251
|
Feng Y, Chen JJ, Xie NB, Ding JH, You XJ, Tao WB, Zhang X, Yi C, Zhou X, Yuan BF, Feng YQ. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem Sci 2021; 12:11322-11329. [PMID: 34567494 PMCID: PMC8409474 DOI: 10.1039/d1sc02161c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
DNA cytosine methylation (5-methylcytosine, 5mC) is the most important epigenetic mark in higher eukaryotes. 5mC in genomes is dynamically controlled by writers and erasers. DNA (cytosine-5)-methyltransferases (DNMTs) are responsible for the generation and maintenance of 5mC in genomes. Active demethylation of 5-methylcytosine (5mC) is achieved by ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are further processed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER) to restore unmodified cytosines. The TET-TDG-BER pathway could cause the production of DNA strand breaks and therefore jeopardize the integrity of genomes. Here, we investigated the direct decarboxylation of 5caC in mammalian genomes by using metabolic labeling with 2'-fluorinated 5caC (F-5caC) and mass spectrometry analysis. Our results clearly demonstrated the decarboxylation of 5caC occurring in mammalian genomes, which unveiled that, in addition to the TET-TDG-BER pathway, the direct decarboxylation of TET-produced 5caC constituted a new pathway for active demethylation of 5mC in mammalian genomes.
Collapse
Affiliation(s)
- Yang Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Juan-Juan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Wan-Bing Tao
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xiaoxue Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing 100871 China
| | - Xiang Zhou
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
252
|
Abstract
Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.
Collapse
Affiliation(s)
- Gilad D Evrony
- Center for Human Genetics and Genomics, Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Anjali Gupta Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
253
|
Klümper N, Ralser DJ, Bawden EG, Landsberg J, Zarbl R, Kristiansen G, Toma M, Ritter M, Hölzel M, Ellinger J, Dietrich D. LAG3 ( LAG-3, CD223) DNA methylation correlates with LAG3 expression by tumor and immune cells, immune cell infiltration, and overall survival in clear cell renal cell carcinoma. J Immunother Cancer 2021; 8:jitc-2020-000552. [PMID: 32234847 PMCID: PMC7174079 DOI: 10.1136/jitc-2020-000552] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Lymphocyte activating 3 (LAG3, LAG-3, CD223) is a promising target for immune checkpoint inhibition in clear cell renal cell carcinoma (KIRC). The aim of this study was to investigate the epigenetic regulation of LAG3 in KIRC by methylation. Methods We correlated quantitative LAG3 methylation levels with transcriptional activity, immune cell infiltration, and overall survival in a cohort of n=533 patients with KIRC and n=160 normal adjacent tissue (NAT) samples obtained from The Cancer Genome Atlas (TCGA). Furthermore, we analyzed LAG3 methylation in peripheral blood mononuclear cells (PBMCs) and KIRC cell lines. We validated correlations between LAG3 expression, immune cell infiltrates, survival, and methylation in an independent KIRC cohort (University Hospital Bonn (UHB) cohort, n=118) by means of immunohistochemistry and quantitative methylation-specific PCR. Results We found differential methylation profiles among PBMCs, NAT, KIRC cell lines, and KIRC tumor tissue. Methylation strongly correlated with LAG3 mRNA expression in KIRCs (TCGA cohort) and KIRC cell lines. In the UHB cohort, methylation correlated with LAG3-positive immune cells and tumor-intrinsic LAG3 protein expression. Furthermore, LAG3 methylation strongly correlated with signatures of distinct immune cell infiltrates, an interferon-y signature (TCGA cohort), and immunohistochemically quantified CD45+, CD8+, and CD4+ immune cell infiltrates (UHB cohort). LAG3 mRNA expression (TCGA cohort), methylation (both cohorts), and tumor cell-intrinsic protein expression (UHB cohort) was significantly associated with overall survival. Conclusion Our data suggest an epigenetic regulation of LAG3 expression in tumor and immune cells via DNA methylation. LAG3 expression and methylation is associated with a subset of KIRCs showing a distinct clinical course and immunogenicity. Our study provides rationale for further testing LAG3 DNA methylation as a predictive biomarker for response to LAG3 immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Damian J Ralser
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Department of Obstetrics and Gynecology, University Hospital of Bonn, Bonn, Germany
| | - Emma Grace Bawden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jenny Landsberg
