251
|
Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 2011; 29:294-306. [PMID: 21459467 DOI: 10.1016/j.tibtech.2011.02.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/28/2022]
Abstract
Vaccine development has progressed significantly and has moved from whole microorganisms to subunit vaccines that contain only their antigenic proteins. Subunit vaccines are often less immunogenic than whole pathogens; therefore, adjuvants must amplify the immune response, ideally establishing both innate and adaptive immunity. Incorporation of antigens into biomaterials, such as liposomes and polymers, can achieve a desired vaccine response. The physical properties of these platforms can be easily manipulated, thus allowing for controlled delivery of immunostimulatory factors and presentation of pathogen-associated molecular patterns (PAMPs) that are targeted to specific immune cells. Targeting antigen to immune cells via PAMP-modified biomaterials is a new strategy to control the subsequent development of immunity and, in turn, effective vaccination. Here, we review the recent advances in both immunology and biomaterial engineering that have brought particulate-based vaccines to reality.
Collapse
Affiliation(s)
- Stacey L Demento
- Department of Biomedical Engineering, Yale University, Malone Engineering Center, 55 Prospect Street, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
252
|
Cruz LJ, Tacken PJ, Bonetto F, Buschow SI, Croes HJ, Wijers M, de Vries IJ, Figdor CG. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol Pharm 2011; 8:520-31. [PMID: 21381651 DOI: 10.1021/mp100356k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, targeted nanovaccine carriers were generated that allow multimodal imaging of nanocarrier-DC interactions from the subcellular to the organism level. These carriers were made of biodegradable poly(D,L-lactide-co-glycolide) harboring superparamagnetic iron oxide particles (SPIO) and fluorescently labeled antigen in a single particle. Targeted delivery was facilitated by coating the NPs with antibodies recognizing the DC-specific receptor DC-SIGN. The fluorescent label allowed for rapid analysis and quantification of specific versus nonspecific uptake of targeted NPs by DCs compared to other blood cells. In addition, it showed that part of the encapsulated antigen reached the lysosomal compartment of DCs within 24 h. Moreover, the presence of fluorescent label did not prevent the antigen from being presented to antigen-specific T cells. The incorporated SPIO was applied to track the NPs at subcellular cell organel level using transmission electron microscopy (TEM). NPs were found within endolysosomal compartments, where part of the SPIO was already released within 24 h. Furthermore, part of the NPs seemed to localize within the cytoplasm. Ex vivo loading of DCs with NPs resulted in efficient labeling and detection by MRI and did not abolish cell migration within collagen scaffolds. In conclusion, incorporation of two imaging agents within a single carrier allows tracking of targeted nanovaccines on a subcellular, cellular and possibly organism level, thereby facilitating rational design of in vivo targeted vaccination strategies.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
253
|
Seong K, Seo H, Ahn W, Yoo D, Cho S, Khang G, Lee D. Enhanced cytosolic drug delivery using fully biodegradable poly(amino oxalate) particles. J Control Release 2011; 152:257-63. [PMID: 21371509 DOI: 10.1016/j.jconrel.2011.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 02/12/2011] [Accepted: 02/23/2011] [Indexed: 12/16/2022]
Abstract
Rapid endosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially proteins that are susceptible to lysosomal degradation. In this paper, we report poly(amino oxalate) (PAOX) as a new protein delivery system that is capable of disrupting endosomes and mediating cytosolic drug delivery. A cationic fully-biodegradable PAOX was synthesized from a one-step reaction of oxalyl chloride, cyclohexanedimethanol and piperazinediethanol. The incorporation of tertiary amine groups in the backbone of PAOX enhanced its hydrolytic nature, which results in a fast drug release. The studies of confocal fluorescence imaging using calcein and LysoTracker Red revealed that PAOX particles disrupted endosomes via "proton sponge" effects and mediated the cytosolic delivery of membrane-impermeable calcein. A protein delivery efficiency of PAOX particles was evaluated using catalase as a model protein. Catalase-loaded PAOX microparticles significantly inhibited hydrogen peroxide generation in Phorbol-12-myristate-13-acetate (PMA)-stimulated macrophages, in a dose-dependent manner. Given the excellent biocompatibility and physicochemical properties, we anticipate that PAOX is a promising cytosolic protein delivery system and is useful for the treatment of acute inflammatory diseases.
Collapse
Affiliation(s)
- Kyeongyeol Seong
- Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Dukjin, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
254
|
Chen J, Li Z, Huang H, Yang Y, Ding Q, Mai J, Guo W, Xu Y. Improved antigen cross-presentation by polyethyleneimine-based nanoparticles. Int J Nanomedicine 2011; 6:77-84. [PMID: 21289984 PMCID: PMC3025594 DOI: 10.2147/ijn.s15457] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose In the development of therapeutic vaccines against cancer, it is important to design strategies for antigen cross-presentation to stimulate cell-mediated immune responses against tumor antigens. Methods We developed a polyethyleneimine (PEI)-based protein antigen delivery system to promote cross-presentation through the major histocompatibility complex (MHC) I pathway using ovalbumin (OVA) as a model antigen. PEIs formed nanoparticles with OVA by electrostatic interactions, as demonstrated by electrophoresis analysis, scanning electron microscopy, and photon correlation spectroscopy analysis. Results The nanoparticles were used to stimulate mouse bone marrow-derived dendritic cells in vitro and resulted in significantly more OVA257–264/MHC I complex presentation on dendritic cell surfaces. The activated dendritic cells interacted specifically with RF33.70 to stimulate interleukin-2 secretion. The cross-presentation promoting effect was more prominent in dendritic cells that had been cultured for longer periods of time (13 days). Further studies comparing the antigen presentation efficacies by other polyanionic agents, such as PLL or lysosomotropic agents, suggested that the unique “proton sponge effect” of PEI facilitated antigen escape from the endosome toward the MHC I pathway. Conclusion Such a PEI-based nanoparticle system may have the potential to be developed into an effective therapeutic vaccine delivery system.
Collapse
Affiliation(s)
- Jian Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Keselowsky BG, Xia CQ, Clare-Salzler M. Multifunctional dendritic cell-targeting polymeric microparticles: engineering new vaccines for type 1 diabetes. HUMAN VACCINES 2011; 7:37-44. [PMID: 21157186 DOI: 10.4161/hv.7.1.12916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Benjamin G Keselowsky
- J Crayton Pruitt Family Department of Biomedical Engineering, College of Medicine; University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
256
|
De Koker S, Lambrecht BN, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remon JP, De Geest BG. Designing polymeric particles for antigen delivery. Chem Soc Rev 2011; 40:320-39. [PMID: 21060941 DOI: 10.1039/b914943k] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
By targeting dendritic cells, polymeric carriers in the nano to lower micron range constitute very interesting tools for antigen delivery. In this critical review, we review how new immunological insights can be exploited to design new carriers allowing one to tune immune responses and to further increase vaccine potency (137 references).
Collapse
Affiliation(s)
- Stefaan De Koker
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Nolz JC, Harty JT. Strategies and implications for prime-boost vaccination to generate memory CD8 T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:69-83. [PMID: 21842366 DOI: 10.1007/978-1-4419-5632-3_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Generating a large population of memory CD8 T cells is an appealing goal for vaccine design against a variety of human diseases. Indeed, experimental models have demonstrated that the overall number of memory CD8 T cells present at the time of infection correlates strongly with the ability to confer host protection against a range of different pathogens. Currently, the most conceivable approach to rapidly generate a large population of memory CD8 T cells is through the use of prime-boost vaccination. In addition, recent experimental findings have uncovered important principles that govern both the rate and magnitude of memory CD8 T cell formation. Thus, this has resulted in novel prime-boost vaccination strategies that could potentially be used in humans to generate protective populations of memory CD8 T cells.
