251
|
Worley KC, Richards S, Rogers J. The value of new genome references. Exp Cell Res 2016; 358:433-438. [PMID: 28017728 DOI: 10.1016/j.yexcr.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology.
Collapse
Affiliation(s)
- Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
252
|
Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production. Sci Rep 2016; 6:39022. [PMID: 27966600 PMCID: PMC5155297 DOI: 10.1038/srep39022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems.
Collapse
|
253
|
Cinar MU, Mousel MR, Herrmann-Hoesing LM, Taylor JB, White SN. Ovar-DRB1 haplotypes *2001 and *0301 are associated with sheep growth and ewe lifetime prolificacy. Gene 2016; 595:187-192. [DOI: 10.1016/j.gene.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 10/01/2016] [Indexed: 01/26/2023]
|
254
|
Yuan Z, Liu E, Liu Z, Kijas JW, Zhu C, Hu S, Ma X, Zhang L, Du L, Wang H, Wei C. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim Genet 2016; 48:55-66. [PMID: 27807880 DOI: 10.1111/age.12477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 01/19/2023]
Abstract
Fat-tailed sheep have commercial value because consumers prefer high-protein and low-fat food and producers care about feed conversion rate. However, fat-tailed sheep still have some scientific significance, as the fat tail is commonly regarded as a characteristic of environmental adaptability. Finding the candidate genes associated with fat tail formation is essential for breeding and conservation. To identify these candidate genes, we applied FST and hapFLK approaches in fat- and thin-tailed sheep with available 50K SNP genotype data. These two methods found 6.24 Mb of overlapped regions and 43 genes that may associated with fat tail development. Gene annotation showed that HOXA11, BMP2, PPP1CC, SP3, SP9, WDR92, PROKR1 and ETAA1 may play important roles in fat tail formation. These findings provide insight into tail fat development and a guide for molecular breeding and conservation.
Collapse
Affiliation(s)
- Z Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - E Liu
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Z Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J W Kijas
- CSIRO Agriculture Flagship, Brisbane, Australia
| | - C Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - S Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - L Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - C Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
255
|
Gautier M, Moazami-Goudarzi K, Levéziel H, Parinello H, Grohs C, Rialle S, Kowalczyk R, Flori L. Deciphering the Wisent Demographic and Adaptive Histories from Individual Whole-Genome Sequences. Mol Biol Evol 2016; 33:2801-2814. [PMID: 27436010 PMCID: PMC5062319 DOI: 10.1093/molbev/msw144] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As the largest European herbivore, the wisent (Bison bonasus) is emblematic of the continent wildlife but has unclear origins. Here, we infer its demographic and adaptive histories from two individual whole-genome sequences via a detailed comparative analysis with bovine genomes. We estimate that the wisent and bovine species diverged from 1.7 × 106 to 850,000 years before present (YBP) through a speciation process involving an extended period of limited gene flow. Our data further support the occurrence of more recent secondary contacts, posterior to the Bos taurus and Bos indicus divergence (∼150,000 YBP), between the wisent and (European) taurine cattle lineages. Although the wisent and bovine population sizes experienced a similar sharp decline since the Last Glacial Maximum, we find that the wisent demography remained more fluctuating during the Pleistocene. This is in agreement with a scenario in which wisents responded to successive glaciations by habitat fragmentation rather than southward and eastward migration as for the bovine ancestors. We finally detect 423 genes under positive selection between the wisent and bovine lineages, which shed a new light on the genome response to different living conditions (temperature, available food resource, and pathogen exposure) and on the key gene functions altered by the domestication process.
Collapse
Affiliation(s)
- Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Supagro, Montferrier-sur-Lez, France IBC, Institut de Biologie Computationnelle, Montpellier, France
| | | | | | - Hugues Parinello
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Cécile Grohs
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Laurence Flori
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France INTERTRYP, CIRAD, IRD, Montpellier, France
| |
Collapse
|
256
|
Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Sci Rep 2016; 6:36372. [PMID: 27796358 PMCID: PMC5087083 DOI: 10.1038/srep36372] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Goats (Capra hircus) are one of the oldest livestock domesticated species, and have been used for their milk, meat, hair and skins over much of the world. Detection of selection footprints in genomic regions can provide potential insights for understanding the genetic mechanism of specific phenotypic traits and better guide in animal breeding. The study presented here has generated 192.747G raw data and identified more than 5.03 million single-nucleotide polymorphisms (SNPs) and 334,151 Indels (insertions and deletions). In addition, we identified 155 and 294 candidate regions harboring 86 and 97 genes based on allele frequency differences in Dazu black goats (DBG) and Inner Mongolia cashmere goats (IMCG), respectively. Populations differentiation reflected by Fst values detected 368 putative selective sweep regions including 164 genes. The top 1% regions of both low heterozygosity and high genetic differentiation contained 239 (135 genes) and 176 (106 genes) candidate regions in DBG and IMCG, respectively. These genes were related to reproductive and productive traits, such as "neurohypophyseal hormone activity" and "adipocytokine signaling pathway". These findings may be conducive to molecular breeding and the long-term preservation of the valuable genetic resources for this species.
Collapse
|
257
|
Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep 2016; 6:33675. [PMID: 27654750 PMCID: PMC5031972 DOI: 10.1038/srep33675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/31/2016] [Indexed: 01/14/2023] Open
Abstract
Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth.
Collapse
|
258
|
Zhao J, Liu N, Liu K, He J, Yu J, Bu R, Cheng M, De W, Liu J, Li H. Identification of genes and proteins associated with anagen wool growth. Anim Genet 2016; 48:67-79. [PMID: 27611105 DOI: 10.1111/age.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
Identifying genes of major effect for wool growth would offer strategies for improving the quality and increasing the yield of fine wool. In this study, we employed the Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin (more wool growing) in Aohan fine wool sheep (a Chinese indigenous breed) in comparison with groin skin (no wool growing) at the anagen stage of the wool follicle. A microarray study revealed that 4772 probes were differentially expressed, including 2071 upregulated and 2701 downregulated probes, in the comparisons of body side skin vs. groin skin (S/G). The microarray results were verified by means of quantitative PCR. A total of 1099 probes were assigned to unique genes/transcripts. The number of distinct genes/transcripts (annotated) was 926, of which 352 were upregulated and 574 were downregulated. In S/G, 13 genes were upregulated by more than 10 fold, whereas 60 genes were downregulated by more than 10 fold. Further analysis revealed that the majority of the genes possibly related to the wool growth could be assigned to categories including regulation of cell division, intermediate filament, cytoskeletal part and growth factor activity. Several potential gene families may participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Proteomic analysis also revealed 196 differentially expressed protein points, of which 121 were identified as single protein points.
Collapse
Affiliation(s)
- J Zhao
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China.,China Agricultural University, Beijing, 100193, China
| | - N Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - K Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - J He
- Qingdao Agricultural University, Qingdao, 266109, China
| | - J Yu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - R Bu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - M Cheng
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| | - W De
- Nanjing Medical University, Nanjing, 210029, China
| | - J Liu
- Qingdao Agricultural University, Qingdao, 266109, China
| | - H Li
- Qingdao Agricultural University, Qingdao, 266109, China.,Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266100, China
| |
Collapse
|
259
|
Zhao J, Li H, Liu K, Zhang B, Li P, He J, Cheng M, De W, Liu J, Zhao Y, Yang L, Liu N. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray. Mol Med Rep 2016; 14:3823-31. [DOI: 10.3892/mmr.2016.5728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
|
260
|
Yang J, Li WR, Lv FH, He SG, Tian SL, Peng WF, Sun YW, Zhao YX, Tu XL, Zhang M, Xie XL, Wang YT, Li JQ, Liu YG, Shen ZQ, Wang F, Liu GJ, Lu HF, Kantanen J, Han JL, Li MH, Liu MJ. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol Biol Evol 2016; 33:2576-92. [PMID: 27401233 PMCID: PMC5026255 DOI: 10.1093/molbev/msw129] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.