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Department of Dermatology, University Hospital Bonn, Bonn, Germany
| | - Romina Zarbl
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Marieta Toma
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Department of Urology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany.,Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, University Hospital Bonn, Bonn, Germany .,Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
254
|
Rashidi M, Tavalaee M, Abbasi H, Nomikos M, Nasr-Esfahani MH. Increased de novo DNA Methylation Enzymes in Sperm of Individuals with Varicocele. CELL JOURNAL 2021; 23:389-396. [PMID: 34455713 PMCID: PMC8405077 DOI: 10.22074/cellj.2021.7265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/07/2020] [Indexed: 12/14/2022]
Abstract
Objective Chronic genital heat-stress associated with varicocele leads to DNA hypo-methylation of spermatozoa. The objective of this study was comparing level of DNA methyl-transferases (DNMTs) in sperm of men suffering varicocele with fertile individuals. Materials and Methods In this case-control study, semen samples were obtained from 35 infertile men with varicocele (grade II or III) and 26 fertile men. Sperm parameters were assessed according to World Health Organization (WHO) protocol. DNMTs enzymes level were assessed by flow cytometer and fluorescence microscope. mRNAs expression of these DNMTs were also assessed by real-time reverse transcription polymerase chain reaction (RT-PCR). Results DNMT1 and DNMT3A proteins were mainly localized in equatorial and mid-piece regions of sperm head, respectively, while DNMT3B protein appeared to be localized mainly in equatorial and anterior regions of sperm head. In contrast to DNMT1, expression and percentage of DNMT3A and DNMT3B at RNA and protein levels were significantly higher in the varicocele group compared to the fertile group (P<0.05). In addition, significant correlations were found between sperm concentration and motility as well as DNMT1 and DNMT3B proteins levels in the infertile individuals with varicocele (P<0.05). Additionally, significant correlations were observed between abnormal sperm morphology with DNMTs proteins in the infertile individuals with varicocele. Conclusion Unlike DNMT1, which is involved in maintenance of DNA methylation at both RNA and protein levels, expression of de novo methylation enzymes (DNMT3A and DNMT3B) at both levels were increased in the varicocele group compared to the fertile group. Based on literature, this increase might be due to the dual roles played by DNMT3A and DNMT3B, as methyl-transferases in normal condition as well as dehydroxymethylases in stress condition, like varicocele. Although, this hypothesis needs further validation.
Collapse
Affiliation(s)
- Moloud Rashidi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. .,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
255
|
Li X, Zhang Z, Luo X, Schrier J, Yang AD, Wu TP. The exploration of N6-deoxyadenosine methylation in mammalian genomes. Protein Cell 2021; 12:756-768. [PMID: 34405377 PMCID: PMC8464638 DOI: 10.1007/s13238-021-00866-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob Schrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew D Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
256
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
257
|
Lian WS, Wu RW, Chen YS, Ko JY, Wang SY, Jahr H, Wang FS. MicroRNA-29a Mitigates Osteoblast Senescence and Counteracts Bone Loss through Oxidation Resistance-1 Control of FoxO3 Methylation. Antioxidants (Basel) 2021; 10:antiox10081248. [PMID: 34439496 PMCID: PMC8389244 DOI: 10.3390/antiox10081248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated β-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123
| |
Collapse
|
258
|
Abstract
Epigenetics has enriched human disease studies by adding new interpretations to disease features that cannot be explained by genetic and environmental factors. However, identifying causal mechanisms of epigenetic origin has been challenging. New opportunities have risen from recent findings in intra-individual and cyclical epigenetic variation, which includes circadian epigenetic oscillations. Cytosine modifications display deterministic temporal rhythms, which may drive ageing and complex disease. Temporality in the epigenome, or the 'chrono' dimension, may help the integration of epigenetic, environmental and genetic disease studies, and reconcile several disparities stemming from the arbitrarily delimited research fields. The ultimate goal of chrono-epigenetics is to predict disease risk, age of onset and disease dynamics from within individual-specific temporal dynamics of epigenomes.