Collapse
|
258
|
Arias MA, Loxley A, Eatmon C, Van Roey G, Fairhurst D, Mitchnick M, Dash P, Cole T, Wegmann F, Sattentau Q, Shattock R. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine 2010; 29:1258-69. [PMID: 21145913 PMCID: PMC3098439 DOI: 10.1016/j.vaccine.2010.11.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/21/2010] [Accepted: 11/24/2010] [Indexed: 01/28/2023]
Abstract
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.
Collapse
Affiliation(s)
- Mauricio A Arias
- Division of Clinical Sciences, St. George's University of London, London SW17 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Biodegradable nanoparticles containing TLR3 or TLR9 agonists together with antigen enhance MHC-restricted presentation of the antigen. Arch Pharm Res 2010; 33:1859-66. [PMID: 21116790 DOI: 10.1007/s12272-010-1119-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/17/2010] [Indexed: 12/21/2022]
Abstract
The effects of intraphagosomal toll-like receptor (TLR) activation on the MHC-restricted presentation of exogenous antigen were examined in dendritic cells (DCs). For phagosomal targeting, nanoparticles containing both a TLR agonist and a model antigen, ovalbumin (OVA), were prepared using biodegradable polymer poly(D,L-lactic acid-co-glycolic acid) and were then opsonized with mouse IgG. After incubating mouse DCs with the nanoparticles, the efficacy of OVA peptide presentation was evaluated using OVA-specific CD8 and CD4 T cells. Inclusion of either the TLR3 agonist poly(I:C) or the TLR9 agonist CpG oligodeoxynucleotides (ODN) significantly increased and prolonged both MHC class I- and class II-restricted OVA presentation. Accordingly, the DCs that phagocytosed the nanoparticles containing poly(I:C) or CpG ODN together with OVA efficiently induced the proliferation of OVA-specific CD8 and CD4 T cells. The potency levels of poly(I:C) and CpG ODN in increasing the MHC-restricted presentation of the exogenous antigen appeared to be similar. A combination of the 2 TLR agonists was synergistic in increasing the MHC class I-restricted, but not the class II-restricted, presentation of exogenous antigen. These results show that IgG-opsonized biodegradable nanoparticles containing both intraphagosomal TLR agonists and antigens can be efficient carrier materials in inducing antigen-specific T cell responses.
Collapse
|
260
|
Kou PM, Babensee JE. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 2010; 96:239-60. [PMID: 21105173 DOI: 10.1002/jbm.a.32971] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022]
Abstract
Macrophages (Mϕ) and dendritic cells (DCs) are critical antigen presenting cells that play pivotal roles in host responses to biomaterial implants. Although Mϕs have been widely studied for their roles in the inflammatory responses against biomaterials, the roles that DCs play in the host responses toward implanted materials have only recently been explored. DCs are of significant research interest because of the emergence of a large number of combination products that cross-traditional medical device boundaries. These products combine biomaterials with biologics, including cells, nucleic acids, and/or proteins. The biomaterial component may evoke an inflammatory response, primarily mediated by neutrophils and Mϕs, whereas the biologic component may elicit an immunogenic immune response, initiated by DCs involving lymphocyte activation. Control of Mϕ phenotypic balance from proinflammatory M1 to reparative M2 is a goal of investigators to optimize the host response to biomaterials. Similarly, control of DC phenotype from proinflammatory to toleragenic is of interest in vaccine delivery and tissue engineering/transplantation situations, respectively. This review discusses the interconnection between innate and adaptive immunity, the comparative and contrasting phenotypes and roles of Mϕs and DCs in immunity, their responses to biomaterials and the strategies to modulate their phenotype for applications in tissue engineering and vaccine delivery. Furthermore, the collaboration between and unique roles of DCs and Mϕs needs to be addressed in future studies to gain a more complete picture of host responses toward combination products.
Collapse
Affiliation(s)
- Peng Meng Kou
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
261
|
Han R, Zhu J, Yang X, Xu H. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J Biomed Mater Res A 2010; 96:142-9. [PMID: 21105162 DOI: 10.1002/jbm.a.32860] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 11/09/2022]
Abstract
Cross-presentation is the key process in stimulation of cytotoxic T lymphocyte (CTL) immune response in eliminating many infectious diseases and tumors. Previous studies have shown that surface modification of poly(D,L-lactic-co-glycolic acid) (PLGA) particles with polycations enhanced their adjuvant ability resulting in a strong antibody response to the encapsulated antigen. However, the in vitro cross-presentation by protamine-coated PLGA nanoparticles (NPs) has not been addressed yet. In this study, a model antigen ovalbumin (OVA) was encapsulated into PLGA nanoparticles, with (OVA-NPs/protamine) or without protamine coating (OVA-NPs). These nanoparticles were then used to stimulate murine bone marrow-derived dendritic cells (BMDCs). Flow cytometry analysis revealed an increase in endocytosis of protamine-coated PLGA nanoparticles by BMDCs at 37°C. Compared with OVA-NPs-treated BMDCs, stimulation with OVA-NPs/protamine led to significantly upregulation of CD80, CD86, and CD83, increased secretion of IL-12p70, and decreased production of IL-4 by BMDCs. Furthermore, OVA-NPs/protamine-treated BMDCs also showed an enhanced cross-presentation to B3Z T cell hybridoma in vitro. Transmission electron microscopy (TEM) study showed that protamine-coated PLGA nanoparticles escaped from lysosomes through the interaction with lysosomal membrane. These results demonstrated that protamine-coated PLGA nanoparticles could enhance the cross-presentation of encapsulated exogenous antigen by facilitating antigen uptake and lysosomal escape, suggesting the feasibility to be a potent adjuvant for cellular vaccines.
Collapse
Affiliation(s)
- Ruiling Han
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
262
|
Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjug Chem 2010; 21:2205-12. [PMID: 21043513 DOI: 10.1021/bc100204m] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based vaccines have significant potential as infectious disease and anticancer therapeutics, but clinical impact has been limited in some applications by their inability to generate a coordinated cellular immune response. Here, a pH-responsive carrier incorporating poly(propylacrylic acid) (PPAA) was evaluated to test whether improved cytosolic delivery of a protein antigen could enhance CD8+ cytotoxic lymphocyte generation and prophylactic tumor vaccine responses. PPAA was directly conjugated to the model ovalbumin antigen via reducible disulfide linkages and was also tested in a particulate formulation after condensation with cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA). Intracellular trafficking studies revealed that both PPAA-containing formulations were stably internalized and evaded exocytotic pathways, leading to increased intracellular accumulation and potential access to the cytosolic MHC-1 antigen presentation pathway. In an EG.7-OVA mouse tumor protection model, both PPAA-containing carriers robustly inhibited tumor growth and led to an approximately 3.5-fold increase in the longevity of tumor-free survival relative to controls. Mechanistically, this response was attributed to the 8-fold increase in production of ovalbumin-specific CD8+ T-lymphocytes and an 11-fold increase in production of antiovalbumin IgG. Significantly, this is one of the first demonstrated examples of in vivo immunotherapeutic efficacy using soluble protein-polymer conjugates. These results suggest that carriers enhancing cytosolic delivery of protein antigens could lead to more robust CD8+ T-cell response and demonstrate the potential of pH-responsive PPAA-based carriers for therapeutic vaccine applications.
