251
|
Reignault P, Sancholle M. Plant–pathogen interactions: will the understanding of common mechanisms lead to the unification of concepts? C R Biol 2005; 328:821-33. [PMID: 16168363 DOI: 10.1016/j.crvi.2005.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 07/01/2005] [Accepted: 07/18/2005] [Indexed: 01/17/2023]
Abstract
Plant-pathogen interactions are still classically described using concepts that make a distinction between qualitative and quantitative aspects linked to these concepts. This article first describes these aspects, using the terminology associated with them. It then presents some recent experimental observations that demonstrate that such concepts share either common or closely related mechanisms at the cellular and molecular levels. The emergence of a more global vision and understanding of the interactions between plants and their parasites is discussed.
Collapse
Affiliation(s)
- Philippe Reignault
- Mycologie-Phytopathologie-Environnement, université du Littoral-Côte d'Opale, BP 699, 62228 Calais cedex, France.
| | | |
Collapse
|
252
|
Xu Q, Wen X, Deng X. Isolation of TIR and non-TIR NBS--LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:819-30. [PMID: 16075209 DOI: 10.1007/s00122-005-0002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Accepted: 05/17/2005] [Indexed: 05/03/2023]
Abstract
Toll and interleukin-1 receptor (TIR) and non-TIR nucleotide binding site-leucine rich repeat (NBS-LRR) resistance gene analogues (RGAs) were obtained from chestnut rose (Rosa roxburghii Tratt) by two PCR-based amplification strategies (direct amplification and overlap extension amplification) with degenerate primers designed to the conserved P-loop, kinase-2, and Gly-Leu-Pro-Leu (GLPL) motifs within the NBS domain of plant resistance gene (R gene) products. Thirty-four of 65 cloned PCR fragments contained a continuous open reading frame (ORF) and their predicted protein products showed homology to the NBS-LRR class R proteins in the GenBank database. These 34 predicted protein sequences exhibited a wide range (19.5--99.4%) of sequence identity among them and were classified into two distinct groups by phylogenetic analysis. The first group consisted of 23 sequences and seemed to belong to the non-TIR NBS-LRR RGAs, since they contained group specific motifs (RNBS-A-non-TIR motif) that are often present in the coiled-coil domain of the non-TIR NBS-LRR class R genes. The second group comprised 11 sequences that contained motifs found in the TIR domain of TIR NBS-LRR class R genes. Restriction fragment length polymorphic (RFLP) markers were developed from some of the RGAs and used for mapping powdery mildew resistance genes in chestnut rose. Three markers, RGA 22 C, RGA 4 A, and RGA 7 B, were identified to be linked to a resistance gene locus, designated CRPM 1 for chestnut rose powdery mildew resistance 1, which accounted for 72% of the variation in powdery mildew resistance phenotype in an F1 segregating population. To our knowledge, this is the first report on isolation, phylogenetic analysis and potential utilization as genetic markers of RGAs in chestnut rose.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | | | | |
Collapse
|
253
|
Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 2005; 171:305-21. [PMID: 15965251 PMCID: PMC1456520 DOI: 10.1534/genetics.105.042218] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana ecotypes differ in their susceptibility to Fusarium wilt diseases. Ecotype Taynuilt-0 (Ty-0) is susceptible to Fusarium oxysporum forma specialis (f.) matthioli whereas Columbia-0 (Col-0) is resistant. Segregation analysis of a cross between Ty-0 and Col-0 revealed six dominant RESISTANCE TO FUSARIUM OXYSPORUM (RFO) loci that significantly contribute to f. matthioli resistance in Col-0 relative to Ty-0. We refer to the locus with the strongest effect as RFO1. Ty-0 plants in which only the Col-0 allele of RFO1 (RFO1(Col-0)) was introduced were resistant to f. matthioli. Surprisingly, RFO1(Col-0) also conferred resistance to f. raphani, demonstrating that RFO1-mediated resistance is not race specific. Expression of resistance by RFO2, RFO4, or RFO6 was dependent on RFO1(Col-0). Map-based cloning of RFO1(Col-0) showed that RFO1 is identical to the previously named Arabidopsis gene WAKL22 (WALL-ASSOCIATED KINASE-LIKE KINASE 22), which encodes a receptor-like kinase that does not contain an extracellular leucine-rich repeat domain. Consistent with these results, a Col-0 rfo1 loss-of-function mutant was more susceptible to f. matthioli, f. conglutinans, and f. raphani. Thus, RFO1 encodes a novel type of dominant disease-resistance protein that confers resistance to a broad spectrum of Fusarium races.
Collapse
Affiliation(s)
- Andrew C Diener
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
254
|
Hu G, deHart AKA, Li Y, Ustach C, Handley V, Navarre R, Hwang CF, Aegerter BJ, Williamson VM, Baker B. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:376-91. [PMID: 15842623 DOI: 10.1111/j.1365-313x.2005.02380.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.
Collapse
Affiliation(s)
- Gongshe Hu
- USDA, Plant Gene Expression Center, 800 Buchanan St, Albany, CA 94710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:95-110. [PMID: 15773856 DOI: 10.1111/j.1365-313x.2005.02356.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genetic studies have identified a number of components of signal transduction pathways leading to plant disease resistance and the accompanying hypersensitive response (HR) following detection of pathogens by plant resistance (R) genes. In Arabidopsis, the majority of R proteins so far characterized belong to a plant superfamily that have a central nucleotide-binding site and C-terminal leucine-rich-repeats (NB-LRRs). Another much less prevalent class comprises RPW8.1 and RPW8.2, two related proteins that possess a putative N-terminal transmembrane domain and a coiled-coil motif, and confer broad-spectrum resistance to powdery mildew. Here we investigated whether RPW8.1 and RPW8.2 engage known pathway(s) for defence signalling. We show that RPW8.1 and RPW8.2 recruit, in addition to salicylic acid and EDS1, the other NB-LRR gene-signalling components PAD4, EDS5, NPR1 and SGT1b for activation of powdery mildew resistance and HR. In contrast, NDR1, RAR1 and PBS3 that are required for function of certain NB-LRR R genes, and COI1 and EIN2 that operate, respectively, in the jasmonic acid and ethylene signalling pathways, do not contribute to RPW8.1 and RPW8.2-mediated resistance. We further demonstrate that EDR1, a gene encoding a conserved MAPKK kinase, exerts negative regulation on HR cell death and powdery mildew resistance by limiting the transcriptional amplification of RPW8.1 and RPW8.2. Our results suggest that RPW8.1 and RPW8.2 stimulate a conserved basal defence pathway that is negatively regulated by EDR1.