Collapse
Affiliation(s)
- Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - San-Gang He
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Shi-Lin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Wei-Feng Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ya-Wei Sun
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xiao-Long Tu
- Novogene Bioinformatics Institute, Beijing, China
| | - Min Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yu-Tao Wang
- College of Biological and Geographic Sciences, Kashgar University, Kashgar, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | | | - Hong-Feng Lu
- Novogene Bioinformatics Institute, Beijing, China
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
261
|
Abstract
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc.
Collapse
|
262
|
Holst-Jensen A, Spilsberg B, Arulandhu AJ, Kok E, Shi J, Zel J. Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Anal Bioanal Chem 2016; 408:4595-614. [PMID: 27100228 PMCID: PMC4909802 DOI: 10.1007/s00216-016-9549-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.
Collapse
Affiliation(s)
- Arne Holst-Jensen
- Norwegian Veterinary Institute, Ullevaalsveien 68, P.O. Box 750, Sentrum, 0106, Oslo, Norway.
| | - Bjørn Spilsberg
- Norwegian Veterinary Institute, Ullevaalsveien 68, P.O. Box 750, Sentrum, 0106, Oslo, Norway
| | - Alfred J Arulandhu
- RIKILT, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Esther Kok
- RIKILT, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jana Zel
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
263
|
Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, García Girón C, Hourlier T, Howe K, Kähäri A, Kokocinski F, Martin FJ, Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S, Zadissa A, Flicek P, Searle SMJ. The Ensembl gene annotation system. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw093. [PMID: 27337980 PMCID: PMC4919035 DOI: 10.1093/database/baw093] [Citation(s) in RCA: 714] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html.
Collapse
Affiliation(s)
- Bronwen L Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Ayling
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Present addresses: The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel Barrell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Eagle Genomics Ltd, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Laura Clarke
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Valery Curwen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Susan Fairley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julio Fernandez Banet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kevin Howe
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Kähäri
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Institutionen för cell-och molekylärbiologi, Uppsala University, Husargatan 3, Uppsala 752 37, Sweden
| | - Felix Kokocinski
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Magali Ruffier
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Schuster
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna a-1090, Austria
| | - Y Amy Tang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jan-Hinnerk Vogel
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Simon White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amonida Zadissa
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen M J Searle
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
264
|
Seemann SE, Anthon C, Palasca O, Gorodkin J. Quality Assessment of Domesticated Animal Genome Assemblies. Bioinform Biol Insights 2016; 9:49-58. [PMID: 27279738 PMCID: PMC4898645 DOI: 10.4137/bbi.s29333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/07/2022] Open
Abstract
The era of high-throughput sequencing has made it relatively simple to sequence genomes and transcriptomes of individuals from many species. In order to analyze the resulting sequencing data, high-quality reference genome assemblies are required. However, this is still a major challenge, and many domesticated animal genomes still need to be sequenced deeper in order to produce high-quality assemblies. In the meanwhile, ironically, the extent to which RNAseq and other next-generation data is produced frequently far exceeds that of the genomic sequence. Furthermore, basic comparative analysis is often affected by the lack of genomic sequence. Herein, we quantify the quality of the genome assemblies of 20 domesticated animals and related species by assessing a range of measurable parameters, and we show that there is a positive correlation between the fraction of mappable reads from RNAseq data and genome assembly quality. We rank the genomes by their assembly quality and discuss the implications for genotype analyses.
Collapse
Affiliation(s)
- Stefan E Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, København, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, København, Denmark
| | - Oana Palasca
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, København, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
265
|
Agaba M, Ishengoma E, Miller WC, McGrath BC, Hudson CN, Bedoya Reina OC, Ratan A, Burhans R, Chikhi R, Medvedev P, Praul CA, Wu-Cavener L, Wood B, Robertson H, Penfold L, Cavener DR. Giraffe genome sequence reveals clues to its unique morphology and physiology. Nat Commun 2016; 7:11519. [PMID: 27187213 PMCID: PMC4873664 DOI: 10.1038/ncomms11519] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe's unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
Collapse
Affiliation(s)
- Morris Agaba
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi GPO00100, Kenya.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edson Ishengoma
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania
| | - Webb C Miller
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Barbara C McGrath
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chelsea N Hudson
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oscar C Bedoya Reina
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Aakrosh Ratan
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Center for Public Health Genomics, Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Rico Burhans
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rayan Chikhi
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Genomics and Bioinformatics, Department of Computer Science and Engineering, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lan Wu-Cavener
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Brendan Wood
- Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | - Douglas R Cavener
- School of Life Sciences and Bioengineering, African Institute of Science and Technology, Arusha 4222, Tanzania.,Center for Genomics and Bioinformatics, Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
266
|
McRae KM, Good B, Hanrahan JP, McCabe MS, Cormican P, Sweeney T, O'Connell MJ, Keane OM. Transcriptional profiling of the ovine abomasal lymph node reveals a role for timing of the immune response in gastrointestinal nematode resistance. Vet Parasitol 2016; 224:96-108. [PMID: 27270397 DOI: 10.1016/j.vetpar.2016.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023]
Abstract
Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing ruminants. The major ovine defence mechanism is acquired immunity, with protective immunity developing over time in response to infection. Nematode resistance varies both within and between breeds and is moderately heritable. A detailed understanding of the genes and mechanisms involved in protective immunity, and the factors that regulate this response, is required to aid both future breeding strategies and the development of effective and sustainable nematode control methods. The aim of this study was to compare the abomasal lymph node transcriptome of resistant and susceptible lambs in order to determine biological processes differentially expressed between resistant and susceptible individuals. Scottish Blackface lambs, with divergent phenotypes for resistance, were challenged with 30,000 Teladorsagia circumcincta larvae (L3), and abomasal lymph nodes recovered at 7 and 14days post-infection (dpi). High-throughput sequencing of cDNA from the abomasal lymph node was used to quantitatively sample the transcriptome with an average of 32 million reads per sample. A total of 194 and 144 genes were differentially expressed between resistant and susceptible lambs at 7 and 14 dpi respectively. Differentially expressed networks and biological processes were identified using Ingenuity Pathway Analysis. Genes involved in the inflammatory response, attraction of T lymphocytes and binding of leukocytes were more highly expressed in resistant animals at 7 dpi and in susceptible animals at 14 dpi indicating that resistant animals respond to infection earlier than susceptible animals. Twenty-four Single Nucleotide Polymorphisms (SNP) within 11 differentially expressed genes, were tested for association with gastrointestinal nematode resistance in the Scottish Blackface lambs. Four SNP, in 2 genes (SLC30A2 and ALB), were suggestively associated with faecal egg count. In conclusion, a large number of genes were differentially expressed in the abomasal lymph node of resistant and susceptible lambs responding to gastrointestinal nematode challenge. Resistant Scottish Blackface lambs appear to generate an earlier immune response to T. circumcincta. In susceptible lambs this response appears to be delayed. SNP in 2 differentially expressed genes were suggestively associated with faecal egg count indicating that differentially expressed genes may be considered candidate loci for mediating nematode resistance.
