huang Y, Wang J, Wu HJ, Lu QJ. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4 + T cells of systemic lupus erythematosus. Clin Immunol 2017; 187:113-121. [PMID: 29113828 DOI: 10.1016/j.clim.2017.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
DNA hypomethylation plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Here we investigated whether 3-hydroxy butyrate dehydrogenase 2 (BDH2), a modulator of intracellular iron homeostasis, was involved in regulating DNA hypomethylation and hyper-hydroxymethylation in lupus CD4+ T cells. Our results showed that BDH2 expression was decreased, intracellular iron was increased, global DNA hydroxymethylation level was elevated, while methylation level was reduced in lupus CD4+ T cells compared with healthy controls. The decreased BDH2 contributed to DNA hyper-hydroxymethylation and hypomethylation via increasing intracellular iron in CD4+ T cells, which led to overexpression of immune related genes. Moreover, we showed that BDH2 was the target gene of miR-21. miR-21 promoted DNA demethylation in CD4+ T cells through inhibiting BDH2 expression. Our data demonstrated that the dysregulation of iron homeostasis in CD4+ T cells induced by BDH2 deficiency contributes to DNA demethylation and self-reactive T cells in SLE.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Meng-Ying Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiao-Fei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Su-Jie Jia
- Department of Pharmaceutics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ke-Qin Gao
- Department of Pharmaceutics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yin Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hui-Hui Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hai-Jing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian-Jin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
261
|
Canali S, Wang CY, Zumbrennen-Bullough KB, Bayer A, Babitt JL. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am J Hematol 2017; 92:1204-1213. [PMID: 28815688 DOI: 10.1002/ajh.24888] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Hepcidin is a key iron regulatory hormone that controls expression of the iron exporter ferroportin to increase the iron supply when needed to support erythropoiesis and other essential functions, but to prevent the toxicity of iron excess. The bone morphogenetic protein (BMP)-SMAD signaling pathway, through the ligand BMP6 and the co-receptor hemojuvelin, is a central regulator of hepcidin transcription in the liver in response to iron. Here, we show that dietary iron loading has a residual ability to induce Smad signaling and hepcidin expression in Bmp6-/- mice, effects that are blocked by a neutralizing BMP2/4 antibody. Moreover, BMP2/4 antibody inhibits hepcidin expression and induces iron loading in wildtype mice, whereas a BMP4 antibody has no effect. Bmp2 mRNA is predominantly expressed in endothelial cells of the liver, where its baseline expression is higher, but its induction by iron is less robust than Bmp6. Mice with a conditional ablation of Bmp2 in endothelial cells exhibit hepcidin deficiency, serum iron overload, and tissue iron loading in liver, pancreas and heart, with reduced spleen iron. Together, these data demonstrate that in addition to BMP6, endothelial cell BMP2 has a non-redundant role in hepcidin regulation by iron.
Collapse
Affiliation(s)
- Susanna Canali
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Chia-Yu Wang
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Kimberly B. Zumbrennen-Bullough
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Abraham Bayer
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Jodie L. Babitt
- Program in Anemia Signaling Research, Division of Nephrology, Program in Membrane Biology, Center for Systems Biology; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|