Collapse
Affiliation(s)
- Shunyuan Xiao
- School of Biological Science, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:205-27. [PMID: 16078883 DOI: 10.1146/annurev.phyto.43.040204.135923] [Citation(s) in RCA: 2410] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been suggested that effective defense against biotrophic pathogens is largely due to programmed cell death in the host, and to associated activation of defense responses regulated by the salicylic acid-dependent pathway. In contrast, necrotrophic pathogens benefit from host cell death, so they are not limited by cell death and salicylic acid-dependent defenses, but rather by a different set of defense responses activated by jasmonic acid and ethylene signaling. This review summarizes results from Arabidopsis-pathogen systems regarding the contributions of various defense responses to resistance to several biotrophic and necrotrophic pathogens. While the model above seems generally correct, there are exceptions and additional complexities.
Collapse
Affiliation(s)
- Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
257
|
Barbosa-da-Silva A, Wanderley-Nogueira AC, Silva RR, Berlarmino LC, Soares-Cavalcanti NM, Benko-Iseppon AM. In silico survey of resistance (R) genes in Eucalyptus transcriptome. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
258
|
Kruijt M, DE Kock MJD, de Wit PJGM. Receptor-like proteins involved in plant disease resistance. MOLECULAR PLANT PATHOLOGY 2005; 6:85-97. [PMID: 20565641 DOI: 10.1111/j.1364-3703.2004.00264.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated resistance genes of the RLP class are the tomato Cf genes, which confer resistance to the fungal pathogen Cladosporium fulvum. To date, several other RLP genes are known to be implicated in resistance in other plant-pathogen interactions. These include HcrVf2 from apple, Ve1 and Ve2 from tomato, and RPP27 from Arabidopsis, which are involved in resistance to Venturia, Verticillium and Peronospora, respectively. Furthermore, the tomato RLP gene LeEix initiates defence responses upon elicitation with a fungal ethylene-inducing xylanase (EIX) of non-pathogenic Trichoderma. The tomato Cf genes, which are the most intensively studied RLP resistance genes, are usually found in clusters of several homologues. Whereas some of these homologues are functional Cf resistance genes, others have no known function in resistance. Different evolutionary processes contribute to variation in functional Cf genes, and functional as well as non-functional homologues may provide a source for the generation of novel Cf resistance genes. To date, little is known of the proteins that interact with Cf proteins to initiate defence responses. In contrast to the LeEix protein and the corresponding EIX elicitor, for which a direct interaction was found, no direct interaction between Cf proteins and the corresponding C. fulvum elicitors has been demonstrated. Analogous to the CLAVATA signalling complex, which comprises an RLP, a receptor-like kinase (RLK) and a small proteineous ligand, Cf proteins may form a complex with RLKs and thus initiate signalling upon recognition of the corresponding elicitors. The presence of RLP resistance genes in diverse plant species suggests that these genes play an important role in the extracellular recognition of plant pathogens.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
259
|
Parker IM, Gilbert GS. The Evolutionary Ecology of Novel Plant-Pathogen Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2004. [DOI: 10.1146/annurev.ecolsys.34.011802.132339] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ingrid M. Parker
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064;
| | - Gregory S. Gilbert
- Environmental Studies, University of California, Santa Cruz, California 95064;
| |
Collapse
|
260
|
Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:633-46. [PMID: 15546348 DOI: 10.1111/j.1365-313x.2004.02236.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.
Collapse
Affiliation(s)
- Laurent Zimmerli
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
261
|
Caldo RA, Nettleton D, Wise RP. Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. THE PLANT CELL 2004; 16:2514-28. [PMID: 15319481 PMCID: PMC520949 DOI: 10.1105/tpc.104.023382] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Accepted: 06/26/2004] [Indexed: 05/19/2023]
Abstract
Plant recognition of pathogen-derived molecules influences attack and counterattack strategies that affect the outcome of host-microbe interactions. To ascertain the global framework of host gene expression during biotrophic pathogen invasion, we analyzed in parallel the mRNA abundance of 22,792 host genes throughout 36 (genotype x pathogen x time) interactions between barley (Hordeum vulgare) and Blumeria graminis f. sp hordei (Bgh), the causal agent of powdery mildew disease. A split-split-plot design was used to investigate near-isogenic barley lines with introgressed Mla6, Mla13, and Mla1 coiled-coil, nucleotide binding site, Leu-rich repeat resistance alleles challenged with Bgh isolates 5874 (AvrMla6 and AvrMla1) and K1 (AvrMla13 and AvrMla1). A linear mixed model analysis was employed to identify genes with significant differential expression (P value < 0.0001) in incompatible and compatible barley-Bgh interactions across six time points after pathogen challenge. Twenty-two host genes, of which five were of unknown function, exhibited highly similar patterns of upregulation among all incompatible and compatible interactions up to 16 h after inoculation (hai), coinciding with germination of Bgh conidiospores and formation of appressoria. By contrast, significant divergent expression was observed from 16 to 32 hai, during membrane-to-membrane contact between fungal haustoria and host epidermal cells, with notable suppression of most transcripts identified as differentially expressed in compatible interactions. These findings provide a link between the recognition of general and specific pathogen-associated molecules in gene-for-gene specified resistance and support the hypothesis that host-specific resistance evolved from the recognition and prevention of the pathogen's suppression of plant basal defense.
Collapse
Affiliation(s)
- Rico A Caldo
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020, USA
| | | | | |
Collapse
|
262
|
Zhou F, Menke FLH, Yoshioka K, Moder W, Shirano Y, Klessig DF. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:920-32. [PMID: 15341634 DOI: 10.1111/j.1365-313x.2004.02180.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1-dependent, but NPR1- and NDR1-independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H(2)O(2) and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4-induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4-induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4-mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved.
Collapse
Affiliation(s)
- Fasong Zhou
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
263
|
Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA. The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:283-97. [PMID: 15255859 DOI: 10.1111/j.1365-313x.2004.02134.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The soil-borne fungus Fusarium oxysporum f.sp. melonis causes significant losses in the cultivated melon, a key member of the economically important family, the Cucurbitaceae. Here, we report the map-based cloning and characterization of the resistance gene Fom-2 that confers resistance to race 0 and 1 of this plant pathogen. Two recombination events, 75 kb apart, were found to bracket Fom-2 after screening approximately 1324 gametes with PCR-based markers. Sequence analysis of the Fom-2 interval revealed the presence of two candidate genes. One candidate gene showed significant similarity to previously characterized resistance genes. Sequence analysis of this gene revealed clear polymorphisms between resistant and susceptible materials and was therefore designated as Fom-2. Analysis of susceptible breeding lines (BL) presenting a haplotype very similar to the resistant cultivar MR-1 indicated that a gene conversion had occurred in Fom-2, resulting in a significant rearrangement of this gene. The second candidate gene which shared high similarity to an essential gene in Arabidopsis, presented an almost identical sequence in MR-1 and BL, further supporting Fom-2 identity. The gene conversion in Fom-2 produced a truncated R gene, revealing new insights into R gene evolution. Fom-2 was predicted to encode an NBS-LRR type R protein of the non-TIR subfamily. In contrast to most members of this class a coiled-coil structure was predicted within the LRR region rather than in the N-terminal. The Fom-2 physical region contained retroelement-like sequences and truncated genes, suggesting that this locus is complex.