Collapse
|
259
|
Klümper N, Ralser DJ, Zarbl R, Schlack K, Schrader AJ, Rehlinghaus M, Hoffmann MJ, Niegisch G, Uhlig A, Trojan L, Steinestel J, Steinestel K, Wirtz RM, Sikic D, Eckstein M, Kristiansen G, Toma M, Hölzel M, Ritter M, Strieth S, Ellinger J, Dietrich D. CTLA4 promoter hypomethylation is a negative prognostic biomarker at initial diagnosis but predicts response and favorable outcome to anti-PD-1 based immunotherapy in clear cell renal cell carcinoma. J Immunother Cancer 2021; 9:e002949. [PMID: 34446578 PMCID: PMC8395367 DOI: 10.1136/jitc-2021-002949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In metastatic clear cell renal cell carcinoma (ccRCC), different combination therapies, each including anti-PD-1 immune checkpoint blockade (ICB), are applied as first-line treatment. Robust predictive biomarkers for rational upfront therapy decisions are lacking, although they are urgently needed. Recently, we showed that CTLA4 promoter methylation predicts response to ICB in melanoma. Here, we aimed to investigate CTLA4 methylation in ccRCC and its utility to serve as a predictive biomarker for anti-PD-1 based ICB in metastatic ccRCC. METHODS CTLA4 methylation was analyzed with regard to transcriptional gene activity (mRNA expression), intratumoral immune cell composition, and clinical course in two ccRCC cohorts obtained from The Cancer Genome Atlas (TCGA cohort, n=533) and the University Hospital Bonn (UHB Non-ICB Cohort, n=116). In addition, CTLA4 methylation as well as CD8+ T cell infiltrates and PD-L1 expression were evaluated in pre-treatment samples from a multicenter cohort (RCC-ICB Cohort, n=71). Patients included in the RCC-ICB Cohort were treated with either first line anti-PD-1 based combination therapy (n=25) or monotherapy post-tyrosine kinase inhibition in second line or later. Analyses were performed with regard to treatment response according to RECIST, progression-free survival (PFS), event-free survival (EFS), and overall survival (OS) following treatment initiation. RESULTS CTLA4 promoter hypomethylation was significantly correlated with CTLA4 mRNA expression, lymphocyte infiltration, and poor OS in both primary ccRCC cohorts (TCGA: HR 0.30 (95% CI 0.18 to 0.49), p<0.001; UHB Non-ICB: HR 0.35 (95% CI 0.16 to 0.75), p=0.007). In contrast, CTLA4 promoter hypomethylation predicted response and, accordingly, favorable outcomes (PFS and OS) in patients with ICB-treated ccRCC, overcompensating the negative prognostic value of CTLA4 hypomethylation at initial diagnosis. Moreover, in multivariable Cox regression, CTLA4 promoter hypomethylation remained an independent predictor of improved outcome in ICB-treated ccRCC after co-adjustment of the International Metastatic Renal Cell Carcinoma Database Consortium score (HR 3.00 (95% CI 1.47 to 6.28), p=0.003). CONCLUSIONS Our study suggests CTLA4 methylation as a powerful predictive biomarker for immunotherapy response in metastatic RCC.
Collapse
Affiliation(s)
- Niklas Klümper
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Damian J Ralser
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Obstetrics and Gynecology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Romina Zarbl
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Münster, Münster, Germany
| | | | - Marc Rehlinghaus
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Annemarie Uhlig
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Julie Steinestel
- Department of Urology, University Hospital Augsburg, Augsburg, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, Cologne, Germany
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Danijel Sikic
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Marieta Toma
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Manuel Ritter
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörg Ellinger
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Dimo Dietrich
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
260
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
261
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
262
|
Rossnerova A, Honkova K, Chvojkova I, Pelclova D, Zdimal V, Hubacek JA, Lischkova L, Vlckova S, Ondracek J, Dvorackova S, Topinka J, Rossner P. Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years. Int J Mol Sci 2021; 22:ijms22157834. [PMID: 34360600 PMCID: PMC8346047 DOI: 10.3390/ijms22157834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
- Correspondence: ; Tel.: +420-241-062-053
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Jaroslav A. Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic;
| |
Collapse
|
263
|
Abstract
The spatial organization of the genome in the cell nucleus is pivotal to cell function. However, how the 3D genome organization and its dynamics influence cellular phenotypes remains poorly understood. The very recent development of single-cell technologies for probing the 3D genome, especially single-cell Hi-C (scHi-C), has ushered in a new era of unveiling cell-to-cell variability of 3D genome features at an unprecedented resolution. Here, we review recent developments in computational approaches to the analysis of scHi-C, including data processing, dimensionality reduction, imputation for enhancing data quality, and the revealing of 3D genome features at single-cell resolution. While much progress has been made in computational method development to analyze single-cell 3D genomes, substantial future work is needed to improve data interpretation and multimodal data integration, which are critical to reveal fundamental connections between genome structure and function among heterogeneous cell populations in various biological contexts.