Collapse
Affiliation(s)
- Suzanne Foster
- Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle Washington 98195, USA
| | | | | | | | | |
Collapse
|
263
|
Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine 2010; 28:7897-906. [DOI: 10.1016/j.vaccine.2010.09.077] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/03/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022]
|
264
|
Budimir N, Meijerhof T, Wilschut J, Huckriede A, de Haan A. The role of membrane fusion activity of a whole inactivated influenza virus vaccine in (re)activation of influenza-specific cytotoxic T lymphocytes. Vaccine 2010; 28:8280-7. [PMID: 20965298 DOI: 10.1016/j.vaccine.2010.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/27/2010] [Accepted: 10/05/2010] [Indexed: 12/19/2022]
Abstract
Induction of cytotoxic T lymphocyte (CTL) activity against conserved influenza antigens, e.g. nucleoprotein (NP) could be a step towards cross-protective influenza vaccine. The major challenge for non-replicating influenza vaccines aiming for activation of CTLs is targeting of antigen to the MHC class I processing and presentation pathway of professional antigen presenting cells, in particular dendritic cells (DCs). Intrinsic fusogenic properties of the vaccine particle itself can enable direct cytosolic delivery of the antigen by enhancing release of the antigen from the endosome to the cytosol. Alternatively, the vaccine particle would need to possess the capacity to activate DCs thereby triggering cell-intrinsic mechanisms of cross-presentation, processes that do not require fusion. Here, using fusion-active and fusion-inactive whole inactivated virus (WIV) as a vaccine model, we studied the relative contribution of these two pathways on priming and reactivation of influenza NP-specific CTLs in a murine model. We show that activation of bone marrow-derived DCs by WIV, as well as reactivation of NP-specific CTLs in vitro and in vivo were not affected by inactivation of membrane fusion of the WIV particles. However, in vivo priming of naive CTLs was optimal only upon vaccination with fusion-active WIV. Thus, DC-intrinsic mechanisms of cross-presentation are involved in the activation of CTLs upon vaccination with WIV. However, for optimal priming of naive CTLs these mechanisms should be complemented by delivery of antigen to the cytosol mediated by the membrane fusion capacity of the WIV particles.
Collapse
Affiliation(s)
- Natalija Budimir
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
265
|
Alshamsan A, Haddadi A, Hamdy S, Samuel J, El-Kadi AOS, Uludağ H, Lavasanifar A. STAT3 Silencing in Dendritic Cells by siRNA Polyplexes Encapsulated in PLGA Nanoparticles for the Modulation of Anticancer Immune Response. Mol Pharm 2010; 7:1643-54. [DOI: 10.1021/mp100067u] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Aws Alshamsan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Azita Haddadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Samar Hamdy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - John Samuel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Canada, and Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|
266
|
Stepensky D. Quantitative Aspects of Intracellularly-Targeted Drug Delivery. Pharm Res 2010; 27:2776-80. [DOI: 10.1007/s11095-010-0253-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022]
|
267
|
NIKITCZUK KEVINP, LATTIME EDMUNDC, SCHLOSS RENES, YARMUSH MARTINL. ANALYSIS OF DENDRITIC CELL STIMULATION UTILIZING A MULTI-FACETED NANOPOLYMER DELIVERY SYSTEM AND THE IMMUNE MODULATOR 1-METHYL TRYPTOPHAN. NANO LIFE 2010; 1:239-250. [PMID: 24772192 PMCID: PMC3998209 DOI: 10.1142/s1793984410000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in immune modulation. Therefore, understanding and regulating the mechanism of DC activation is paramount for functional optimization of any immunotherapy strategy. In particular, the paradoxical ability of DCs to secrete the immune suppressive enzyme indoleamine 2, 3-dioxygenase (IDO) and the suppressive cytokine IL-10 during the course of, and in response to, stimulation is of great interest. 1-Methyl-Tryptophan (1 MT) is a known inhibitor of IDO and has thus been administered in numerous in vitro and in vivo systems to block IDO activity. However, the effect 1 MT has on DCs beyond inhibiting IDO, especially in therapeutic models, has rarely been analyzed. In the current study, we have administered 1 MT via a nanopolymer-based delivery system in conjunction with an antigen (ovalbumin, OVA) and an adjuvant (CpG motif DNA) to determine both the effects of 1 MT on DCs and the resulting efficacy of the polymer-based treatments. 1 MT delivery alone, either via the polymer-based delivery vehicle or dissolved in solution, induced no significant change in DC activation as measured by surface expression of CD80, CD86, and MHCII and several secreted products such as IL-12. These same factors were upregulated however, when 1 MT was delivered in conjunction with OVA and CpG. Although soluble delivery of these components increased the levels of expression and secretion of key proteins, a differential effect of DC stimulation was seen as a result of the polymer delivery system. The T cell suppressive IL-10 secretion was lower with the polymer-based treatments and IL-12 immune-enhancing secretion was increased when 1 MT was supplemented into the polymer system. As a result, including 1 MT in the polymers along with OVA and CpG was seen to have additional effects on DC stimulation and was able to shift DCs to a state more indicative of inducing a Th1-type response.
Collapse
Affiliation(s)
- KEVIN P. NIKITCZUK
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, New Jersey, USA
| | - EDMUND C. LATTIME
- The Cancer Institute of New Jersey, Departments of Surgery and Molecular Genetics Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - RENE S. SCHLOSS
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, New Jersey, USA
| | - MARTIN L. YARMUSH
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, New Jersey, USA
| |
Collapse
|
268
|
Lee E, Kim S, Seong K, Park H, Seo H, Khang G, Lee D. A biodegradable and biocompatible drug-delivery system based on polyoxalate microparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 22:1683-94. [PMID: 20699060 DOI: 10.1163/092050610x519480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug delivery using biodegradable polymeric microparticles is becoming an important means of delivering therapeutic agents. In this work, we describe polyoxalate microparticles as a biodegradable and biocompatible protein drug-delivery system. Polyoxalate was synthesized from a polycondensation reaction between oxalyl chloride and 1,4-cyclohexanedimethanol under basic conditions. Polyoxalate, in design, undergoes hydrolytic degradation to generate non-toxic low-molecular-weight compounds that can be easily excreted from a body. Polyoxalate was hydrophobic and had a half-life of 6.5 days at pH 7.4. This hydrophobic polyoxalate could be formulated into microparticles by a double emulsion method and encapsulate proteins with a loading efficiency of more than 80%. Cytotoxicity evaluation using RAW 264.7 cells indicated that polyoxalate microparticles exhibited a cytotoxicity profile superior to PLGA microparticles. The polyoxalate microparticles were taken up by macrophages in vitro as confirmed by confocal fluorescence microscopy. The ease of synthesis coupled with the physicochemical properties and excellent biocompatibility make this polyoxalate a promising candidate for protein-delivery applications.
Collapse
Affiliation(s)
- Eunyong Lee
- Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| | | | | | | | | | | | | |
Collapse
|
269
|
Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:523-9. [DOI: 10.1016/j.nano.2010.01.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/29/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022]
|
270
|
Demento SL, Bonafé N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. THE JOURNAL OF IMMUNOLOGY 2010; 185:2989-97. [PMID: 20660705 DOI: 10.4049/jimmunol.1000768] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaccines that activate humoral and cell-mediated immune responses are urgently needed for many infectious agents, including the flaviviruses dengue and West Nile (WN) virus. Vaccine development would be greatly facilitated by a new approach, in which nanoscale modules (Ag, adjuvant, and carrier) are assembled into units that are optimized for stimulating immune responses to a specific pathogen. Toward that goal, we formulated biodegradable nanoparticles loaded with Ag and surface modified with the pathogen-associated molecular pattern CpG oligodeoxynucleotides. We chose to evaluate our construct using a recombinant envelope protein Ag from the WN virus and tested the efficiency of this system in eliciting humoral and cellular responses and providing protection against the live virus. Animals immunized with this system showed robust humoral responses polarized toward Th1 immune responses compared with predominately Th2-biased responses with the adjuvant aluminum hydroxide. Immunization with CpG oligodeoxynucleotide-modified nanoparticles resulted in a greater number of circulating effector T cells and greater activity of Ag-specific lymphocytes than unmodified nanoparticles or aluminum hydroxide. Ultimately, compared with alum, this system offered superior protection in a mouse model of WN virus encephalitis.