Collapse
Affiliation(s)
- Kathryn M McRae
- Animal & Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland; Bioinformatics & Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Barbara Good
- Animal & Bioscience Department, Teagasc, Athenry, Co. Galway, Ireland.
| | - James P Hanrahan
- Animal & Bioscience Department, Teagasc, Athenry, Co. Galway, Ireland.
| | - Matthew S McCabe
- Animal & Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Paul Cormican
- Animal & Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mary J O'Connell
- Bioinformatics & Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Orla M Keane
- Animal & Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
267
|
Strasser B, Mlitz V, Fischer H, Tschachler E, Eckhart L. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins. Exp Dermatol 2016; 24:365-9. [PMID: 25739514 PMCID: PMC4437054 DOI: 10.1111/exd.12681] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
268
|
Du J, Xing S, Tian Z, Gao S, Xie J, Chang H, Liu G, Luo J, Yin H. Proteomic analysis of sheep primary testicular cells infected with bluetongue virus. Proteomics 2016; 16:1499-514. [PMID: 26989863 PMCID: PMC7168089 DOI: 10.1002/pmic.201500275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/03/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Bluetongue virus (BTV) causes a non‐contagious, arthropod‐transmitted disease in wild and domestic ruminants, such as sheep. In this study, we used iTRAQ labeling coupled with LC‐MS/MS for quantitative identification of differentially expressed proteins in BTV‐infected sheep testicular (ST) cells. Relative quantitative data were obtained for 4455 proteins in BTV‐ and mock‐infected ST cells, among which 101 and 479 proteins were differentially expressed at 24 and 48 h post‐infection, respectively, indicating further proteomic changes during the later stages of infection. Ten corresponding genes of differentially expressed proteins were validated via real‐time RT‐PCR. Expression levels of three representative proteins, eIF4a1, STAT1 and HSP27, were further confirmed via western blot analysis. Bioinformatics analysis disclosed that the differentially expressed proteins are primarily involved in biological processes related to innate immune response, signal transduction, nucleocytoplasmic transport, transcription and apoptosis. Several upregulated proteins were associated with the RIG‐I‐like receptor signaling pathway and endocytosis. To our knowledge, this study represents the first attempt to investigate proteome‐wide dysregulation in BTV‐infected cells with the aid of quantitative proteomics. Our collective results not only enhance understanding of the host response to BTV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Junren Xie
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
269
|
Tsang HG, Rashdan NA, Whitelaw CBA, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34:113-32. [PMID: 26914991 PMCID: PMC4834612 DOI: 10.1002/cbf.3173] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease.
Collapse
Affiliation(s)
- H G Tsang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - N A Rashdan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - C B A Whitelaw
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - K M Summers
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| | - V E MacRae
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, SCT, UK
| |
Collapse
|
270
|
Conserved Genetic Architecture Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep (Ovis aries). Genetics 2016; 203:583-98. [PMID: 27029733 PMCID: PMC4858801 DOI: 10.1534/genetics.115.185553] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h2 = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3. A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals.
Collapse
|
271
|
Bolormaa S, Hayes BJ, van der Werf JHJ, Pethick D, Goddard ME, Daetwyler HD. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genomics 2016; 17:224. [PMID: 26968377 PMCID: PMC4788919 DOI: 10.1186/s12864-016-2538-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
Abstract
Background Genetic variation in both the composition and distribution of fat and muscle in the body is important to human health as well as the healthiness and value of meat from cattle and sheep. Here we use detailed phenotyping and a multi-trait approach to identify genes explaining variation in body composition traits. Results A multi-trait genome wide association analysis of 56 carcass composition traits measured on 10,613 sheep with imputed and real genotypes on 510,174 SNPs was performed. We clustered 71 significant SNPs into five groups based on their pleiotropic effects across the 56 traits. Among these 71 significant SNPs, one group of 11 SNPs affected the fatty acid profile of the muscle and were close to 8 genes involved in fatty acid or triglyceride synthesis. Another group of 23 SNPs had an effect on mature size, based on their pattern of effects across traits, but the genes near this group of SNPs did not share any obvious function. Many of the likely candidate genes near SNPs with significant pleiotropic effects on the 56 traits are involved in intra-cellular signalling pathways. Among the significant SNPs were some with a convincing candidate gene due to the function of the gene (e.g. glycogen synthase affecting glycogen concentration) or because the same gene was associated with similar traits in other species. Conclusions Using a multi-trait analysis increased the power to detect associations between SNP and body composition traits compared with the single trait analyses. Detailed phenotypic information helped to identify a convincing candidate in some cases as did information from other species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2538-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunduimijid Bolormaa
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia. .,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.
| | - Ben J Hayes
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Julius H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - David Pethick
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Michael E Goddard
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia.,School of Land and Environment, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hans D Daetwyler
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia.,Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
272
|
Xiang R, Oddy VH, Archibald AL, Vercoe PE, Dalrymple BP. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 2016; 4:e1762. [PMID: 26989612 PMCID: PMC4793311 DOI: 10.7717/peerj.1762] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background. Ruminants are successful herbivorous mammals, in part due to their specialized forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by micro-organisms. Is the rumen complex a modified stomach expressing new epithelial (cornification) and metabolic programs, or a specialised stratified epithelium that has acquired new metabolic activities, potentially similar to those of the colon? How has the presence of the rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was analysed using principal components to cluster tissues based on gene expression profile similarity. Expression profiles of genes along the sheep GIT were used to generate a network to identify genes enriched for expression in different compartments of the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs (closely related) and humans (more distantly related). Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding stratified epithelium keratins and innate immunity proteins. By analysing all of the gene expression profiles across tissues together 16 major clusters were identified. The strongest of these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process genes (P = 1.4 E-46), across the whole GIT, relative to liver and muscle, with highest expression in the caecum followed by colon and rumen. The expression patterns of several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain fatty acid uptake and metabolism appeared to be different between the species and different between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea (rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to play a role in the degradation of starch or glycogen, was highly expressed in the small and large intestines. Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably derived from the oesophagus, which has gained some liver-like and other specialized metabolic functions, but probably not by expression of pre-existing colon metabolic programs. Changes in gene transcription downstream of the rumen also appear have occurred as a consequence of the evolution of the rumen and its effect on nutrient composition flowing down the GIT.
Collapse
Affiliation(s)
| | - Victor Hutton Oddy
- NSW Department of Primary Industries, Beef Industry Centre, University of New England , Armidale, NSW , Australia
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush , UK
| | - Phillip E Vercoe
- School of Animal Biology and Institute of Agriculture, The University of Western Australia , Perth, Western Australia , Australia
| | | |
Collapse
|
273
|
Wei X, Xiaoling Z, Kai M, Rui W, Jing X, Min G, Zhonghong W, Jianhui T, Xinyu Z, Lei A. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep. J Reprod Dev 2016; 62:279-87. [PMID: 26946921 PMCID: PMC4919292 DOI: 10.1262/jrd.2015-064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An increasing number of reports indicate that in vitro fertilization (IVF) is highly
associated with long‑term side effects on embryonic and postnatal development, and can sometimes result in
embryonic implant failure. While high‑throughput gene expression analysis has been used to explore the
mechanisms underlying IVF-induced side effects on embryonic development, little is known about the effects of
IVF on conceptus–endometrial interactions during the peri-implantation period. Using sheep as a model, we
performed a comparative transcriptome analysis between in vivo (IVO; in vivo
fertilized followed by further development in the uterus) and in vitro produced (IVP; IVF
with further culture in the incubator) conceptuses, and the caruncular and intercaruncular areas of the ovine
endometrium. We identified several genes that were differentially expressed between the IVO and IVP groups on
day 17, when adhesion between the trophoblast and the uterine luminal epithelium begins in sheep. By
performing Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, we found that, in the conceptus, differentially expressed genes (DEGs) were associated mainly with
functions relating to cell binding and the cell cycle. In the endometrial caruncular area, DEGs were involved
in cell adhesion/migration and apoptosis, and in the intercaruncular area, they were significantly enriched in
pathways of signal transduction and transport. Thus, these DEGs are potential candidates for further exploring
the mechanism underlying IVF/IVP-induced embryonic implant failure that occurs due to a loss of interaction
between the conceptus and endometrium during the peri-implantation period.