Collapse
Affiliation(s)
- Tianming Zhou
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| | - Ruochi Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
264
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
265
|
Peng Y, Meng G, Sheng X, Gao H. Transcriptome and DNA methylation analysis reveals molecular mechanisms underlying intrahepatic cholangiocarcinoma progression. J Cell Mol Med 2021; 25:6373-6387. [PMID: 34013637 PMCID: PMC8256365 DOI: 10.1111/jcmm.16615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy with increasing incidence. It has been suggested that DNA methylation drives cancer development. However, the molecular mechanisms underlying iCCA progression and the roles of DNA methylation still remain elusive. In this study, weighted correlation networks were constructed to identify gene modules and hub genes associated with the tumour stage. We identified 12 gene modules, two of which were significantly positively or negatively related to the tumour stage, respectively. Key hub genes SLC2A1, CDH3 and EFHD2 showed increased expression across the tumour stage and were correlated with poor survival, whereas decrease of FAM171A1, ONECUT1 and PHYHIPL was correlated with better survival. Pathway analysis revealed hedgehog pathway was activated in CDH3 up-regulated tumours, and chromosome separation was elevated in tumours expressing high EFHD2. JAK-STAT pathway was overrepresented in ONECUT1 down-regulated tumours, whereas Rho GTPases-formins signalling was activated in PHYHIPL down-regulated tumours. Finally, significant negative associations between expression of EFHD2, PHYHIPL and promoter DNA methylation were detected, and alterations of DNA methylation were correlated with tumour survival. In summary, we identified key genes and pathways that may participate in progression of iCCA and proposed putative roles of DNA methylation in iCCA.
Collapse
Affiliation(s)
- Yuming Peng
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| | - Guohao Meng
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyi Sheng
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| | - Hongqiang Gao
- First Department of General SurgeryHunan Children’s HospitalChangshaChina
| |
Collapse
|
266
|
de la Calle-Fabregat C, Niemantsverdriet E, Cañete JD, Li T, van der Helm-van Mil AHM, Rodríguez-Ubreva J, Ballestar E. The DNA methylation Profile of Undifferentiated Arthritis Patients Anticipates their Subsequent Differentiation to Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:2229-2239. [PMID: 34105306 DOI: 10.1002/art.41885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Undifferentiated arthritis (UA) is the term used to cover all the cases of arthritis that do not fit a specific diagnosis. A significant percentage of UA patients progress to rheumatoid arthritis (RA), others to a different definite rheumatic disease, and the rest undergo spontaneous remission. Therapeutic intervention in patients with UA can delay or halt disease progression and its long-term consequences. It is therefore of inherent interest to identify those UA patients with a high probability of progressing to RA who would benefit from early appropriate therapy. We hypothesized that alterations in the DNA methylation profiles of immune cells may inform on the genetically- or environmentally-determined status of patients and potentially discriminate between disease subtypes. METHODS In this study, we performed DNA methylation profiling of a UA patient cohort, in which progression into RA occurs for a significant proportion of the patients. RESULTS We find differential DNA methylation in UA patients compared to healthy controls. Most importantly, our analysis identifies a DNA methylation signature characteristic of those UA cases that differentiate to RA. We demonstrate that the methylome of peripheral mononuclear cells can be used to anticipate the evolution of UA to RA, and that this methylome is associated with a number of inflammatory pathways and transcription factors. Finally, we design a machine-learning strategy for DNA methylation-based classification that predicts the differentiation of UA patients towards RA. CONCLUSION DNA methylation profiling provides a good predictor of UA-to-RA progression to anticipate targeted treatments and improve clinical management.