Collapse
Affiliation(s)
- Tarek Joobeur
- Department of Plant Pathology, Fungal Genomics Laboratory, North Carolina State University, Raleigh, NC 27965, USA
| | | | | | | | | |
Collapse
|
264
|
Wang B, Wang Y, Wang Q, Luo G, Zhang Z, He C, He SJ, Zhang J, Gai J, Chen S. Characterization of an NBS-LRR resistance gene homologue from soybean. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:815-22. [PMID: 15310071 DOI: 10.1016/j.jplph.2004.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conserved motifs such as the nucleotide-binding site (NBS) were found in many characterized plant disease resistance genes. Based on the NBS domain, resistance gene analogs have been isolated in our previous study and were used as probes to screen a soybean (Glycine max) cDNA library. A full-length cDNA, KR4, was isolated by screening the library and rapid amplification of cDNA ends method. Sequence analysis revealed that the cDNA was 3818 bp in length and the open reading frame coded for a polypeptide of 1211 amino acids with an NBS and five leucine-rich repeats domains, which were identified by Pfam protein analysis. Sequence alignment showed that KR4 was similar to 12 protein of tomato. Southern analysis indicated that the KR4 gene had low copies in soybean genome and it was mapped on the molecular linkage group E. Its expression was also investigated and it was found that KR4 was induced by exogenous salicylic acid and responded upon infection of soybean mosaic virus strain N3.
Collapse
Affiliation(s)
- Bangjun Wang
- Plant Biotechnology Laboratory, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Nürnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 2004; 198:249-66. [PMID: 15199967 DOI: 10.1111/j.0105-2896.2004.0119.x] [Citation(s) in RCA: 741] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innate immunity constitutes the first line of defense against attempted microbial invasion, and it is a well-described phenomenon in vertebrates and insects. Recent pioneering work has revealed striking similarities between the molecular organization of animal and plant systems for nonself recognition and anti-microbial defense. Like animals, plants have acquired the ability to recognize invariant pathogen-associated molecular patterns (PAMPs) that are characteristic of microbial organisms but which are not found in potential host plants. Such structures, also termed general elicitors of plant defense, are often indispensable for the microbial lifestyle and, upon receptor-mediated perception, inevitably betray the invader to the plant's surveillance system. Remarkable similarities have been uncovered in the molecular mode of PAMP perception in animals and plants, including the discovery of plant receptors resembling mammalian Toll-like receptors or cytoplasmic nucleotide-binding oligomerization domain leucine-rich repeat proteins. Moreover, molecular building blocks of PAMP-induced signaling cascades leading to the transcriptional activation of immune response genes are shared among the two kingdoms. In particular, nitric oxide as well as mitogen-activated protein kinase cascades have been implicated in triggering innate immune responses, part of which is the production of antimicrobial compounds. In addition to PAMP-mediated pathogen defense, disease resistance programs are often initiated upon plant-cultivar-specific recognition of microbial race-specific virulence factors, a recognition specificity that is not known from animals.
Collapse
Affiliation(s)
- Thorsten Nürnberger
- Institut für Pflanzenbiochemie, Abteilung Stress- und Entwicklungsbiologie, Halle/Saale, Germany.
| | | | | | | |
Collapse
|
266
|
O'Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé MT, Dumas B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:272-82. [PMID: 15000394 DOI: 10.1094/mpmi.2004.17.3.272] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ability of a Colletotrichum sp., originally isolated from Brassica campestris, to infect Arabidopsis thaliana was examined. Sequence analysis of the internal transcribed spacer (ITS)1, 5.8S RNA gene and ITS2 regions of ribosomal (r)DNA showed the pathogen to be Colletotrichum destructivum. The host range was broad, including many cruciferous plants and some legumes. At 25 degrees C, all A. thaliana accessions tested were susceptible to the Brassica isolates of C. destructivum; however, at 15 degrees C, the accession Ws-2 showed a temperature-dependant resistance, in which single epidermal cells underwent a rapid hypersensitive response. Legume isolates of C. destructivum were unable to infect A. thaliana and induced deposition of callose papillae at sites of attempted penetration. In compatible interactions, C. destructivum showed a two-stage, hemibiotrophic infection process. The initial biotrophic phase was associated with large, intracellular primary hyphae and was confined to one epidermal cell; whereas, in the subsequent necrotrophic phase, narrow secondary hyphae extensively colonized the tissue and conidia were produced in acervuli. An efficient transformation system was established for C. destructivum, using Agrobacterium-mediated transfer of DNA. The ability to genetically manipulate both partners in the interaction is an important advantage, and the Arabidopsis-Colletotrichum pathosystem should provide a valuable new model for dissecting plant-fungal interactions.
Collapse
Affiliation(s)
- Richard O'Connell
- UMR 5546, CNRS-Université Paul Sabatier, Pôle de Biotechnologie Végétale, 24 Chemin de Borde Rouge, BP17 Auzeville, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | |
Collapse
|
267
|
Abstract
Molecular communication between plants and potential pathogens determines the ultimate outcome of their interaction. The directed delivery of microbial molecules into and around the host cell, and the subsequent perception of these by the invaded plant tissue (or lack thereof), determines the difference between disease and disease resistance. In theory, any foreign molecule produced by an invading pathogen could act as an elicitor of the broad physiological and transcriptional re-programming indicative of a plant defense response. The diversity of elicitors recognized by plants seems to support this hypothesis. Additionally, these elicitors are often virulence factors from the pathogen recognized by the host. This recognition, though genetically as simple as a ligand-receptor interaction, may require additional host proteins that are the nominal targets of virulence factor action. Transduction of recognition probably requires regulated protein degradation and results in massive changes in cellular homeostasis, including a programmed cell death known as the hypersensitive response that indicates a successful, if perhaps over-zealous, disease resistance response.
Collapse
Affiliation(s)
- Zachary Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | |
Collapse
|
268
|
Jones DA, Takemoto D. Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 2004; 16:48-62. [PMID: 14734110 DOI: 10.1016/j.coi.2003.11.016] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plants have the capacity to recognise and reject pathogens at various stages of their attempted colonisation of the plant. Non-specific rejection often arises as a consequence of the potential pathogen's attempt to breach the first lines of plant defence. Pathogens able to penetrate beyond this barrier of non-host resistance may seek a subtle and persuasive relationship with the plant. For some, this may be limited to molecular signals released outside the plant cell wall, but for others it includes penetration of the cell wall and the delivery of signal molecules to the plant cytosol. Direct or indirect recognition of these signals triggers host-specific resistance. Our understanding of host-specific resistance and its possible links to non-host-specific resistance has advanced significantly as more is discovered about the nature and function of the molecules underpinning both kinds of resistance.