Collapse
Affiliation(s)
- Xia Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing 100094, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
275
|
Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity (Edinb) 2016; 116:255-64. [PMID: 26555032 PMCID: PMC4806575 DOI: 10.1038/hdy.2015.94] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022] Open
Abstract
Goats and sheep are versatile domesticates that have been integrated into diverse environments and production systems. Natural and artificial selection have shaped the variation in the two species, but natural selection has played the major role among indigenous flocks. To investigate signals of natural selection, we analyzed genotype data generated using the caprine and ovine 50K SNP BeadChips from Barki goats and sheep that are indigenous to a hot arid environment in Egypt's Coastal Zone of the Western Desert. We identify several candidate regions under selection that spanned 119 genes. A majority of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. In particular, selection signatures spanning several genes that directly or indirectly influenced traits for adaptation to hot arid environments, such as thermo-tolerance (melanogenesis) (FGF2, GNAI3, PLCB1), body size and development (BMP2, BMP4, GJA3, GJB2), energy and digestive metabolism (MYH, TRHDE, ALDH1A3), and nervous and autoimmune response (GRIA1, IL2, IL7, IL21, IL1R1) were identified. We also identified eight common candidate genes under selection in the two species and a shared selection signature that spanned a conserved syntenic segment to bovine chromosome 12 on caprine and ovine chromosomes 12 and 10, respectively, providing, most likely, the evidence for selection in a common environment in two different but closely related species. Our study highlights the importance of indigenous livestock as model organisms for investigating selection sweeps and genome-wide association mapping.
Collapse
Affiliation(s)
- E-S Kim
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - A R Elbeltagy
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Cairo, Egypt
| | - A M Aboul-Naga
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Cairo, Egypt
| | - B Rischkowsky
- Small Ruminant Genetics and Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - B Sayre
- Department of Biology, Virginia State University, Petersburg, VA, USA
| | - J M Mwacharo
- Small Ruminant Genetics and Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - M F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
276
|
Bakhtiarizadeh MR, Hosseinpour B, Arefnezhad B, Shamabadi N, Salami SA. In silico prediction of long intergenic non-coding RNAs in sheep. Genome 2016; 59:263-75. [PMID: 27002388 DOI: 10.1139/gen-2015-0141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcribed RNA molecules >200 nucleotides in length that do not encode proteins and serve as key regulators of diverse biological processes. Recently, thousands of long intergenic non-coding RNAs (lincRNAs), a type of lncRNAs, have been identified in mammalians using massive parallel large sequencing technologies. The availability of the genome sequence of sheep (Ovis aries) has allowed us genomic prediction of non-coding RNAs. This is the first study to identify lincRNAs using RNA-seq data of eight different tissues of sheep, including brain, heart, kidney, liver, lung, ovary, skin, and white adipose. A computational pipeline was employed to characterize 325 putative lincRNAs with high confidence from eight important tissues of sheep using different criteria such as GC content, exon number, gene length, co-expression analysis, stability, and tissue-specific scores. Sixty-four putative lincRNAs displayed tissues-specific expression. The highest number of tissues-specific lincRNAs was found in skin and brain. All novel lincRNAs that aligned to the human and mouse lincRNAs had conserved synteny. These closest protein-coding genes were enriched in 11 significant GO terms such as limb development, appendage development, striated muscle tissue development, and multicellular organismal development. The findings reported here have important implications for the study of sheep genome.
Collapse
Affiliation(s)
- Mohammad Reza Bakhtiarizadeh
- a Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran.,e OMICS™ Research Group, Tehran, Iran
| | - Batool Hosseinpour
- b Department of Agriculture, Iranian Research Organization for Science and Technology, Tehran, Iran.,e OMICS™ Research Group, Tehran, Iran
| | - Babak Arefnezhad
- c Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,e OMICS™ Research Group, Tehran, Iran
| | - Narges Shamabadi
- d Center of Environmental Researches, University of Qom, Qom, Iran
| | | |
Collapse
|
277
|
Matika O, Riggio V, Anselme-Moizan M, Law AS, Pong-Wong R, Archibald AL, Bishop SC. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genet Sel Evol 2016; 48:11. [PMID: 26856324 PMCID: PMC4745175 DOI: 10.1186/s12711-016-0191-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/28/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Improving meat quality including taste and tenderness is critical to the protection and development of markets for sheep meat. Phenotypic selection for such measures of meat quality is constrained by the fact that these parameters can only be measured post-slaughter. Carcass composition has an impact on meat quality and can be measured on live animals using advanced imaging technologies such as X-ray computed tomography (CT). Since carcass composition traits are heritable, they are potentially amenable to improvement through marker-assisted and genomic selection. We conducted a genome-wide association study (GWAS) on about 600 Scottish Blackface lambs for which detailed carcass composition phenotypes, including bone, fat and muscle components, had been captured using CT and which were genotyped for ~40,000 single nucleotide polymorphisms (SNPs) using the Illumina OvineSNP50 chip. RESULTS We confirmed that the carcass composition traits were heritable with moderate to high (0.19-0.78) heritabilities. The GWAS analyses revealed multiple SNPs and quantitative trait loci (QTL) that were associated with effects on carcass composition traits and were significant at the genome-wide level. In particular, we identified a region on ovine chromosome 6 (OAR6) associated with bone weight and bone area that harboured SNPs with p values of 5.55 × 10(-8) and 2.63 × 10(-9), respectively. The same region had effects on fat area, fat density, fat weight and muscle density. We identified plausible positional candidate genes for these OAR6 QTL. We also detected a SNP that reached the genome-wide significance threshold with a p value of 7.28 × 10(-7) and was associated with muscle density on OAR1. Using a regional heritability mapping approach, we also detected regions on OAR3 and 24 that reached genome-wide significance for bone density. CONCLUSIONS We identified QTL on OAR1, 3, 24 and particularly on OAR6 that are associated with effects on muscle, fat and bone traits. Based on available evidence that indicates that these traits are genetically correlated with meat quality traits, these associated SNPs have potential applications in selective breeding for improved meat quality. Further research is required to determine whether the effects associated with the OAR6 QTL are caused by a single gene or several closely-linked genes.
Collapse
Affiliation(s)
- Oswald Matika
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| | - Valentina Riggio
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| | | | - Andrew S Law
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| | - Ricardo Pong-Wong
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| | - Alan L Archibald
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| | - Stephen C Bishop
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
278
|
Muñoz-Gutiérrez JF, Aguilar Pierlé S, Schneider DA, Baszler TV, Stanton JB. Transcriptomic Determinants of Scrapie Prion Propagation in Cultured Ovine Microglia. PLoS One 2016; 11:e0147727. [PMID: 26807844 PMCID: PMC4726464 DOI: 10.1371/journal.pone.0147727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Susceptibility to infection by prions is highly dependent on the amino acid sequence and host expression of the cellular prion protein (PrPC); however, cellular expression of a genetically susceptible PrPC is insufficient. As an example, it has been shown in cultured cells that permissive and resistant sublines derived from the same parental population often have similar expression levels of PrPC. Thus, additional cellular factors must influence susceptibility to prion infection. The aim of this study was to elucidate the factors associated with relative permissiveness and resistance to scrapie prions in cultured cells derived from a naturally affected species. Two closely related ovine microglia clones with different prion susceptibility, but no detectable differences in PrPC expression levels, were inoculated with either scrapie-positive or scrapie-negative sheep brainstem homogenates. Five passages post-inoculation, the transcriptional profiles of mock and infected clones were sequenced using Illumina technology. Comparative transcriptional analyses identified twenty-two differentially transcribed genes, most of which were upregulated in poorly permissive microglia. This included genes encoding for selenoprotein P, endolysosomal proteases, and proteins involved in extracellular matrix remodeling. Furthermore, in highly permissive microglia, transforming growth factor β–induced, retinoic acid receptor response 1, and phosphoserine aminotranspherase 1 gene transcripts were upregulated. Gene Set Enrichment Analysis identified proteolysis, translation, and mitosis as the most affected pathways and supported the upregulation trend of several genes encoding for intracellular proteases and ribosomal proteins in poorly permissive microglia. This study identifies new genes potentially involved in scrapie prion propagation, corroborates results from other studies, and extends those results into another cell culture model.