Collapse
Affiliation(s)
- Stacey L Demento
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc Natl Acad Sci U S A 2010; 107:12198-203. [PMID: 20616089 DOI: 10.1073/pnas.1004661107] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The number of memory CD8 T cells generated by infection or vaccination correlates strongly with the degree of protection observed in infection and tumor models. Therefore, rapid induction of protective numbers of effector and memory CD8 T cells may be crucial in the case of malignancy, pandemic infection, or bioterrorism. Many studies have shown that amplifying T-cell numbers by prime-boost vaccination is most effective with a substantial time interval between immunizations. In contrast, immunization with peptide-coated mature dendritic cells (DCs) results in a CD8 T-cell response exhibiting accelerated acquisition of memory characteristics, including the ability to respond to booster immunization within days of initial priming. However, personalized DC immunization is too costly, labor intensive, and time-consuming for large-scale vaccination. Here, we demonstrate that in vivo cross-priming with cell-associated antigens or antigen-coated, biodegradable microspheres in the absence of adjuvant quickly generates CD8 T cells that display the phenotype and function of long-term memory populations. Importantly, cross-primed CD8 T cells can respond to booster immunization within days of the initial immunization to generate rapidly large numbers of effector and memory T cells that can protect against bacterial, viral, and parasitic infections, including lethal influenza and malaria-causing Plasmodium infection. Thus, accelerated CD8 T-cell memory after in vivo cross-priming in the absence of adjuvant is generalizable and can be exploited to generate protective immunity rapidly.
Collapse
|
272
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
273
|
Controlling influenza by cytotoxic T-cells: calling for help from destroyers. J Biomed Biotechnol 2010; 2010:863985. [PMID: 20508820 PMCID: PMC2875772 DOI: 10.1155/2010/863985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/03/2010] [Indexed: 12/26/2022] Open
Abstract
Influenza is a vaccine preventable disease that causes severe illness and excess mortality in humans. Licensed influenza vaccines induce humoral immunity and protect against strains that antigenically match the major antigenic components of the vaccine, but much less against antigenically diverse influenza strains. A vaccine that protects against different influenza viruses belonging to the same subtype or even against viruses belonging to more than one subtype would be a major advance in our battle against influenza. Heterosubtypic immunity could be obtained by cytotoxic T-cell (CTL) responses against conserved influenza virus epitopes. The molecular mechanisms involved in inducing protective CTL responses are discussed here. We also focus on CTL vaccine design and point to the importance of immune-related databases and immunoinformatics tools in the quest for new vaccine candidates. Some techniques for analysis of T-cell responses are also highlighted, as they allow estimation of cellular immune responses induced by vaccine preparations and can provide correlates of protection.
Collapse
|
274
|
De Haes W, De Koker S, Pollard C, Atkinson D, Vlieghe E, Hoste J, Rejman J, De Smedt S, Grooten J, Vanham G, Van Gulck E. Polyelectrolyte capsules-containing HIV-1 p24 and poly I:C modulate dendritic cells to stimulate HIV-1-specific immune responses. Mol Ther 2010; 18:1408-16. [PMID: 20461059 DOI: 10.1038/mt.2010.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyelectrolyte microcapsules (MCs) are potent protein delivery vehicles which can be tailored with ligands to stimulate maturation of dendritic cells (DCs). We investigated the immune stimulatory capacity of monocyte-derived DC (Mo-DC) loaded with these MCs, containing p24 antigen from human immunodeficiency virus type 1 (HIV-1) alone [p24-containing MC (MCp24)] or with the Toll-like receptor ligand 3 (TLR3) ligand poly I:C (MCp24pIC) as a maturation factor. MO-DC, loaded with MCp24pIC, upregulated CCR7, CD80, CD83, and CD86 and produced high amounts of interleukin-12 (IL-12) cytokine, to a similar extent as MCp24 in the presence of an optimized cytokine cocktail. MO-DC from HIV-infected patients under highly active antiretroviral therapy (HAART) exposed to MCp24 together with cytokine cocktail or to MCp24pIC expanded autologous p24-specific CD4(+) and CD8(+) T-cell responses as measured by interferon-gamma (IFN-gamma) and IL-2 cytokine production and secretion. In vivo relevance was shown by immunizing C57BL/6 mice with MCp24pIC, which induced both humoral and cellular p24-specific immune responses. Together these data provide a proof of principle that both antigen and DC maturation signal can be delivered as a complex with polyelectrolyte capsules to stimulate virus-specific T cells both in vitro and in vivo. Polyelectrolyte MCs could be useful for in vivo immunization in HIV-1 and other infections.
Collapse
Affiliation(s)
- Winni De Haes
- Institute of Tropical Medicine of Antwerp, Department of Microbiology, Unit Virology, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Florindo H, Pandit S, Gonçalves L, Alpar H, Almeida A. Surface modified polymeric nanoparticles for immunisation against equine strangles. Int J Pharm 2010; 390:25-31. [DOI: 10.1016/j.ijpharm.2009.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 09/08/2009] [Accepted: 10/03/2009] [Indexed: 12/22/2022]
|
276
|
Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc Natl Acad Sci U S A 2010; 107:8730-5. [PMID: 20413723 DOI: 10.1073/pnas.1002769107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human blood Vgamma9Vdelta2 T cells respond to signals from microbes and tumors and subsequently differentiate into professional antigen-presenting cells (gammadelta T-APCs) for induction of CD4(+) and CD8(+) T cell responses. gammadelta T-APCs readily take up and degrade exogenous soluble protein for peptide loading on MHC I, in a process termed antigen cross-presentation. The mechanisms underlying antigen cross-presentation are ill-defined, most notably in human dendritic cells (DCs), and no study has addressed this process in gammadelta T-APCs. Here we show that intracellular protein degradation and endosomal acidification were significantly delayed in gammadelta T-APCs compared with human monocyte-derived DCs (moDCs). Such conditions are known to favor antigen cross-presentation. In both gammadelta T-APCs and moDCs, internalized antigen was transported across insulin-regulated aminopeptidase (IRAP)-positive early and late endosomes; however, and in contrast to various human DC subsets, gammadelta T-APCs efficiently translocated soluble antigen into the cytosol for processing via the cytosolic proteasome-dependent cross-presentation pathway. Of note, gammadelta T-APCs cross-presented influenza antigen derived from virus-infected cells and from free virus particles. The robust cross-presentation capability appears to be a hallmark of gammadelta T-APCs and underscores their potential application in cellular immunotherapy.