Collapse
Affiliation(s)
- David A Jones
- Research School of Biological Sciences, Australian National University, ACT 2601 Canberra, Australia.
| | | |
Collapse
|
269
|
Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:353-65. [PMID: 14617092 DOI: 10.1046/j.1365-313x.2003.01877.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial wilt, one of the most devastating bacterial diseases of plants worldwide, is caused by Ralstonia solanacearum and affects many important crop species. We show that several strains isolated from solanaceous crops in Europe are pathogenic in different accessions of Arabidopsis thaliana. One of these strains, 14.25, causes wilting symptoms in A. thaliana accession Landsberg erecta (Ler) and no apparent symptoms in accession Columbia (Col-0). Disease development and bacterial multiplication in the susceptible Ler accession depend on functional hypersensitive response and pathogenicity (hrp) genes, key elements for bacterial pathogenicity. Genetic analysis using Ler x Col-0 recombinant inbred lines showed that resistance is governed by at least three loci: QRS1 (Quantitative Resistance to R. solanacearum) and QRS2 on chromosome 2, and QRS3 on chromosome 5. These loci explain about 90% of the resistance carried by the Col-0 accession. The ERECTA gene, which encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) and affects development of aerial organs, is dimorphic in our population and lies close to QRS1. Susceptible Ler plants transformed with a wild-type ERECTA gene, and the LER line showed increased disease resistance to R. solanacearum as indicated by reduced wilt symptoms and impaired bacterial growth, suggesting unexpected cross-talk between resistance and developmental pathways.
Collapse
Affiliation(s)
- Laurence Godiard
- Laboratoire des Interactions Plantes-Microorganismes, CNRS-INRA, B.P. 27, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | |
Collapse
|
270
|
Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 2003; 100:9128-33. [PMID: 12872003 PMCID: PMC170883 DOI: 10.1073/pnas.1533501100] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2003] [Indexed: 01/23/2023] Open
Abstract
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans. Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil-nucleotide binding site-Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system.
Collapse
Affiliation(s)
- Junqi Song
- Department of Horticulture, Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
López CE, Zuluaga AP, Cooke R, Delseny M, Tohme J, Verdier V. Isolation of Resistance Gene Candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomics 2003; 269:658-71. [PMID: 12827500 DOI: 10.1007/s00438-003-0868-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 05/20/2003] [Indexed: 10/26/2022]
Abstract
Plant disease resistance genes (R genes) show significant similarity amongst themselves in terms of both their DNA sequences and structural motifs present in their protein products. Oligonucleotide primers designed from NBS (Nucleotide Binding Site) domains encoded by several R-genes have been used to amplify NBS sequences from the genomic DNA of various plant species, which have been called Resistance Gene Analogues (RGAs) or Resistance Gene Candidates (RGCs). Using specific primers from the NBS and TIR (Toll/Interleukin-1 Receptor) regions, we identified twelve classes of RGCs in cassava (Manihot esculenta Crantz). Two classes were obtained from the PCR-amplification of the TIR domain. The other 10 classes correspond to the NBS sequences and were grouped into two subfamilies. Classes RCa1 to RCa5 are part of the first subfamily and were linked to a TIR domain in the N terminus. Classes RCa6 to RCa10 corresponded to non-TIR NBS-LRR encoding sequences. BAC library screening with the 12 RGC classes as probes allowed the identification of 42 BAC clones that were assembled into 10 contigs and 19 singletons. Members of the two TIR and non-TIR NBS-LRR subfamilies occurred together within individual BAC clones. The BAC screening and Southern hybridization analyses showed that all RGCs were single copy sequences except RCa6 that represented a large and diverse gene family. One BAC contained five NBS sequences and sequence analysis allowed the identification of two complete RGCs encoding two highly similar proteins. This BAC was located on linkage group J with three other RGC-containing BACs. At least one of these genes, RGC2, is expressed constitutively in cassava tissues.
Collapse
Affiliation(s)
- C E López
- Biotechnology Research Unit, Centro Internacional de Agricultura Tropical, AA 6713 Cali, Colombia
| | | | | | | | | | | |
Collapse
|
272
|
Tör M, Yemm A, Holub E. The role of proteolysis in R gene mediated defence in plants. MOLECULAR PLANT PATHOLOGY 2003; 4:287-296. [PMID: 20569389 DOI: 10.1046/j.1364-3703.2003.00169.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Within the last 10 years, numerous R genes have been cloned from natural genetic variation in model as well as crop plants, and these have been classified according to their motifs. Some of the downstream signalling components have also been identified by artificial mutagenesis. Recently, cloning of three of these signalling genes (COI1, RAR1 and SGT1b) from Arabidopsis, barley and tobacco have helped uncover the physiological link between defence signalling and ubiquitin-mediated protein degradation. The physical association of COI1 and SGT1b with the components of ubiquitin-ligase complexes has been shown. In addition, post-transcriptional silencing of some of the subunits of the ubiquitin-ligase complex has led to a loss of resistance, indicating that protein degradation may also act as a regulatory mechanism in plant defence. Over the next few years, we should expect to see more examples of the interplay between the defence response and protein degradation in plants.
Collapse
Affiliation(s)
- Mahmut Tör
- Sustainable Disease Resistance Team, Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, UK
| | | | | |
Collapse
|
273
|
Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D'Hont A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 2003; 269:406-19. [PMID: 12733061 DOI: 10.1007/s00438-003-0849-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 04/07/2003] [Indexed: 10/26/2022]
Abstract
A large sugarcane EST (expressed sequence tag) project recently gave us access to 261,609 EST sequences from sugarcane, assembled into 81,223 clusters. Among these, we identified 88 resistance gene analogs (RGAs) based on their homology to typical pathogen resistance genes, using a stringent BLAST search with a threshold e-value of e(-50). They included representatives of the three major groups of resistance genes with NBS/LRR, LRR or S/T KINASE domains. Fifty RGAs showed a total of 148 single-dose polymorphic RFLP markers, which could be located on the sugarcane reference genetic map (constructed in cultivar R570, 2n=approximately 115). Fifty-five SSR loci corresponding to 134 markers in R570 were also mapped to enable the classification of the various haplotypes into homology groups. Several RGA clusters were found. One cluster of two LRR-like loci mapped close to the only disease resistance gene known so far in sugarcane, which confers resistance to common rust. Detailed sequence comparison between two NBS/LRR RGA clusters in relation to their orthologs in rice and maize suggests their polyphyletic origins, and indicates that the degree of divergence between paralogous RGAs in sugarcane can be larger than that from an ortholog in a distant species.
Collapse
Affiliation(s)
- M Rossi
- Departamento de Botanica, Instituto de Biociencias, Universidade de São Paulo, Rua do Matão 277, 055080-090 SP, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 2003; 14:177-93. [PMID: 12732319 DOI: 10.1016/s0958-1669(03)00035-1] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.