Collapse
Affiliation(s)
- Juan F. Muñoz-Gutiérrez
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail: (JFMG); (JBS)
| | - Sebastián Aguilar Pierlé
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - David A. Schneider
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, United States of America
| | - Timothy V. Baszler
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (JFMG); (JBS)
| |
Collapse
|
279
|
Atlija M, Arranz JJ, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol 2016; 48:4. [PMID: 26791855 PMCID: PMC4719203 DOI: 10.1186/s12711-016-0182-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Persistence of gastrointestinal nematode (GIN) infection and the related control methods have major impacts on the sheep industry worldwide. Based on the information generated with the Illumina OvineSNP50 BeadChip (50 K chip), this study aims at confirming quantitative trait loci (QTL) that were previously identified by microsatellite-based genome scans and identifying new QTL and allelic variants that are associated with indicator traits of parasite resistance in adult sheep. We used a commercial half-sib population of 518 Spanish Churra ewes with available data for fecal egg counts (FEC) and serum levels of immunoglobulin A (IgA) to perform different genome scan QTL mapping analyses based on classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) and a genome-wide association study (GWAS). RESULTS For the FEC and IgA traits, we detected a total of three 5 % chromosome-wise significant QTL by LA and 63 significant regions by LDLA, of which 13 reached the 5 % genome-wise significance level. The GWAS also revealed 10 significant SNPs associated with IgAt, although no significant associations were found for LFEC. Some of the significant QTL for LFEC that were detected by LA and LDLA on OAR6 overlapped with a highly significant QTL that was previously detected in a different half-sib population of Churra sheep. In addition, several new QTL and SNP associations were identified, some of which show correspondence with effects that were reported for different populations of young sheep. Other significant associations that did not coincide with previously reported associations could be related to the specific immune response of adult animals. DISCUSSION Our results replicate a FEC-related QTL located on OAR6 that was previously reported in Churra sheep and provide support for future research on the identification of the allelic variant that underlies this QTL. The small proportion of genetic variance explained by the detected QTL and the large number of functional candidate genes identified here are consistent with the hypothesis that GIN resistance/susceptibility is a complex trait that is not determined by individual genes acting alone but rather by complex multi-gene interactions. Future studies that combine genomic variation analysis and functional genomic information may help elucidate the biology of GIN disease resistance in sheep.
Collapse
Affiliation(s)
- Marina Atlija
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - María Martinez-Valladares
- Instituto de Ganadería de Montaña, CSIC-ULE, Grulleros, León, 24346, Spain. .,Departamento de Sanidad Animal, Universidad de León, León, 24071, Spain.
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| |
Collapse
|
280
|
Ren H, Wang G, Chen L, Jiang J, Liu L, Li N, Zhao J, Sun X, Zhou P. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genomics 2016; 17:67. [PMID: 26785828 PMCID: PMC4719336 DOI: 10.1186/s12864-016-2365-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play roles in almost all biological processes; however, their function and profile in skin development and pigmentation is less understood. In addition, because lncRNAs are species-specific, their function in goats has not been established. Result We systematically identified lncRNAs in 100-day-old fetal skin by deep RNA-sequencing using the Youzhou dark goat (dark skin) and Yudong white goat (white skin) as a model of skin pigmentation. A total of 841,895,634 clean reads were obtained from six libraries (samples). We identified 1336 specific lncRNAs in fetal skin that belonged to three subtypes, including 999 intergenic lncRNAs (lincRNAs), 218 anti-sense lncRNAs, and 119 intronic lncRNAs. Our results demonstrated significant differences in gene architecture and expression among the three lncRNA subtypes, particularly in terms of density and position bias of transpose elements near the transcription start site. We also investigated the impact of lncRNAs on its target genes in cis and trans, indicating that these lncRNAs have a strict tissue specificity and functional conservation during skin development and pigmentation. Conclusion The present study provides a resource for lncRNA studies in diseases involved in pigmentation and skin development. It expands our knowledge about lncRNA biology as well as contributes to the annotation of the goat genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2365-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hangxing Ren
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Lei Chen
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Jing Jiang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Liangjia Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Nianfu Li
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Youyang Animal Husbandry Bureau, Chongqing, 409800, China.
| | - Jinhong Zhao
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Xiaoyan Sun
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Chongqing Engineering Research Center for Goats, Chongqing, 402460, China.
| |
Collapse
|
281
|
Kijas JW, Hadfield T, Naval Sanchez M, Cockett N. Genome-wide association reveals the locus responsible for four-horned ruminant. Anim Genet 2016; 47:258-62. [PMID: 26767438 DOI: 10.1111/age.12409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 01/15/2023]
Abstract
Phenotypic variability in horn characteristics, such as their size, number and shape, offers the opportunity to elucidate the molecular basis of horn development. The objective of this study was to map the genetic determinant controlling the production of four horns in two breeds, Jacob sheep and Navajo-Churro, and examine whether an eyelid abnormality occurring in the same populations is related. Genome-wide association mapping was performed using 125 animals from the two breeds that contain two- and four-horned individuals. A case-control design analysis of 570 712 SNPs genotyped with the ovine HD SNP Beadchip revealed a strong association signal on sheep chromosome 2. The 10 most strongly associated SNPs were all located in a region spanning Mb positions 131.9-132.6, indicating the genetic architecture underpinning the production of four horns is likely to involve a single gene. The closest genes to the most strongly associated marker (OAR2_132568092) were MTX2 and the HOXD cluster, located approximately 93 Kb and 251 Kb upstream respectively. The occurrence of an eyelid malformation across both breeds was restricted to polled animals and those carrying more than two horns. This suggests the eyelid abnormality may be associated with departures from the normal developmental production of two-horned animals and that the two conditions are developmentally linked. This study demonstrated the presence of separate loci responsible for the polled and four-horned phenotypes in sheep and advanced our understanding of the complexity that underpins horn morphology in ruminants.