Collapse
|
277
|
Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2010; 62:378-93. [PMID: 19922750 DOI: 10.1016/j.addr.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
There is an urgent need for new strategies to combat infectious diseases in developing countries. Many pathogens have evolved to elude immunity and this has limited the utility of current therapies. Additionally, the emergence of co-infections and drug resistant pathogens has increased the need for advanced therapeutic and diagnostic strategies. These challenges can be addressed with therapies that boost the quality and magnitude of an immune response in a predictable, designable fashion that can be applied for wide-spread use. Here, we discuss how biomaterials and specifically nanoscale delivery vehicles can be used to modify and improve the immune system response against infectious diseases. Immunotherapy of infectious disease is the enhancement or modulation of the immune system response to more effectively prevent or clear pathogen infection. Nanoscale vehicles are particularly adept at facilitating immunotherapeutic approaches because they can be engineered to have different physical properties, encapsulated agents, and surface ligands. Additionally, nanoscaled point-of-care diagnostics offer new alternatives for portable and sensitive health monitoring that can guide the use of nanoscale immunotherapies. By exploiting the unique tunability of nanoscale biomaterials to activate, shape, and detect immune system effector function, it may be possible in the near future to generate practical strategies for the prevention and treatment of infectious diseases in the developing world.
Collapse
|
278
|
De Koker S, De Geest BG, Singh SK, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt SC, Grooten J. Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew Chem Int Ed Engl 2010; 48:8485-9. [PMID: 19810070 DOI: 10.1002/anie.200903769] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Lo CT, Van Tassel PR, Saltzman WM. Poly(lactide-co-glycolide) nanoparticle assembly for highly efficient delivery of potent therapeutic agents from medical devices. Biomaterials 2010; 31:3631-42. [PMID: 20149428 DOI: 10.1016/j.biomaterials.2010.01.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/12/2010] [Indexed: 01/03/2023]
Abstract
Controlled delivery of therapeutic agents from medical devices can improve their safety and effectiveness in vivo, by ameliorating the surrounding tissue responses and thus maintaining the functional integrity of the devices. Previously, we presented a new method for providing simultaneous controlled delivery from medical devices, by surface assembly of biodegradable polymer nanoparticles (NPs) encapsulating fluorescent dyes. Here, we continue our investigation with NPs loaded with therapeutic agents, dexamethasone (DEX) or plasmid DNA, and evaluated the bioactivity of the released molecules with macrophage cells associated with inflammation. Over a period of one week, NPs encapsulating DEX released 24.9+/-0.8ng from the probe surface and was successful at suppressing macrophage cell growth by 40+/-10%. This percentage of suppression corresponded to approximately 100% drug delivery efficiency, in comparison with the unencapsulated drug. DNA NP coatings, in contrast, released approximately 1ng of plasmid DNA and were effective at transfecting macrophage cells to express the luciferase gene at 300+/-200 relative luminescence/mg total protein. This amount of luciferase activity corresponded to 100% gene delivery efficiency. Thus, NP coatings were capable of providing continuous release of bioactive agents in sufficient quantities to induce relevant biological effects in cell culture studies. These coatings also remained intact, even after 14 days of incubation with phosphate buffered saline. Although the maximum loading for NP coatings is inherently lower than the more established matrix coating, our study suggests that the NP coatings are a more versatile and efficient approach toward drug delivery or gene delivery from a medical device surface and are perhaps best suited for continuous release of highly potent therapeutic agents.
Collapse
Affiliation(s)
- Catherine T Lo
- Department of Biomedical Engineering, Yale University, Malone Engineering Center, Room 414, 55 Prospect Street, New Haven, CT 06511, USA
| | | | | |
Collapse
|
280
|
Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 2010; 34:J226-33. [PMID: 20096538 DOI: 10.1016/j.jaut.2009.11.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Humans have evolved with oral exposure to dietary microparticles and nanoparticles as a normal occurrence but the ever-growing exploitation of nanotechnology is likely to increase exposure further, both qualitatively and quantitatively. Moreover, unlike the situation with respirable particles, relatively little is known about gastrointestinal intake and handling of nanoparticles. With a long term interest in gut exposure and responses to dietary microparticles, our group is now applying its expertise to nanoparticles in the gastrointestinal tract. Here we aim to address (i) the current challenges associated with the characterisation of particle-host or particle-cell interactions, (ii) the origin and mechanisms of uptake of particles in the gastrointestinal tract, especially via the Peyer's patch and (iii) potential cellular effects of nanoparticles in the generation of reactive oxygen species and inflammasome activation, or microparticles in their adjuvant activity in pro-inflammatory signalling and immune responsiveness.
Collapse
Affiliation(s)
- Jonathan J Powell
- Elsie Widdowson Laboratory, MRC-HNR, Fulbourn Road, Cambridge CB1 9NL, UK.
| | | | | | | |
Collapse
|
281
|
Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2009; 5:410-8. [PMID: 19341815 PMCID: PMC2789916 DOI: 10.1016/j.nano.2009.02.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 12/24/2022]
Abstract
We hypothesize that the efficacy of doxorubicin (DOX) can be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. To test this hypothesis, a unique surface modification technique was used to create PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating DOX. An avidin-biotin coupling system was used to control poly(ethylene glycol) conjugation to the surface of PLGA nanoparticles, of diameter approximately 130 nm, loaded with DOX to 5% (wt/wt). Encapsulation in nanoparticles did not compromise the efficacy of DOX; drug-loaded nanoparticles were found to be at least as potent as free DOX against A20 murine B-cell lymphoma cells in culture and of comparable efficacy against subcutaneously implanted tumors. Cardiotoxicity in mice as measured by echocardiography, serum creatine phosphokinase (CPK), and histopathology was reduced for DOX-loaded nanoparticles as compared with free DOX. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening over control animals, whereas nanoparticle-encapsulated DOX produced none of these pathological changes. FROM THE CLINICAL EDITOR The efficacy of doxorubicin (DOX) may be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening in mice, whereas nanoparticle-encapsulated DOX produced none of these pathological changes.
Collapse
Affiliation(s)
- Jason Park
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Peter M. Fong
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Jing Lu
- Carigent Therapeutics, Inc., 5 Science Park, Suite 13, New Haven, CT 06520, Phone: (203) 752 0808, Fax: (203) 752 0882
| | - Kerry S. Russell
- Dept. of Internal Medicine, Cardiology, Yale Cardiology, The Anylan Center, 1 Gilbert Street, Room S469, New Haven, CT 06519, Phone: (203) 785 2241, Fax: (203) 785 7567
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale Medical School 123 LSOG, P.O. Box 208016, 375 Congress Avenue, New Haven, CT 06519-1404, Phone: (203) 785 2872, Fax: (203) 785 7499
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| | - Tarek M. Fahmy
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, Malone Engineering Center 401, New Haven, CT 06511, Phone: (203) 432 4262, Fax: (203) 432 0030
| |
Collapse
|
282
|
De Koker S, De Geest B, Singh S, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt S, Grooten J. Polyelectrolyte Microcapsules as Antigen Delivery Vehicles To Dendritic Cells: Uptake, Processing, and Cross-Presentation of Encapsulated Antigens. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903769] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
283
|
Aline F, Brand D, Pierre J, Roingeard P, Séverine M, Verrier B, Dimier-Poisson I. Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 2009; 27:5284-91. [PMID: 19450633 DOI: 10.1016/j.vaccine.2009.05.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/06/2009] [Accepted: 05/10/2009] [Indexed: 01/07/2023]
Abstract
Biodegradable nanoparticles with surface adsorbed antigens represent a promising method for in vivo delivery of vaccines targeting a wide range of infectious diseases or cancers. We investigated the feasibility of loading dendritic cells with a vaccine antigen, HIV p24 protein, on the surface of surfactant-free anionic (d,l-lactic acid, PLA) nanoparticles. The p24 protein had a high affinity for the nanoparticles and the antigenicity and immunogenicity of the p24 protein on the nanoparticle was well preserved after immunization. p24-coated nanoparticles were efficiently taken up by mouse dendritic cells (DCs), inducing DC maturation by increasing MHC-I, MHC-II, CD40, CD80 and CD86 surface expression and secreting IL-12 (p70) and IL-4. We evaluated the ability of DCs pulsed with p24-coated nanoparticles to elicit an optimal humoral and cellular immune response in the blood and intestine. DCs pulsed with p24-nanoparticles induced high seric and mucosal antibody production and elicited strong systemic and local lymproliferative responses, correlated with a Th1/Th2-type response, and systemic CTL responses in mice. Thus, DCs pulsed with antigen-loaded PLA nanoparticles may provide a novel delivery tool for cell therapy vaccination against chronic infectious diseases.