Collapse
Affiliation(s)
- Kim E Hammond-Kosack
- Rothamsted Research, Plant-Pathogen Interactions Division, Harpenden, Herts, AL5 2JQ, UK.
| | | |
Collapse
|
275
|
Xiao S, Charoenwattana P, Holcombe L, Turner JG. The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:289-94. [PMID: 12744457 DOI: 10.1094/mpmi.2003.16.4.289] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant disease resistance (R) gene products recognize pathogen avirulence (Avr) gene products and induce defense responses. It is not known if an R gene can function in different plant families, however. The Arabidopsis thaliana R genes RPW8.1 and RPW8.2 confer resistance to the powdery mildew pathogens Erysiphe orontii, E. cichoracearum, and Oidium lycopersici, which also infect plants from other families. We produced transgenic Nicotiana tabacum, N. benthamiana, and Lycopersicon esculentum plants containing RPW8.1 and RPW8.2. Transgenic N. tabacum plants had increased resistance to E. orontii and O. lycopersici, transgenic N. benthamiana plants had increased resistance to E. cichoracearum, but transgenic L. esculentum plants remained susceptible to these pathogens. The defense responses induced in transgenic N. tabacum and N. benthamiana were similar to those mediated by RPW8.1 and RPW8.2 in Arabidopsis. Apparently, RPW8.1 and RPW8.2 could be used to control powdery mildew diseases of plants from other families.
Collapse
Affiliation(s)
- Shunyuan Xiao
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
276
|
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. THE PLANT CELL 2003; 15:809-34. [PMID: 12671079 PMCID: PMC152331 DOI: 10.1105/tpc.009308] [Citation(s) in RCA: 1052] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 02/13/2003] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome contains approximately 200 genes that encode proteins with similarity to the nucleotide binding site and other domains characteristic of plant resistance proteins. Through a reiterative process of sequence analysis and reannotation, we identified 149 NBS-LRR-encoding genes in the Arabidopsis (ecotype Columbia) genomic sequence. Fifty-six of these genes were corrected from earlier annotations. At least 12 are predicted to be pseudogenes. As described previously, two distinct groups of sequences were identified: those that encoded an N-terminal domain with Toll/Interleukin-1 Receptor homology (TIR-NBS-LRR, or TNL), and those that encoded an N-terminal coiled-coil motif (CC-NBS-LRR, or CNL). The encoded proteins are distinct from the 58 predicted adapter proteins in the previously described TIR-X, TIR-NBS, and CC-NBS groups. Classification based on protein domains, intron positions, sequence conservation, and genome distribution defined four subgroups of CNL proteins, eight subgroups of TNL proteins, and a pair of divergent NL proteins that lack a defined N-terminal motif. CNL proteins generally were encoded in single exons, although two subclasses were identified that contained introns in unique positions. TNL proteins were encoded in modular exons, with conserved intron positions separating distinct protein domains. Conserved motifs were identified in the LRRs of both CNL and TNL proteins. In contrast to CNL proteins, TNL proteins contained large and variable C-terminal domains. The extant distribution and diversity of the NBS-LRR sequences has been generated by extensive duplication and ectopic rearrangements that involved segmental duplications as well as microscale events. The observed diversity of these NBS-LRR proteins indicates the variety of recognition molecules available in an individual genotype to detect diverse biotic challenges.
Collapse
Affiliation(s)
- Blake C Meyers
- Department of Vegetable Crops, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
277
|
Abstract
The last decade provided the plant science community with the complete genome sequence of Arabidopsis thaliana and rice, tools to investigate the function of potentially every plant gene, methods to dissect virtually any aspect of the plant life cycle, and a wealth of information on gene expression and protein function. Focusing on Arabidopsis as a model system has led to an integration of the plant sciences that triggered the development of new technologies and concepts benefiting plant research in general. These enormous changes led to an unprecedented increase in our understanding of the genetic basis and molecular mechanisms of developmental, physiological and biochemical processes, some of which will be discussed in this article.
Collapse
Affiliation(s)
- Robert E Pruitt
- Botany and Plant Pathology, Purdue University, West Lafayette, Indianapolis 47907-1155, USA
| | | | | |
Collapse
|
278
|
Holt BF, Hubert DA, Dangl JL. Resistance gene signaling in plants--complex similarities to animal innate immunity. Curr Opin Immunol 2003; 15:20-5. [PMID: 12495728 DOI: 10.1016/s0952-7915(02)00014-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ben F Holt
- Department of Biology, Coker Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
279
|
Fluhr R, Kaplan-Levy RN. Plant disease resistance: commonality and novelty in multicellular innate immunity. Curr Top Microbiol Immunol 2003; 270:23-46. [PMID: 12467242 DOI: 10.1007/978-3-642-59430-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pathogen avirulence genes encode for effector molecules that play a crucial role in the process of pathogen colonization of plant tissue. Successful host defense requires rapid and efficient detection of the pathogen avirulence factors. In the last few years, much progress has been made in delineating the plant molecular sentinels that participate in pathogen identification. Because this ability is genetic information that is 'hard-wired' into the genome, it is called 'innate immunity' and it draws its origins from a phylogenetically ancient form of immunity common to plants and animals. Conservation is shown in many of the functional molecular motifs of innate genes such as the Toll/interleukin 1 receptor domains, nucleotide binding domains and structures that contain leucine rich repeats. Novel plant molecular surveillance domains also include pathogen pattern recognition by coiled-coil domains and specialized kinases. The rapid evolution of plant innate immunity genes is readily detected in their sequence polymorphism, by their massive amplification and appearance in the genome in a clustered organization. By comparative biology of highly diverged innate immunity systems we can enhance our appreciation of the truly basic forces that have shaped its evolution in mutlicellular organisms.
Collapse
Affiliation(s)
- R Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
280
|
Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2003; 54:23-61. [PMID: 14502984 DOI: 10.1146/annurev.arplant.54.031902.135035] [Citation(s) in RCA: 531] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many disease resistance (R) proteins of plants detect the presence of disease-causing bacteria, viruses, or fungi by recognizing specific pathogen effector molecules that are produced during the infection process. Effectors are often pathogen proteins that probably evolved to subvert various host processes for promotion of the pathogen life cycle. Five classes of effector-specific R proteins are known, and their sequences suggest roles in both effector recognition and signal transduction. Although some R proteins may act as primary receptors of pathogen effector proteins, most appear to play indirect roles in this process. The functions of various R proteins require phosphorylation, protein degradation, or specific localization within the host cell. Some signaling components are shared by many R gene pathways whereas others appear to be pathway specific. New technologies arising from the genomics and proteomics revolution will greatly expand our ability to investigate the role of R proteins in plant disease resistance.
Collapse
Affiliation(s)
- Gregory B Martin
- Boyce Thompson Institute for Plant Research and Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
281
|
Schulze-Lefert P, Panstruga R. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:641-67. [PMID: 14527335 DOI: 10.1146/annurev.phyto.41.061002.083300] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Parasitic biotrophs such as mildews and rusts evolved specific mechanisms that keep host cells alive during infection. These fungi appear to absorb nutrients mainly by proton-symport-driven transporter proteins that reside in specialized feeding structures. Accumulating evidence suggests that biotrophic fungi both suppress induction of plant defense responses in physical proximity to infection sites and induce specific host genes for the establishment of biotrophy. The peculiarities of biotrophic pathogenesis likely reflect diverse types of plant disease-resistance responses. The cloning of race-specific resistance genes to powdery mildew infection and of genes required for their function provides first insights into molecular mechanisms enabling the host to recognize mildew effector components and suggests candidate mechanisms of resistance signaling. Resistance to powdery mildew fungi that result from mutations in host genes promises to shed light on mechanisms that are required for the establishment of disease susceptibility.