Collapse
Affiliation(s)
| | - Ellis Niemantsverdriet
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands
| | - Juan D Cañete
- Rheumatology Service, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
267
|
A Sparse and Low-Rank Regression Model for Identifying the Relationships Between DNA Methylation and Gene Expression Levels in Gastric Cancer and the Prediction of Prognosis. Genes (Basel) 2021; 12:genes12060854. [PMID: 34199440 PMCID: PMC8228406 DOI: 10.3390/genes12060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is an important regulator of gene expression that can influence tumor heterogeneity and shows weak and varying expression levels among different genes. Gastric cancer (GC) is a highly heterogeneous cancer of the digestive system with a high mortality rate worldwide. The heterogeneous subtypes of GC lead to different prognoses. In this study, we explored the relationships between DNA methylation and gene expression levels by introducing a sparse low-rank regression model based on a GC dataset with 375 tumor samples and 32 normal samples from The Cancer Genome Atlas database. Differences in the DNA methylation levels and sites were found to be associated with differences in the expressed genes related to GC development. Overall, 29 methylation-driven genes were found to be related to the GC subtypes, and in the prognostic model, we explored five prognoses related to the methylation sites. Finally, based on a low-rank matrix, seven subgroups were identified with different methylation statuses. These specific classifications based on DNA methylation levels may help to account for heterogeneity and aid in personalized treatments.
Collapse
|
268
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
269
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
270
|
Xu Q, Hu Y, Chen S, Zhu Y, Li S, Shen F, Guo Y, Sun T, Chen X, Jiang J, Huang W. Immunological Significance of Prognostic DNA Methylation Sites in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:683240. [PMID: 34124163 PMCID: PMC8187884 DOI: 10.3389/fmolb.2021.683240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a tumor with high morbidity and high mortality worldwide. DNA methylation, one of the most common epigenetic changes, might serve a vital regulatory role in cancer. Methods: To identify categories based on DNA methylation data, consensus clustering was employed. The risk signature was yielded by systematic bioinformatics analyses based on the remarkably methylated CpG sites of cluster 1. Kaplan–Meier analysis, variable regression analysis, and ROC curve analysis were further conducted to validate the prognosis predictive ability of risk signature. Gene set enrichment analysis (GSEA) was performed for functional annotation. To uncover the context of tumor immune microenvironment (TIME) of HCC, we employed the ssGSEA algorithm and CIBERSORT method and performed TIMER database exploration and single-cell RNA sequencing analysis. Additionally, quantitative real-time polymerase chain reaction was employed to determine the LRRC41 expression and preliminarily explore the latent role of LRRC41 in prognostic prediction. Finally, mutation data were analyzed by employing the “maftools” package to delineate the tumor mutation burden (TMB). Results: HCC samples were assigned into seven subtypes with different overall survival and methylation levels based on 5′-cytosine-phosphate-guanine-3′ (CpG) sites. The risk prognostic signature including two candidate genes (LRRC41 and KIAA1429) exhibited robust prognostic predictive accuracy, which was validated in the external testing cohort. Then, the risk score was significantly correlated with the TIME and immune checkpoint blockade (ICB)–related genes. Besides, a prognostic nomogram based on the risk score and clinical stage presented powerful prognostic ability. Additionally, LRRC41 with prognostic value was corroborated to be closely associated with TIME characterization in both expression and methylation levels. Subsequently, the correlation regulatory network uncovered the potential targets of LRRC41 and KIAA1429. Finally, the methylation level of KIAA1429 was correlated with gene mutation status. Conclusion: In summary, this is the first to identify HCC samples into distinct clusters according to DNA methylation and yield the CpG-based prognostic signature and quantitative nomogram to precisely predict prognosis. And the pivotal player of DNA methylation of genes in the TIME and TMB status was explored, contributing to clinical decision-making and personalized prognosis monitoring of HCC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohuai Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulun Zhu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Siwei Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Guo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jinpeng Jiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
271
|
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nat Commun 2021; 12:3034. [PMID: 34031396 PMCID: PMC8144423 DOI: 10.1038/s41467-021-23308-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Deciphering the mechanisms that control the pluripotent ground state is key for understanding embryonic development. Nonetheless, the epigenetic regulation of ground-state mouse embryonic stem cells (mESCs) is not fully understood. Here, we identify the epigenetic protein MPP8 as being essential for ground-state pluripotency. Its depletion leads to cell cycle arrest and spontaneous differentiation. MPP8 has been suggested to repress LINE1 elements by recruiting the human silencing hub (HUSH) complex to H3K9me3-rich regions. Unexpectedly, we find that LINE1 elements are efficiently repressed by MPP8 lacking the chromodomain, while the unannotated C-terminus is essential for its function. Moreover, we show that SETDB1 recruits MPP8 to its genomic target loci, whereas transcriptional repression of LINE1 elements is maintained without retaining H3K9me3 levels. Taken together, our findings demonstrate that MPP8 protects the DNA-hypomethylated pluripotent ground state through its association with the HUSH core complex, however, independently of detectable chromatin binding and maintenance of H3K9me3.