Collapse
Affiliation(s)
- Fleur Aline
- Université François Rabelais Tours, INRA, UMR 0483 Université-INRA d'Immunologie Parasitaire et Vaccinologie, Biothérapies anti-infectieuses, IFR agents transmissibles en Infectiologie; UFR des Sciences Pharmaceutiques, 37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
284
|
Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly(propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug Chem 2009; 20:241-8. [PMID: 19125614 DOI: 10.1021/bc800317a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While many infectious diseases are controlled by vaccine strategies, important limitations continue to motivate the development of better antigen delivery systems. This study focuses on the use of a pH-sensitive polymeric carrier based on poly(propylacrylic acid) (PPAA) to address the need for more potent CD8 cytotoxic T-cell (CTL) responses. An MHC-1/CD8 CTL cell model system with ovalbumin as the protein antigen was used to test whether PPAA could enhance the delivery of ovalbumin into the MHC-1 display pathway. Ovalbumin was conjugated to poly(propylacrylic acid-co-pyridyldisulfide acrylate) (PPAA-PDSA) by disulfide exchange to make reversible conjugates that could be reduced by the glutathione redox system in the cytosol of antigen presenting cells. The PPAA-PDSA ovalbumin conjugates displayed the pH-sensitive membrane disruptive properties of the parent polymer as determined by their hemolysis activities (sharply active at the endosomal pH values of 6-6.5). The polymer-ovalbumin conjugates exhibited strong 22-fold increases in the MHC-1 presentation and ovalbumin-specific CTL activation compared to free ovalbumin. No CTL activation was observed with control conjugates of ovalbumin and poly(methylacrylic acid) (PMAA) that do not display membrane disruptive activies, suggesting that it is the membrane destabilizing properties of the polymer that result in increased MHC-1 display and CTL activation. Further mechanistic studies quantitated the time course of stable intracellular localization of radiolabeled conjugates. 52% of initially internalized PPAA-conjugated ovalbumin remained in the cells after 4 h, compared to less than 10% of ovalbumin or PMAA-ovalbumin. These results showing enhanced cytosolic delivery and MHC-1 presentation for the PPAA-antigen conjugates suggest that they warrant future characterization as a CD8-enhancing vaccine delivery system.
Collapse
Affiliation(s)
- Suzanne Flanary
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
285
|
Cheung WH, Chan VSF, Pang HW, Wong MK, Guo ZH, Tam PKH, Che CM, Lin CL, Yu WY. Conjugation of latent membrane protein (LMP)-2 epitope to gold nanoparticles as highly immunogenic multiple antigenic peptides for induction of Epstein-Barr virus-specific cytotoxic T-lymphocyte responses in vitro. Bioconjug Chem 2009; 20:24-31. [PMID: 19102689 DOI: 10.1021/bc800167q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nasopharyngeal carcinoma is a neoplasm with a high incidence in Southeast Asia, and it is strongly associated with Epstein-Barr virus (EBV) activation involving the expression of a weakly immunogenic protein, namely, latent membrane protein (LMP)-2. Previous immunological studies already identified the human leukocyte antigen (HLA)-A11 restricted peptide epitope (SSCSSCPLSK) in the LMP-2 antigen. In this work, we prepared gold nanoparticle (AuNP)-peptide conjugate 1 by treating the nanoparticles with the N-cysteinated LMP-2 epitope. The AuNP-peptide conjugates have been characterized by TEM (15-24 nm in diameter) and UV-vis spectroscopy (surface plasmon resonance absorption band at lambda(max) = 520 nm). In the presence of a CALNN capping peptide, the AuNP-peptide conjugates are stable in solution without aggregation at room temperature for at least 48 h. By ELIspot studies, AuNP-peptide conjugate 1 was found to elicit a significantly stronger INF-gamma response [number of spot forming cells (SPC) = 727 +/- 198] from peripheral blood mononuclear cells of healthy HLA-A11 donors when compared to that induced by the unconjugated LMP-2 peptides (SFC = 73 +/- 28). Further studies showed that dendritic cells treated with conjugate 1 can effect CD8+ T-cell activation leading to epitope-specific cytotoxic T lymphocyte killing responses in vitro.
Collapse
Affiliation(s)
- Wai-Hung Cheung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 2009; 30:2790-8. [PMID: 19232712 DOI: 10.1016/j.biomaterials.2009.01.057] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/29/2009] [Indexed: 12/30/2022]
Abstract
Biodegradable polymer nanoparticles (NPs) are a promising approach for intracellular delivery of drugs, proteins, and nucleic acids, but little is known about their intracellular fate, particularly in epithelial cells, which represent a major target. Rhodamine-loaded PLGA (polylactic-co-glycolic acid) NPs were used to explore particle uptake and intracellular fate in three different epithelial cell lines modeling the respiratory airway (HBE), gut (Caco-2), and renal proximal tubule (OK). To track intracellular fate, immunofluorescence techniques and confocal microscopy were used to demonstrate colocalization of NPs with specific organelles: early endosomes, late endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus. Confocal analysis demonstrated that NPs are capable of entering cells of all three types of epithelium. NPs appear to colocalize with the early endosomes at short times after exposure (approximately 2 h), but are also found in other compartments within the cytoplasm, notably Golgi and, possibly, ER, as time progressed over the period of 4-24 h. The rate and extent of uptake differed among these cell lines: at a fixed particle/cell ratio, cellular uptake was most abundant in OK cells and least abundant in Caco-2 cells. We present a model for the intracellular fate of particles that is consistent with our experimental data.
Collapse
Affiliation(s)
- Malgorzata S Cartiera
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06520-8260, USA
| | | | | | | | | |
Collapse
|
287
|
Tran KK, Shen H. The role of phagosomal pH on the size-dependent efficiency of cross-presentation by dendritic cells. Biomaterials 2008; 30:1356-62. [PMID: 19091401 DOI: 10.1016/j.biomaterials.2008.11.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/27/2008] [Indexed: 12/26/2022]
Abstract
Vaccines able to stimulate CD8(+) T cells are crucial in controlling a broad range of infectious diseases and tumors. To induce effective CD8(+) T cell responses, exogenous antigen has to be cross-presented onto major histocompatibility complex (MHC) class I molecules by dendritic cells. Although particle size has been recognized as a critical factor of vaccine design, it is unclear how the size of vaccine carriers impacts the intracellular processing of exogenous antigen and cross-presentation onto MHC class I molecules. In this study, by using polystyrene beads with narrowly defined sizes as model antigen carriers, we demonstrate that particle size mediates the efficiency of cross-presentation of exogenous antigens. By examining the intracellular trafficking, kinetics of phagosomal pH and degradation of antigens bounded to beads, we illustrate the possible mechanisms attributed to the profound effect of particle size on the efficiency of cross-presentation. Antigen bounded to 50 nm beads was shuttled rapidly to an acidic environment within half an hour post-exposure to cells, leading to its rapid and unregulated degradation and inefficient cross-presentation. In contrast, antigen bounded to 500 nm and 3 microm beads remained in a more neutral environment, which preserved the majority of antigens, leaving it available for the generation of peptides to be loaded onto MHC class I molecules. We conclude that the size of antigen carriers plays a critical role in directing antigen to the class I antigen presentation pathway. Our results, together with previous in vivo studies on the effect of particle size on CD8(+) T cell responses, provide insight into the rational design of vaccines for the stimulation of cell-mediated immunity.