Collapse
Affiliation(s)
- Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany.
| | | |
Collapse
|
282
|
Durand-Tardif M, Pelletier G. [Contribution of cell and molecular biology and genetics to plant protection]. C R Biol 2003; 326:23-35. [PMID: 12741179 DOI: 10.1016/s1631-0691(03)00004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plants resist to the majority of their potential aggressors by opposing physical and chemical barriers: cell walls, secondary metabolites.... Phenomena of specific recognition between a plant variety and a pathovar induce on the one hand, a local (hypersensitive) reaction that tends to limit pathogen growth and, on the other hand, a cascade of signals that allows the activation of a non-specific general (systemic) resistance. The contribution of genetics to the fight against pathogens depends on the natural variability that comes from the co-evolution between plants and their aggressors. Many plant varieties resistant to one or several pathogens have been obtained and are cultivated. The use of biotechnology will facilitate the rapid generation of new, resistant cultivars and cultivars with multiple resistances. New methods in order to increase the efficiency and the durability of resistance are envisaged.
Collapse
Affiliation(s)
- Mylène Durand-Tardif
- Station de génétique et d'amélioration des plantes, Institut national de la recherche agronomique, Centre de Versailles, route de Saint-Cyr, 78026 Versailles, France.
| | | |
Collapse
|
283
|
Ryang SH, Chung SY, Lee SH, Cha JS, Yong Kim H, Cho TJ. Isolation of pathogen-induced Chinese cabbage genes by subtractive hybridization employing selective adaptor ligation. Biochem Biophys Res Commun 2002; 299:352-9. [PMID: 12445806 DOI: 10.1016/s0006-291x(02)02639-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have developed a subtractive cloning method in which target sequences are effectively enriched by selective adaptor ligation and PCR after hybridization. In this method both tester and driver DNAs are digested with RsaI, ligated with the linker DNA containing a KpnI recognition site, and amplified by PCR. The tester DNA samples are divided into two aliquots, each digested with either RsaI or KpnI. The two DNA samples are then combined and hybridized with an excess of the driver DNA retaining the linker. After hybridization, the DNA mixture is ligated to a new adaptor compatible only with double-stranded tester/tester DNAs. Therefore, only the tester/tester is selectively amplified in subsequent PCR. This also leads to complete elimination of the tester DNA hybridized with driver DNA from the tester DNA population. Although our protocol employs enzymatic treatments, the efficiency of the enzymatic treatments does not affect the subtraction efficiency. This new subtractive enrichment method was applied to isolate Chinese cabbage defense-related genes induced by Pseudomonas syringae pv. tomato (Pst), which elicits a hypersensitive response in Chinese cabbage. After two or three rounds of subtractive hybridization, the sequences of enriched DNAs were determined and examined by BLAST analysis. Northern blot hybridization showed that 12 of the 19 genes analyzed were strongly induced by Pst treatment. Among the 12 Pst-induced genes five represent pathogenesis-related genes encoding PR1a, two chitinases, a thaumatin-like protein, and a PR4 protein. Other Pst-induced genes include two cytochrome P450 genes responsible for glucosinolate biosynthesis, a disease resistance gene homolog, and several genes encoding proteins with unknown functions.
Collapse
Affiliation(s)
- Seung Ho Ryang
- Division of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
284
|
Graham MA, Marek LF, Shoemaker RC. Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics 2002; 162:1961-77. [PMID: 12524363 PMCID: PMC1462381 DOI: 10.1093/genetics/162.4.1961] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.
Collapse
Affiliation(s)
- Michelle A Graham
- Department of Agronomy, Iowa State University, Ames, Iowa 50010, USA
| | | | | |
Collapse
|
285
|
Panstruga R, Schulze-Lefert P. Live and let live: insights into powdery mildew disease and resistance. MOLECULAR PLANT PATHOLOGY 2002; 3:495-502. [PMID: 20569356 DOI: 10.1046/j.1364-3703.2002.00145.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SUMMARY Powdery mildew is a common fungal disease of many monocotyledonous and dicotyledonous plant species. In a moderately temperate and humid climate, these ascomycete fungi cause severe yield losses in a wide range of crops. In recent years, several plant genes encoding proteins that control disease resistance against powdery mildew were isolated from the model organism Arabidopsis and the crop barley. Here we review the presumptive biochemical functions of the respective proteins and discuss potential mechanisms which mediate pathogen recognition, resistance signalling, and the termination of host colonization. Perhaps not surprisingly, these advances also promise to shed light on the molecular basis of pathogenesis and biotrophic lifestyle.
Collapse
Affiliation(s)
- Ralph Panstruga
- Max-Planck-Institut für Züchtungsforschung, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | |
Collapse
|
286
|
Ellis C, Karafyllidis I, Turner JG. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1025-30. [PMID: 12437300 DOI: 10.1094/mpmi.2002.15.10.1025] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.
Collapse
Affiliation(s)
- Christine Ellis
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
287
|
Meyers BC, Morgante M, Michelmore RW. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:77-92. [PMID: 12366802 DOI: 10.1046/j.1365-313x.2002.01404.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is found in one of the two large families of homologues of plant disease resistance proteins (R proteins) in Arabidopsis and other dicotyledonous plants. In addition to these TIR-NBS-LRR (TNL) R proteins, we identified two families of TIR-containing proteins encoded in the Arabidopsis Col-0 genome. The TIR-X (TX) family of proteins lacks both the nucleotide-binding site (NBS) and the leucine rich repeats (LRRs) that are characteristic of the R proteins, while the TIR-NBS (TN) proteins contain much of the NBS, but lack the LRR. In Col-0, the TX family is encoded by 27 genes and three pseudogenes; the TN family is encoded by 20 genes and one pseudogene. Using massively parallel signature sequencing (MPSS), expression was detected at low levels for approximately 85% of the TN-encoding genes. Expression was detected for only approximately 40% of the TX-encoding genes, again at low levels. Physical map data and phylogenetic analysis indicated that multiple genomic duplication events have increased the numbers of TX and TN genes in Arabidopsis. Genes encoding TX, TN and TNL proteins were demonstrated in conifers; TX and TN genes are present in very low numbers in grass genomes. The expression, prevalence, and diversity of TX and TN genes suggests that these genes encode functional proteins rather than resulting from degradation or deletions of TNL genes. These TX and TN proteins could be plant analogues of small TIR-adapter proteins that function in mammalian innate immune responses such as MyD88 and Mal.