Collapse
Affiliation(s)
| | - Tracy Hadfield
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4700, USA
| | | | - Noelle Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4700, USA
| |
Collapse
|
282
|
McRae KM, Schultz M, Mackintosh CG, Shackell GH, Martinez MF, Knowler KJ, Williams M, Ho C, Elmes SN, McEwan JC. Ovine rumen papillae biopsy via oral endoscopy; a rapid and repeatable method for serial sampling. N Z Vet J 2016; 64:174-8. [PMID: 26642120 PMCID: PMC4867882 DOI: 10.1080/00480169.2015.1121845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS: To explore and validate the utility of rumen endoscopy for collection of rumen papillae for gene expression measurement. METHODS: Four adult Coopworth ewes were fasted for either 4 or 24 hours. Animals were sedated, placed in a dorsally recumbent position at 45 degrees with the head upright, and an endoscope inserted via a tube inserted into the mouth. Biopsies of rumen papillae were taken from the ventral surface of the rumen atrium under visual guidance. Two biopsies were collected from one of the animals that had been fasted for 4 hours, and three from one of the animals that had been fasted for 24 hours. Video of the rumen atrium and reticulum was also collected. The animals recovered uneventfully. Biopsies were subsequently used for extraction and sequencing of mRNA. RESULTS: The ventral surface of the rumen atrium was accessible after 4 hours off pasture, but a larger region was accessible after 24 hours of fasting. Sedation allowed access for endoscope use for around 5 to 10 minutes after which increased saliva flow was noted. Rumen papillae biopsies were easily collected, with samples from a variety of sites collected in the ∼10 minute time window. High quality RNA was obtained for stranded mRNA sequencing. Of the resulting reads, 69–70% mapped uniquely to version 3.1 of the ovine genome, and 48–49% to a known gene. The rumen mRNA profiles were consistent with a previously reported study. CONCLUSIONS: This method for obtaining rumenal tissue was found to be rapid and resulted in no apparent short or long term effects on the animal. High quality RNA was successfully extracted and amplified from the rumen papillae biopsies, indicating that this technique could be used for future gene expression studies. The use of rumen endoscopy could be extended to collection of a variety of rumen and reticulum anatomical measurements and deposition and retrieval of small sensors from the rumen. Rumen endoscopy offers an attractive and cost effective approach to repeated rumen biopsies compared with serial slaughter or use of cannulated animals.
Collapse
Affiliation(s)
- K M McRae
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - M Schultz
- b Dunedin School of Medicine, Department of Medicine , University of Otago , PO Box 56, Dunedin , 9054 , New Zealand
| | - C G Mackintosh
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - G H Shackell
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - M F Martinez
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - K J Knowler
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - M Williams
- b Dunedin School of Medicine, Department of Medicine , University of Otago , PO Box 56, Dunedin , 9054 , New Zealand
| | - C Ho
- b Dunedin School of Medicine, Department of Medicine , University of Otago , PO Box 56, Dunedin , 9054 , New Zealand
| | - S N Elmes
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| | - J C McEwan
- a AgResearch , Invermay Agricultural Centre , Private Bag 50034, Mosgiel , 9053 , New Zealand
| |
Collapse
|
283
|
Rupp R, Mucha S, Larroque H, McEwan J, Conington J. Genomic application in sheep and goat breeding. Anim Front 2016. [DOI: 10.2527/af.2016-0006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
284
|
Measuring Methane Production from Ruminants. Trends Biotechnol 2015; 34:26-35. [PMID: 26603286 DOI: 10.1016/j.tibtech.2015.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
Radiative forcing of methane (CH4) is significantly higher than carbon dioxide (CO2) and its enteric production by ruminant livestock is one of the major sources of greenhouse gas emissions. CH4 is also an important marker of farming productivity, because it is associated with the conversion of feed to product in livestock. Consequently, measurement of enteric CH4 is emerging as an important research topic. In this review, we briefly describe the conversion of carbohydrate to CH4 by the bacterial community within gut, and highlight some of the key host-microbiome interactions. We then provide a picture of current progress in techniques for measuring enteric CH4, the context in which these technologies are used, and the challenges faced. We also discuss solutions to existing problems and new approaches currently in development.
Collapse
|
285
|
Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V, Sapojnikov V, Smith RG, Tatusova T, Xiang C, Zherikov A, DiCuccio M, Murphy TD, Pruitt KD, Kimchi A. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res 2015; 44:D73-80. [PMID: 26578580 PMCID: PMC4702866 DOI: 10.1093/nar/gkv1226] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023] Open
Abstract
The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site.
Collapse
Affiliation(s)
- Paul A Kitts
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Deanna M Church
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jinna Choi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vichet Hem
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor Sapojnikov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Robert G Smith
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tatiana Tatusova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Charlie Xiang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Andrey Zherikov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael DiCuccio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Avi Kimchi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
286
|
Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, McWilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J. Whole‐genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol 2015; 24:5616-32. [DOI: 10.1111/mec.13415] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Marty Kardos
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Evolutionary Biology Centre Uppsala University SE‐75236 Uppsala Sweden
| | - Gordon Luikart
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Division of Biological Sciences Flathead Lake Biological Station Fish and Wildlife Genomics Group University of Montana Polson MT 59860 USA
| | - Rowan Bunch
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | - Sarah Dewey
- Grand Teton National Park Moose WY 83012 USA
| | - William Edwards
- Wyoming Game and Fish Department Wildlife Disease Laboratory Laramie WY 82070 USA
| | - Sean McWilliam
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | | | - Fred W. Allendorf
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| | - John T. Hogg
- Montana Conservation Science Institute Missoula MT 59803 USA
| | - James Kijas
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| |
Collapse
|
287
|
Wang Y, Wu J, Ma X, Liu B, Su R, Jiang Y, Wang W, Dong Y. Single Base-Resolution Methylome of the Dizygotic Sheep. PLoS One 2015; 10:e0142034. [PMID: 26536671 PMCID: PMC4633158 DOI: 10.1371/journal.pone.0142034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/17/2015] [Indexed: 12/12/2022] Open
Abstract
Sheep is an important livestock in the world for meat, dairy and wool production. The third version of sheep reference genome has been recently assembled, but sheep DNA methylome has not been profiled yet. In this study, we report the comprehensive sheep methylome with 94.38% cytosine coverage at single base resolution by sequencing DNA samples from Longissimus dorsi of dizygotic Sunit sheep, which were bred in different habitats. We also compared methylomes between the twin sheep. DNA methylation status at genome-scale differentially methylated regions (DMRs), functional genomic regions and 248 DMR-containing genes were identified between the twin sheep. Gene ontology (GO) and KEGG annotations of these genes were performed to discover computationally predicted function. Lipid metabolism, sexual maturity and tumor-associated categories were observed to significantly enrich DMR-containing genes. These findings could be used to illustrate the relationship between phenotypic variations and gene methylation patterns.
Collapse
Affiliation(s)
- Yangzi Wang
- Kunming University of Science and Technology, Chenggong District, Kunming, China
| | - Jianghong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
| | - Xiao Ma
- Yunnan Agricultural University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Rui Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| | - Yang Dong
- Kunming University of Science and Technology, Chenggong District, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| |
Collapse
|
288
|
Burns P, Liu HL, Kuthiala S, Fecteau G, Desrochers A, Durosier LD, Cao M, Frasch MG. Instrumentation of Near-term Fetal Sheep for Multivariate Chronic Non-anesthetized Recordings. J Vis Exp 2015:e52581. [PMID: 26555084 DOI: 10.3791/52581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli such as endotoxins, bacteria, umbilical cord occlusions, hypoxia and various pharmacological treatments. The life-saving clinical practices of glucocorticoid treatment in fetuses at risk of premature birth and the therapeutic hypothermia have been developed in this model. This is due to the unique amenability of the non-anesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Here we describe the surgical instrumentation procedure required to achieve a stable chronically instrumented non-anesthetized fetal sheep model including characterization of the post-operative recovery from blood gas, metabolic and inflammation standpoints.