Collapse
Affiliation(s)
- Kenny K Tran
- Department of Chemical Engineering, University of Washington, 353 Benson Hall, Box 351750, Seattle, WA 98195, USA
| | | |
Collapse
|
288
|
White P, Anastasopoulos F, Church J, Kuo CY, Boyd B, Hickey P, Tu LS, Burns P, Lew A, Heath W, Davey G, Pouton C. Generic construction of single component particles that elicit humoural and cellular immune responses without the need for adjuvants. Vaccine 2008; 26:6824-31. [DOI: 10.1016/j.vaccine.2008.09.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 08/20/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
|
289
|
Patil YB, Toti US, Khdair A, Ma L, Panyam J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 2008; 30:859-66. [PMID: 19019427 DOI: 10.1016/j.biomaterials.2008.09.056] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/23/2008] [Indexed: 12/24/2022]
Abstract
Targeted drug delivery using nanocarriers is achieved by functionalizing the carrier surface with a tissue-recognition ligand. Current surface modification methods require tedious and inefficient synthesis and purification steps, and are not easily amenable to incorporating multiple functionalities on a single surface. In this report, we describe a versatile, single-step surface functionalizing technique for polymeric nanoparticles. The technique utilizes the fact that when a diblock copolymer like polylactide-polyethylene glycol (PLA-PEG) is introduced in the oil/water emulsion used in polymeric nanoparticle formulation, the PLA block partitions into the polymer containing organic phase and PEG block partitions into the aqueous phase. Removal of the organic solvent results in the formation of nanoparticles with PEG on the surface. When a PLA-PEG-ligand conjugate is used instead of PLA-PEG copolymer, this technique permits a 'one-pot' fabrication of ligand-functionalized nanoparticles. In the current study, the IAASF approach facilitated the simultaneous incorporation of biotin and folic acid, known tumor-targeting ligands, on drug-loaded nanoparticles in a single step. Incorporation of the ligands on nanoparticles was confirmed by using NMR, surface plasmon resonance, transmission electron microscopy and tumor cell uptake studies. Simultaneous functionalization with both ligands significantly enhanced nanoparticle accumulation in tumors in vivo, and resulted in greatly improved efficacy of paclitaxel-loaded nanoparticles in a mouse xenograft tumor model. This new surface functionalization approach will enable the development of targeting strategies based on the use of multiple ligands on a single surface to target a tissue of interest.
Collapse
Affiliation(s)
- Yogesh B Patil
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
290
|
Urea-mediated cross-presentation of soluble Epstein-Barr virus BZLF1 protein. PLoS Pathog 2008; 4:e1000198. [PMID: 18989461 PMCID: PMC2572144 DOI: 10.1371/journal.ppat.1000198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 10/09/2008] [Indexed: 12/18/2022] Open
Abstract
Soluble extracellular proteins usually do not enter the endogenous human leukocyte antigen (HLA) I–dependent presentation pathway of antigen-presenting cells, strictly impeding their applicability for the re-stimulation of protein-specific CD8+ cytotoxic T lymphocytes (CTL). Here we present for the Epstein-Barr virus (EBV) BZLF1 a novel strategy that facilitates protein translocation into antigen-presenting cells by its solubilisation in high molar urea and subsequent pulsing of cells in presence of low molar urea. Stimulation of PBMC from HLA-matched EBV-seropositive individuals with urea-treated BZLF1 but not untreated BZLF1 induces an efficient reactivation of BZLF1-specific CTL. Urea-treated BZLF1 (uBZLF1) enters antigen-presenting cells in a temperature-dependent manner by clathrin-mediated endocytosis and is processed by the proteasome into peptides that are bound to nascent HLA I molecules. Dendritic cells and monocytes but also B cells can cross-present uBZLF1 in vitro. The strategy described here has potential for use in the development of improved technologies for the monitoring of protein-specific CTL. CD8+ T lymphocytes (CTL) play a key role in the immunological control of persistent intracellular pathogens and tumors. Thus, the development of improved technologies for the monitoring and expansion of protein-specific CTL represents a major challenge in clinical immunology. CTL specifically target infected cells through the recognition of peptides displayed by surface exposed HLA class I molecules. In most cell types, HLA class I–associated peptides are generally derived from cytosolic proteins. In contrast, delivery of soluble exogenous proteins to the endogenous HLA class I processing pathway is scarce. Here we exemplified with the Epstein-Barr virus immediate early protein BZLF1 a novel and simple urea-based strategy to deliver soluble proteins to the class I processing pathway of antigen-presenting cells by cross-presentation. We showed that urea formulated BZLF1 but not urea-free BZLF1 reveals a strong capacity to reactivate CD8+ T cells in blood cells of EBV-positive donors. Accordingly, dendritic cells, monocytes, but also B cells are able to cross-present BZLF1-derived epitopes to CTL. This technology could improve the development of T cell diagnostics for microbial diseases and may facilitate a novel strategy for the expansion of protein-specific CTL for therapeutic application.
Collapse
|
291
|
Abstract
For many years, various cancer vaccines have been widely evaluated, however clinical responses remain rare. In this review, we attempt to address the question of which delivery strategies and platforms are feasible to produce clinical response and define the characteristics of the strategy that will induce long-lasting antitumor response. We limit our analysis and discussion to microparticles/nanoparticles, liposomes, heat-shock proteins, viral vectors and different types of adjuvants. This review aims to provide an overview of the specific characteristics, strengths and limitations of these delivery systems, focusing on their impacts on the development of melanoma vaccine. To date, only adoptive T-cell transfer has shown promising clinical outcomes compared to other treatments.
Collapse
Affiliation(s)
- Yin Hwa Lai
- Department of Pharmaceutical Sciences, Mercer University, College of Pharmacy and Health Sciences, Atlanta, GA 30341, USA.
| | | |
Collapse
|
292
|
|
293
|
Wingard JB, Anderson B, Weissman D. Induction of HIV-specific T and B cell responses with a replicating and conditionally infectious lentiviral vaccine. Eur J Immunol 2008; 38:1310-20. [PMID: 18412164 DOI: 10.1002/eji.200738069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of an HIV vaccine that induces broad and potent immunity is critically needed. Viruses, including lentiviruses, have been used as vectors for ex vivo transduction of antigens into dendritic cells (DC). We hypothesized that DC transduced with a vector that allows selective infection of DC could induce potent immunity by continually priming DC. A lentiviral vector encoding HIV gag-pol without env would form viral cores in transduced DC, but would release non-infectious particles by budding into endosomes and releasing apoptotic bodies or exosomes containing viral cores. DC function by endocytosing DC-derived apoptotic bodies, and they are specialized in their ability to move endocytic contents into the cytoplasm. We postulated that endocytosis of vector cores could lead to transduction of a second round of DC. In this report, we demonstrate accumulation of viral cores inside transduced DC and show second-round transduction of immature DC that endocytose transduced DC in vitro. The effectiveness of immunization of mice with transduced DC to induce specific lymphocyte activation was assessed. Mice developed antigen-specific T cell responses and specific antibodies after immunization. Transduction of DC with a replication-competent but conditionally infectious lentivirus could be a novel vaccine strategy for HIV.