Collapse
Affiliation(s)
- Blake C Meyers
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
288
|
Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci U S A 2002; 99:10865-9. [PMID: 12119413 PMCID: PMC125064 DOI: 10.1073/pnas.152330599] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 06/03/2002] [Indexed: 01/05/2023] Open
Abstract
Homologues of the yeast ubiquitin ligase-associated protein SGT1 are required for disease resistance in plants mediated by nucleotide-binding site/leucine-rich repeat (NBS-LRR) proteins. Here, by silencing SGT1 in Nicotiana benthamiana, we extend these findings and demonstrate that SGT1 has an unexpectedly general role in disease resistance. It is required for resistance responses mediated by NBS-LRR and other R proteins in which pathogen-derived elicitors are recognized either inside or outside the host plant cell. A requirement also exists for SGT1 in nonhost resistance in which all known members of a host species are resistant against every characterized isolate of a pathogen. Our findings show that silencing SGT1 affects diverse types of disease resistance in plants and support the idea that R protein-mediated and nonhost resistance may involve similar mechanisms.
Collapse
Affiliation(s)
- Jack R Peart
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Liu GZ, Pi LY, Walker JC, Ronald PC, Song WY. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem 2002; 277:20264-20269. [PMID: 11927577 DOI: 10.1074/jbc.m110999200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance.
Collapse
Affiliation(s)
- Guo-Zhen Liu
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
290
|
Varet A, Parker J, Tornero P, Nass N, Nürnberger T, Dangl JL, Scheel D, Lee J. NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:608-16. [PMID: 12059109 DOI: 10.1094/mpmi.2002.15.6.608] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis genome contains 28 genes with sequence homology to the Arabidopsis NDR1 gene and the tobacco HIN1 gene. Expression analysis of eight of these genes identified two (NHL25 and NHL3 for NDR1/HIN1-like) that show pathogen-dependent mRNA accumulation. Transcripts did not accumulate during infection with virulent Pseudomonas syringae pv. tomato DC3000 but did accumulate specifically when the bacteria carried any of the four avirulence genes avrRpm1, avrRpt2, avrB, or avrRps4. Furthermore, expression of avrRpt2 in plants containing the corresponding resistance gene, RPS2, was sufficient to induce transcript accumulation. However, during infection with an avirulent oomycete, Peronospora parasitica isolate Cala-2, only NHL25 expression was reproducibly induced. Salicylic acid (SA) treatment can induce expression of NHL25 and NHL3. Studies performed on nahG plants showed that, during interaction with avirulent bacteria, only the expression of NHL25 but not that of NHL3 was affected. This suggests involvement of separate SA-dependent and SA-independent pathways, respectively, in the transcriptional activation of these genes. Bacteria-induced gene expression was not abolished in ethylene- (etrl-3 and ein2-1) and jasmonate- (coil-1) insensitive mutants or in mutants impaired in disease resistance (ndr1-1 and pad4-1). Interestingly, NHL3 transcripts accumulated after infiltration with the avirulent hrcC mutant of Pseudomonas syringae pv. tomato DC3000 and nonhost bacteria but not with the virulent Pseudomonas syringae pv. tomato DC3000, suggesting that virulent bacteria may suppress NHL3 expression during pathogenesis. Hence, the expression patterns and sequence homology to NDR1 and HIN1 suggest one or more potential roles for these genes in plant resistance.
Collapse
Affiliation(s)
- Anne Varet
- Institute of Plant Biochemistry, Department of Stress-and Developmental Biology, Halle/Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Simões-Araújo JL, Rodrigues RL, de A Gerhardt LB, Mondego JMC, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M. Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodules. FEBS Lett 2002; 515:44-50. [PMID: 11943192 DOI: 10.1016/s0014-5793(02)02416-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Legume nodules formed by diazotrophic microorganisms are active sites for biological nitrogen fixation (BNF). In tropical regions, a significant part of N supply for soybean, peanut and bean crops is derived from BNF, which is nevertheless often limited by high temperature stress. In contrast, cowpea nodules are very resistant to high temperatures. To understand the molecular bases of thermotolerance during BNF under heat stress, we have used cDNA-amplified fragment length polymorphism experiments to identify differentially expressed transcripts from cowpea nodules subjected to heat shock treatment. The expression profiles obtained showed approximately 600 bands, 55 up-regulated and nine corresponding to genes repressed by heat stress. Twenty transcript-derived fragments were isolated, cloned and sequenced. The Vigna unguiculata nodule and stress response transcripts present similarities to those that encode low molecular weight heat shock proteins, wound-induced proteins, disease resistance protein, and xylan endohydrolase isoenzyme, as well as different housekeeping genes. The differential expression of 15 genes was confirmed by using Northern blot or reverse Northern hybridization experiments.
Collapse
Affiliation(s)
- Jean Luiz Simões-Araújo
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Universidade Federal do Rio de Janeiro, CP 68011, CEP 21941-970, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
292
|
Rivas S, Mucyn T, van den Burg HA, Vervoort J, Jones JDG. An approximately 400 kDa membrane-associated complex that contains one molecule of the resistance protein Cf-4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:783-96. [PMID: 12148536 DOI: 10.1046/j.1365-313x.2002.01254.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite sharing more than 91% sequence identity, the tomato Cf-4 and Cf-9 proteins discriminate between two Cladosporium-encoded avirulence determinants, Avr4 and Avr9. Comparative studies between Cf-4 and Cf-9 are thus of particular interest. To investigate Cf-4 protein function in initiating defence signalling, we established transgenic tobacco lines and derived cell suspension cultures expressing c-myc-tagged Cf-4. Cf-4:myc encodes a membrane-localized glycoprotein of approximately 145 kDa, which confers recognition of Avr4. Elicitation of Cf-4:myc and Cf-9:myc tobacco cell cultures with Avr4 and Avr9, respectively, triggered the synthesis of active oxygen species and MAP kinase activation. Additionally, an Agrobacterium-mediated transient assay was used to express Cf-4:myc and a newly engineered fusion protein Cf-4:TAP. Both transiently expressed proteins were found to be functional in an in vivo assay, conferring a hypersensitive response (HR) to Avr4. Consistent with previous observations that Cf-9 is present in a protein complex, gel filtration analysis of microsomal fractions solubilized with octylglucoside revealed that epitope-tagged Cf-4 proteins migrated at a molecular mass of 350-475 kDa. Using blue native gel electrophoresis, the molecular size was confirmed to be approximately 400 kDa. Significantly, this complex appeared to contain only one Cf-4 molecule, supporting the idea that, as previously described for Cf-9, additional glycoprotein partners participate with Cf-4 in the perception of the Avr4 protein. Intriguingly, Cf proteins and Clavata2 (CLV2) of Arabidopsis are highly similar in structure, and the molecular mass of Cf-4 and CLV complexes is also very similar (400 and 450 kDa, respectively). However, extensive characterization of the Cf-4 complex revealed essentially identical characteristics to the Cf-9 complex and significant differences from the CLV2 complex.