Collapse
Affiliation(s)
- Patrick Burns
- Département de sciences cliniques, CHUV, Université de Montréal, St-Hyacinthe, QC
| | - Hai Lun Liu
- Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal
| | - Shikha Kuthiala
- Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal
| | - Gilles Fecteau
- Département de sciences cliniques, CHUV, Université de Montréal, St-Hyacinthe, QC
| | - André Desrochers
- Département de sciences cliniques, CHUV, Université de Montréal, St-Hyacinthe, QC
| | - Lucien Daniel Durosier
- Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal
| | - Mingju Cao
- Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal
| | - Martin G Frasch
- Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal; Département de neurosciences, CHU Ste-Justine Centre de recherche, Université de Montréal; Centre de recherche en reproduction animale (CRRA), Université de Montréal, St-Hyacinthe, QC;
| |
Collapse
|
289
|
DNA methylation Landscape of body size variation in sheep. Sci Rep 2015; 5:13950. [PMID: 26472088 PMCID: PMC4607979 DOI: 10.1038/srep13950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation – sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the “development process” (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
Collapse
|
290
|
Lv FH, Peng WF, Yang J, Zhao YX, Li WR, Liu MJ, Ma YH, Zhao QJ, Yang GL, Wang F, Li JQ, Liu YG, Shen ZQ, Zhao SG, Hehua E, Gorkhali NA, Farhad Vahidi SM, Muladno M, Naqvi AN, Tabell J, Iso-Touru T, Bruford MW, Kantanen J, Han JL, Li MH. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol Biol Evol 2015; 32:2515-33. [PMID: 26085518 PMCID: PMC4576706 DOI: 10.1093/molbev/msv139] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite much attention, history of sheep (Ovis aries) evolution, including its dating, demographic trajectory and geographic spread, remains controversial. To address these questions, we generated 45 complete and 875 partial mitogenomic sequences, and performed a meta-analysis of these and published ovine mitochondrial DNA sequences (n = 3,229) across Eurasia. We inferred that O. orientalis and O. musimon share the most recent female ancestor with O. aries at approximately 0.790 Ma (95% CI: 0.637-0.934 Ma) during the Middle Pleistocene, substantially predating the domestication event (∼8-11 ka). By reconstructing historical variations in effective population size, we found evidence of a rapid population increase approximately 20-60 ka, immediately before the Last Glacial Maximum. Analyses of lineage expansions showed two sheep migratory waves at approximately 4.5-6.8 ka (lineages A and B: ∼6.4-6.8 ka; C: ∼4.5 ka) across eastern Eurasia, which could have been influenced by prehistoric West-East commercial trade and deliberate mating of domestic and wild sheep, respectively. A continent-scale examination of lineage diversity and approximate Bayesian computation analyses indicated that the Mongolian Plateau region was a secondary center of dispersal, acting as a "transportation hub" in eastern Eurasia: Sheep from the Middle Eastern domestication center were inferred to have migrated through the Caucasus and Central Asia, and arrived in North and Southwest China (lineages A, B, and C) and the Indian subcontinent (lineages B and C) through this region. Our results provide new insights into sheep domestication, particularly with respect to origins and migrations to and from eastern Eurasia.
Collapse
Affiliation(s)
- Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei-Feng Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yue-Hui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qian-Jun Zhao
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guang-Li Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China College of Life Sciences, Shangqiu Normal University, Shangqiu, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Sheng-Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Neena A Gorkhali
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council, Kathmandu, Nepal
| | - S M Farhad Vahidi
- Agricultural Biotechnology Research Institute of Iran-North Branch (ABRII), Rasht, Iran
| | - Muhammad Muladno
- Department of Animal Technology and Production Science, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia
| | - Arifa N Naqvi
- Faculty of Life Sciences, Karakoram International University, Gilgit, Baltistan, Pakistan
| | - Jonna Tabell
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Terhi Iso-Touru
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland
| | - Michael W Bruford
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (LUKE), Jokioinen, Finland Department of Biology, University of Eastern Finland, Kuopio, Finland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
291
|
Ibeagha-Awemu EM, Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet 2015; 6:302. [PMID: 26442116 PMCID: PMC4585011 DOI: 10.3389/fgene.2015.00302] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022] Open
Abstract
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food CanadaSherbrooke, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-BellevueQC, Canada
| |
Collapse
|
292
|
Piccinni B, Massari S, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S, Antonacci R. Sheep (Ovis aries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus. BMC Genomics 2015; 16:709. [PMID: 26383271 PMCID: PMC4574546 DOI: 10.1186/s12864-015-1790-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T cell receptors. Human and mouse display a low peripheral blood γδ T cell percentage ("γδ low species") while sheep, bovine and pig accounts for a high proportion of γδ T lymphocytes ("γδ high species"). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep. Results The analysis of the current Ovis aries whole genome assembly, Oar_v3.1, revealed that, as in the other mammalian species, the sheep TRD locus is nested within the TRA locus. In the most 5’ part the TRA/TRD locus contains TRAV genes which are intermingled with TRDV genes, then TRD genes which include seven TRDD, four TRDJ genes, one TRDC and a single TRDV gene with an inverted transcriptional orientation, and finally in the most 3’ part, the TRA locus is completed by 61 TRAJ genes and one TRAC gene. Comparative sequence and analysis and annotation led to the identification of 66 TRAV genes assigned to 34 TRAV subgroups and 25 TRDV genes belonging to the TRDV1 subgroup, while one gene was found for each TRDV2, TRDV3 and TRDV4 subgroups. Multiple duplication events within several TRAV subgroups have generated the sheep TRAV germline repertoire, which is substantially larger than the human one. A significant proportion of these TRAV gene duplications seems to have occurred simultaneously with the amplification of the TRDV1 subgroup genes. This dynamic of expansion has also generated novel multigene subgroups, which are species-specific. Ovis aries TRA and TRD genes identified in this study were assigned IMGT definitive or temporary names and were approved by the IMGT/WHO-IUIS nomenclature committee. The completeness of the genome assembly in the 3' part of the locus has allowed us to interpret rearranged CDR3 of cDNA from both TRA and TRD chain repertoires. The involvement of one up to four TRDD genes into a single transcript makes the potential sheep TRD chain much larger than any known TR chain repertoire. Conclusions The sheep genome, as the bovine genome, contains a large and diverse repertoire of TRA and TRD genes when compared to the “γδ T cell low” species genomes. The composition and length of the rearranged CDR3 in TRD V-delta domains influence the three-dimensional configuration of the antigen-combining site thus suggesting that in ruminants, γδ T cells play a more important and specific role in immune recognition. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1790-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Piccinni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy. .,Dipartimento di Biologia, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy.
| | - Anna Caputi Jambrenghi
- Dipartimento di Scienze Agro-Ambientali e Territoriali, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Francesco Giannico
- Dipartimento di Scienze Agro-Ambientali e Territoriali, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Marie-Paule Lefranc
- IMGT, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2, 34396, Montpellier, Cedex 5, France.
| | - Salvatrice Ciccarese
- Dipartimento di Biologia, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Rachele Antonacci
- Dipartimento di Biologia, Universita' degli Studi di Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
293
|
Pinnapureddy AR, Stayner C, McEwan J, Baddeley O, Forman J, Eccles MR. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease. Orphanet J Rare Dis 2015; 10:107. [PMID: 26329332 PMCID: PMC4557632 DOI: 10.1186/s13023-015-0327-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.
Collapse
Affiliation(s)
- Ashish R Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand.
| | - Olivia Baddeley
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - John Forman
- New Zealand Organisation for Rare Disorders, Wellington, New Zealand.