Collapse
|
294
|
|
295
|
Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine (Lond) 2008; 3:343-55. [PMID: 18510429 DOI: 10.2217/17435889.3.3.343] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vaccines for many infectious diseases are poorly developed or simply unavailable. There are significant technological and practical design issues that contribute to this problem; thus, a solution to the vaccine problem will require a systematic approach to test the multiple variables that are required to address each of the design challenges. Nanoparticle technology is an attractive methodology for optimizing vaccine development because design variables can be tested individually or in combination. The biology of individual components that constitute an effective vaccine is often well understood and may be integrated into particle design, affording optimal immune responses to specific pathogens. Here, we review technological variables and design parameters associated with creating modular nanoparticle vaccine systems that can be used as vectors to protect against disease. Variables, such as the material and size of the core matrix, surface modification for attaching targeting ligands and routes of administration, are discussed. Optimization of these variables is important for the development of nanoparticle-based vaccine systems against infectious diseases and cancer.
Collapse
Affiliation(s)
- Tarek M Fahmy
- Yale University, Department of Biomedical Engineering, USA.
| | | | | | | | | |
Collapse
|
296
|
Zhang XQ, Dahle CE, Weiner GJ, Salem AK. A comparative study of the antigen-specific immune response induced by co-delivery of CpG ODN and antigen using fusion molecules or biodegradable microparticles. J Pharm Sci 2008; 96:3283-92. [PMID: 17497736 DOI: 10.1002/jps.20978] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CpG ODN are toll-like receptor 9 (TLR9) agonists that can enhance antigen presentation by antigen presenting cells (APCs) such as dendritic cells (DCs). The most potent antigen-specific responses are seen when CpG ODN and the antigen are co-localized in the same APC. CpG ODN-antigen fusion molecules and biodegradable microparticles entrapping CpG ODN and antigen can ensure both components are delivered to the same APC. In this study, we compared the efficacy of the CpG-ODN fusion molecules against biodegradable microparticles entrapping antigen and CpG ODN. Microparticles were prepared using a double emulsion solvent evaporation methodology. CpG ODN-OVA fusion molecules were prepared by mixing maleimide-activated protein with thiolated CpG ODN. Both CpG ODN-OVA fusion molecules and microparticles co-entrapping CpG ODN and OVA generated stronger IgG2a and interferon-gamma (IFN-gamma) responses than delivery of soluble CpG ODN and OVA. The microparticles generated stronger IgG2a and IFN-gamma immune responses than did CpG ODN-antigen fusion molecules.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Alum Compounds
- Animals
- Cells, Cultured
- Dendritic Cells/immunology
- Drug Carriers
- Drug Compounding
- Female
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Lactic Acid/chemistry
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oligodeoxyribonucleotides/chemistry
- Oligodeoxyribonucleotides/immunology
- Ovalbumin/chemistry
- Ovalbumin/immunology
- Particle Size
- Polyglycolic Acid/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer
- Polymers/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Technology, Pharmaceutical/methods
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
297
|
The cell biology of cross‐presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86:353-62. [DOI: 10.1038/icb.2008.3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
298
|
Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine 2008; 26:1626-37. [PMID: 18295941 DOI: 10.1016/j.vaccine.2008.01.030] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 12/17/2007] [Accepted: 01/17/2008] [Indexed: 01/04/2023]
Abstract
Dendritic cells phagocytose pathogens leading to maturation and cross-presentation on MHC class I. We found that the efficiency of cross-priming in mice after vaccination with biodegradable poly(D,L-lactide-co-glycolide) microspheres (MSs) was enhanced when ovalbumin was coencapsulated together with either a CpG oligonucleotide or polyI:C as compared to co-inoculation of ovalbumin-bearing MS with soluble or separately encapsulated adjuvants. A single immunization with MS containing coencaspsulated CpG and ovalbumin yielded 9% SIINFEKL/H-2K(b) tetramer positive CTLs, production of IFN-gamma, efficient cytolysis, and protection from vaccinia virus infection. Taken together, coencapsulation of adjuvant and antigen is an important paradigm for the generation of potent CTL responses.
Collapse
Affiliation(s)
- Eva Schlosser
- Division of Immunology, Department of Biology, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
299
|
Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur J Immunol 2007; 37:2063-74. [PMID: 17628858 DOI: 10.1002/eji.200737169] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compared to "live" vaccines, the immunogenicity of "subunit" vaccines based on recombinant antigen (Ag) is poor, presumably because exogenous Ag fails to effectively access the endosomal Ag-processing pathways of Ag-presenting cells (APC). To overcome this limitation, we exploited biodegradable poly(lactic-co-glycolic) microspheres (MP) co-entrapping Ag and Toll-like receptor (TLR) 9 or 7 ligands as an endosomal delivery device. In vitro, microspheres were rapidly phagocytosed by APC and translocated into phago-endosomal compartments, followed by degradation of the Ag and concurrent activation of endosomal TLR. As a consequence, full maturation of and cytokine secretion by APC as well as Ag-cross-presentation ensued. In vivo, "loaded" microspheres triggered clonal expansion of primary and secondary Ag-specific CD4 and CD8 T cells. The efficacy of CD8 T cell cross-priming was comparable to that of live vectors. The potency of T cell vaccination was demonstrated by protective and therapeutic interventions using infection- and tumor-model systems. These preclinical "subunit" vaccination data thus recommend MP as a generally applicable and powerful endosomal delivery device of exogenous Ag plus TLR-based adjuvants to vaccinate for protective and therapeutic CD4 and CD8 T cell immunity.
Collapse
Affiliation(s)
- Antje Heit
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
300
|
Elamanchili P, Lutsiak CME, Hamdy S, Diwan M, Samuel J. “Pathogen-Mimicking” Nanoparticles for Vaccine Delivery to Dendritic Cells. J Immunother 2007; 30:378-95. [PMID: 17457213 DOI: 10.1097/cji.0b013e31802cf3e3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A clinically relevant delivery system that can efficiently target and deliver antigens and adjuvant to dendritic cells (DCs) is under active investigation. Immunization with antigens and immunomodulators encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles elicits potent cellular immune responses; but understanding how this mode of delivery affects DCs and priming of naive T cells needs further investigation. In the current study, we assessed the extent of maturation of DCs after treatment with monophosphoryl lipid A (MPLA) encapsulated in PLGA nanoparticles and the generation of primary T-cell immune responses elicited by DCs loaded with antigens using this approach. Results indicated that DCs up-regulated the expression of surface maturation markers and demonstrated an enhanced allostimulatory capacity after treatment with MPLA containing PLGA nanoparticles. Treatment of DCs with MPLA containing nanoparticles released high amounts of proinflammatory and TH1 (T helper 1) polarizing cytokines and chemokines greater than that achieved by MPLA in solution. The delivery of ovalbumin in PLGA nanoparticles to DCs induced potent in vitro and in vivo antigen-specific primary TH1 immune responses that were furthermore enhanced with codelivery of MPLA along with the antigen in the nanoparticle formulation. Delivery of MUC1 lipopeptide (BLP25, a cancer vaccine candidate) and MPLA in PLGA nanoparticles to human DCs induced proliferation of MUC1 reactive T cells in vitro demonstrating the break in tolerance to self-antigen MUC1. These results demonstrated that targeting antigens along with toll-like receptor ligands in PLGA nanoparticles to DCs is a promising approach for generating potent TH1 polarizing immune responses that can potentially override self-tolerance mechanisms and become beneficial in the immunotherapy of cancer and infectious diseases.
Collapse
Affiliation(s)
- Praveen Elamanchili
- Faculty of Pharmacy and Pharmaceutical Sciences, 3118, Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8
| | | | | | | | | |
Collapse
|