Collapse
Affiliation(s)
- Susana Rivas
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, UK
| | | | | | | | | |
Collapse
|
293
|
Abstract
Plant pathogen resistance is mediated by a large repertoire of resistance (R) genes, which are often clustered in the genome and show a high degree of genetic variation. Here, we show that an Arabidopsis thaliana R-gene cluster is also subject to epigenetic variation. We describe a heritable but metastable epigenetic variant bal that overexpresses the R-like gene At4g16890 from a gene cluster on Chromosome 4. The bal variant and Arabidopsis transgenics overexpressing the At4g16890 gene are dwarfed and constitutively activate the salicylic acid (SA)-dependent defense response pathway. Overexpression of a related R-like gene also occurs in the ssi1 (suppressor of SA insensitivity 1) background, suggesting that ssi1 is mechanistically related to bal.
Collapse
Affiliation(s)
- Trevor L Stokes
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
294
|
Affiliation(s)
- R Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
295
|
Luderer R, Joosten MH. Avirulence proteins of plant pathogens: determinants of victory and defeat. MOLECULAR PLANT PATHOLOGY 2001; 2:355-364. [PMID: 20573025 DOI: 10.1046/j.1464-6722.2001.00086.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary The simplest way to explain the biochemical basis of the gene-for-gene concept is by direct interaction between a pathogen-derived avirulence (Avr) gene product and a receptor protein, which is encoded by the matching resistance (R) gene of the host plant. The number of R genes for which the matching Avr gene has been cloned is increasing. The number of host-pathogen relationships, however, for which a direct interaction between R and Avr gene products could be proven is still very limited. This observation suggests that in various host-pathogen relationships no physical interaction between R and Avr proteins occurs, and that perception of AVR proteins by their matching R gene products is indirect. Indirect perception implies that at least a third component is required. The 'Guard hypothesis' proposes that this third component could be the virulence target of an AVR protein. Binding of the AVR protein to its virulence target is perceived by the matching R protein, which is 'guarding' the virulence target. An intriguing aspect of the 'Guard hypothesis' is that the Avr gene product causes avirulence of the pathogen through interaction with its virulence target in the plant. This would mean that, although AVR proteins are generally thought to be bifunctional (avirulence as well as virulence factors), this dual function might be based on a single biochemical event. This review focuses on the way AVR proteins are perceived by their matching R gene products. The various components that determine the outcome of the interaction will be discussed, with an emphasis on the dual function of AVR proteins.
Collapse
Affiliation(s)
- R Luderer
- Laboratory of Phytopathology, Wageningen University, Marijkeweg 22, 6709 PG Wageningen, the Netherlands
| | | |
Collapse
|
296
|
de Ilarduya OM, Moore AE, Kaloshian I. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:417-25. [PMID: 11576426 DOI: 10.1046/j.1365-313x.2001.01112.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The tomato Mi-1 gene confers resistance against root-knot nematodes (Meloidogyne spp.) and a biotype of the potato aphid (Macrosiphum euphorbiae). Four mutagenized Mi-1/Mi-1 tomato populations were generated and screened for altered root-knot nematode resistance. Four independent mutants belonging to two phenotypic classes were isolated. One mutant was chosen for further analyzes; rme1 (for resistance to Meloidogyne) exhibited levels of infection comparable with those found on susceptible controls. Molecular and genetic data confirmed that rme1 has a single recessive mutation in a locus different from Mi-1. Cross-sections through galls formed by feeding nematodes on rme1 roots were identical to sections from galls of susceptible tomato roots. In addition to nematode susceptibility, infestation of rme1 plants with the potato aphid showed that this mutation also abolished aphid resistance. To determine whether Rme1 functions in a general disease-resistance pathway, the response against Fusarium oxysporum f.sp. lycopersici race 2, mediated by the I-2 resistance gene, was studied. Both rme1 and the wild type plants were equally resistant to the fungal pathogen. These results indicate that Rme1 does not play a general role in disease resistance but may be specific for Mi-1-mediated resistance.
Collapse
Affiliation(s)
- O M de Ilarduya
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
297
|
Kamoun S. Nonhost resistance to Phytophthora: novel prospects for a classical problem. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:295-300. [PMID: 11418338 DOI: 10.1016/s1369-5266(00)00176-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Members of the oomycete genus Phytophthora are the most devastating pathogens of dicot plants. Recent developments in the study of these organisms have led to improved understanding of their phylogenetic relationships and trends in their evolution. Molecular analyses of nonhost (species-level) resistance offer exciting prospects for disease management. A model that evokes a complex interplay of several layers of specific resistance, mediated by a set of ancient broad-spectrum R-gene loci, is sufficient to explain existing cellular and molecular data on nonhost resistance to Phytophthora.
Collapse
Affiliation(s)
- S Kamoun
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| |
Collapse
|
298
|
Jones JD. Putting knowledge of plant disease resistance genes to work. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:281-7. [PMID: 11418336 DOI: 10.1016/s1369-5266(00)00174-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease resistance genes trigger defence mechanisms upon recognition of pathogen compatibility factors, which are encoded by avirulence genes. Isolation of the barley powdery mildew resistance gene Mla opens the door to understanding the extensive allelic diversity of this locus. Completion of the Arabidopsis genome sequence enables the analysis of the complete set of R-gene homologues in a flowering plant. A new R gene, RPW8, conferring resistance in Arabidopsis to powdery mildew, reveals a new class of protein associated with pathogen recognition. New prospects for using R-gene polymorphism in agriculture are becoming apparent.
Collapse
Affiliation(s)
- J D Jones
- Sainsbury Laboratory, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK.
| |
Collapse
|
299
|
Glazebrook J. Genes controlling expression of defense responses in Arabidopsis--2001 status. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:301-8. [PMID: 11418339 DOI: 10.1016/s1369-5266(00)00177-1] [Citation(s) in RCA: 432] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the past two years, the focus of studies of the genes controlling expression of defense responses in Arabidopsis has shifted from the identification of mutants to gene isolation and the ordering of genes within branches of the signal transduction networks. It is now clear that gene-for-gene resistance can be mediated through at least three genetically distinguishable pathways. Additional genes affecting salicylic-acid-dependent signaling have been identified, and double-mutant analyses have begun to reveal the order in which they act. Genes required for jasmonic-acid-dependent signaling and for induced systemic resistance have also been identified.
Collapse
Affiliation(s)
- J Glazebrook
- Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
300
|
Abstract
Plant pathology was born after the nineteenth-century potato famine, and since then insightful genetic experiments have contributed to the great progress in our understanding of disease control. Our current view of plant resistance focuses on numerous polymorphic resistance loci, which contain genes known as R genes. The complete sequence of the Arabidopsis thaliana genome provides a framework for exploring the 'big bang' of R genes that occurred and how R genes evolved in plants from their associations with microorganisms, and for improving strategies for more sustainable deployment of disease resistance in crops.
Collapse
Affiliation(s)
- E B Holub
- Species Level Resistance Research Group, Plant Genetics and Biotechnology Department, Horticulture Research International, Wellesbourne CV35 9EF, UK.
| |
Collapse
|