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
294
|
Phua SH, Cullen NG, Dodds KG, Scobie DR, Bray AR. An ovine quantitative trait locus affecting fibre opacity in wool. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
295
|
Detection of Selection Signatures on the X Chromosome in Three Sheep Breeds. Int J Mol Sci 2015; 16:20360-74. [PMID: 26343642 PMCID: PMC4613208 DOI: 10.3390/ijms160920360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
Artificial selection has played a critical role in animal breeding. Detection of artificial selection footprints in genomic regions can provide insights for understanding the function of specific phenotypic traits and better guide animal breeding. To more fully understand the relationship between genomic composition and phenotypic diversity arising from breed development, a genome-wide scan was conducted using an OvineSNP50 BeadChip and integrated haplotype score and fixation index analyses to detect selection signatures on the X chromosome in three sheep breeds. We identified 49, 34, and 55 candidate selection regions with lengths of 27.49, 16.47, and 25.42 Mb in German Mutton, Dorper, and Sunit sheep, respectively. Bioinformatics analysis showed that some of the genes in these regions with selection signatures, such as BMP15, were relevant to reproduction. We also identified some selection regions harboring genes that had human orthologs, including BKT, CENPI, GUCY2F, MSN, PCDH11X, PLP1, VSIG4, PAK3, WAS, PCDH19, PDHA1, and SRPX2. The VSIG4 and PCDH11X genes are associated with the immune system and disease, PDHA1 is associated with biosynthetic related pathways, and PCDH19 is expressed in the nervous system and skin. These genes may be useful as candidate genes for molecular breeding.
Collapse
|
296
|
Ma Y, Zhang Q, Lu Z, Zhao X, Zhang Y. Analysis of copy number variations by SNP50 BeadChip array in Chinese sheep. Genomics 2015; 106:295-300. [PMID: 26244906 DOI: 10.1016/j.ygeno.2015.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/18/2022]
Abstract
The sheep (Ovis aries) plays a major socio-economic role in the world. Copy number variations (CNVs) are increasingly recognized as a key and potent source of genetic variation and phenotypic diversity, but little is known about the extent to which CNVs contribute to genetic variation in Chinese sheep breeds. Analyses of CNVs in the genomes of eight sheep breeds were performed using the sheep SNP50 BeadChip genotyping array. A total of 111 CNV regions (CNVRs) were obtained from 160 Chinese sheep breeds. These CNVRs covered 13.75Mb of the sheep genome sequence. A total of 22 Go terms and 17 candidate genes were obtained from the functional analysis. Ten CNVRs were selected for validation, of which 7 CNVRs were further experimentally confirmed by quantitative PCR. Four candidate genes were selected to confirm the results of the functional analysis. These results provide a resource for furthering understanding of ruminant biology, and for further improving the genetic quality of sheep breeds.
Collapse
Affiliation(s)
- Youji Ma
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Zengkui Lu
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
297
|
Morrison JL, Zhang S, Tellam RL, Brooks DA, McMillen IC, Porrello ER, Botting KJ. Regulation of microRNA during cardiomyocyte maturation in sheep. BMC Genomics 2015. [PMID: 26198574 PMCID: PMC4509559 DOI: 10.1186/s12864-015-1693-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background There is a limited capacity to repair damage in the mammalian heart after birth, which is primarily due to the inability of cardiomyocytes to proliferate after birth. This is in contrast to zebrafish and salamander, in which cardiomyocytes retain the ability to proliferate throughout life and can regenerate their heart after significant damage. Recent studies in zebrafish and rodents implicate microRNA (miRNA) in the regulation of genes responsible for cardiac cell cycle progression and regeneration, in particular, miR-133a, the miR-15 family, miR-199a and miR-590. However, the significance of these miRNA and miRNA in general in the regulation of cardiomyocyte proliferation in large mammals, including humans, where the timing of heart development relative to birth is very different than in rodents, is unclear. To determine the involvement of miRNA in the down-regulation of cardiomyocyte proliferation occurring before birth in large mammals, we investigated miRNA and target gene expression in sheep hearts before and after birth. The experimental approach included targeted transcriptional profiling of miRNA and target mRNA previously identified in rodent studies as well as genome-wide miRNA profiling using microarrays. Results The cardiac expression of miR-133a increased and its target gene IGF1R decreased with increasing age, reaching their respective maximum and minimum abundance when the majority of ovine cardiomyocytes were quiescent. The expression of the miR-15 family members was variable with age, however, four of their target genes decreased with age. These latter profiles are inconsistent with the direct involvement of this family of miRNA in cardiomyocyte quiescence in late gestation sheep. The expression patterns of ‘pro-proliferative’ miR-199a and miR-590 were also inconsistent with their involvement in cardiomyocyte quiescence. Consequently, miRNA microarray analysis was undertaken, which identified six discrete clusters of miRNA with characteristic developmental profiles. The functions of predicted target genes for the miRNA in four of the six clusters were enriched for aspects of cell division and regulation of cell proliferation suggesting a potential role of these miRNA in regulating cardiomyocyte proliferation. Conclusion The results of this study show that the expression of miR-133a and one of its target genes is consistent with it being involved in the suppression of cardiomyocyte proliferation, which occurs across the last third of gestation in sheep. The expression patterns of the miR-15 family, miR-199a and miR-590 were inconsistent with direct involvement in the regulation cardiomyocyte proliferation in sheep, despite studies in rodents demonstrating that their manipulation can influence the degree of cardiomyocyte proliferation. miRNA microarray analysis suggests a coordinated and potentially more complex role of multiple miRNA in the regulation of cardiomyocyte quiescence and highlights significant differences between species that may reflect their substantial differences in the timing of this developmental process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1693-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Song Zhang
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Ross L Tellam
- CSIRO Agriculture, CSIRO, Queensland Biosciences Precinct, St Lucia, QLD, Australia.
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, University of South Australia, Adelaide, SA, Australia.
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| | - Enzo R Porrello
- Laboratory for Cardiac Regeneration, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
298
|
Abstract
Domestic animals represent an extremely useful model for linking genotypic and phenotypic variation. One approach involves identifying allele frequency differences between populations, using F(ST), to detect selective sweeps. While simple to calculate, FST may generate false positives due to aspects of population history. This prompted the development of hapFLK, a metric that measures haplotype differentiation while accounting for the genetic relationship between populations. The focus of this paper was to apply hapFLK in sheep with available SNP50 genotypes. The hapFLK approach identified a known selective sweep on chromosome 10 with high precision. Further, five regions were identified centered on genes with strong evidence for positive selection (COL1A2, NCAPG, LCORL, and RXFP2). Estimation of global F(ST) revealed many more genomic regions, providing empirical data in support of published simulation-based results concerning elevated type I error associated with F(ST) when it is being used to characterize sweep regions. The findings, while conducted using sheep SNP data, are likely to be applicable across those domestic animal species that have undergone artificial selection for desirable phenotypic traits.
Collapse
|
299
|
Gallus S, Kumar V, Bertelsen MF, Janke A, Nilsson MA. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla). Gene 2015; 571:271-8. [PMID: 26123917 DOI: 10.1016/j.gene.2015.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage.
Collapse
Affiliation(s)
- S Gallus
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - V Kumar
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - M F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - A Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; Goethe University Frankfurt Institute for Ecology, Evolution & Diversity Biologicum Max-von-Laue-Str.13, D-60439 Frankfurt am Main, Germany
| | - M A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.
| |
Collapse
|
300
|
Mousel MR, Reynolds JO, White SN. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep. PLoS One 2015; 10:e0128909. [PMID: 26098909 PMCID: PMC4476619 DOI: 10.1371/journal.pone.0128909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.
Collapse
Affiliation(s)
- Michelle R. Mousel
- Range Sheep Production Efficiency Research Unit, Agricultural Research Service, Department of Agriculture, Dubois, ID, United States of America
- * E-mail:
| | - James O. Reynolds
- Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Pullman, WA, United States of America
| | - Stephen N. White
- Animal Disease Research Unit, Agricultural Research Service, Department of Agriculture, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|