Collapse
|
272
|
It's in the (Epi)genetics: Effects of DNA Methylation on Gene Expression in Atopic Asthma? Chest 2021; 158:1799-1801. [PMID: 33160517 DOI: 10.1016/j.chest.2020.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022] Open
|
273
|
Lim JY, Duttke SH, Baker TS, Lee J, Gambino KJ, Venturini NJ, Ho JSY, Zheng S, Fstkchyan YS, Pillai V, Fajgenbaum DC, Marazzi I, Benner C, Byun M. DNMT3A haploinsufficiency causes dichotomous DNA methylation defects at enhancers in mature human immune cells. J Exp Med 2021; 218:212086. [PMID: 33970190 PMCID: PMC8111463 DOI: 10.1084/jem.20202733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/02/2021] [Indexed: 01/04/2023] Open
Abstract
DNMT3A encodes an enzyme that carries out de novo DNA methylation, which is essential for the acquisition of cellular identity and specialized functions during cellular differentiation. DNMT3A is the most frequently mutated gene in age-related clonal hematopoiesis. As such, mature immune cells harboring DNMT3A mutations can be readily detected in elderly persons. Most DNMT3A mutations associated with clonal hematopoiesis are heterozygous and predicted to cause loss of function, indicating that haploinsufficiency is the predominant pathogenic mechanism. Yet, the impact of DNMT3A haploinsufficiency on the function of mature immune cells is poorly understood. Here, we demonstrate that DNMT3A haploinsufficiency impairs the gain of DNA methylation at decommissioned enhancers, while simultaneously and unexpectedly impairing DNA demethylation of newly activated enhancers in mature human myeloid cells. The DNA methylation defects alter the activity of affected enhancers, leading to abnormal gene expression and impaired immune response. These findings provide insights into the mechanism of immune dysfunction associated with clonal hematopoiesis and acquired DNMT3A mutations.
Collapse
Affiliation(s)
- Jung-Yeon Lim
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Turner S Baker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jihye Lee
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kristyne J Gambino
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas J Venturini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yesai S Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Minji Byun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
274
|
Parveen N, Dhawan S. DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Front Endocrinol (Lausanne) 2021; 12:651258. [PMID: 34025578 PMCID: PMC8137853 DOI: 10.3389/fendo.2021.651258] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta cells play a central role in regulating glucose homeostasis by secreting the hormone insulin. Failure of beta cells due to reduced function and mass and the resulting insulin insufficiency can drive the dysregulation of glycemic control, causing diabetes. Epigenetic regulation by DNA methylation is central to shaping the gene expression patterns that define the fully functional beta cell phenotype and regulate beta cell growth. Establishment of stage-specific DNA methylation guides beta cell differentiation during fetal development, while faithful restoration of these signatures during DNA replication ensures the maintenance of beta cell identity and function in postnatal life. Lineage-specific transcription factor networks interact with methylated DNA at specific genomic regions to enhance the regulatory specificity and ensure the stability of gene expression patterns. Recent genome-wide DNA methylation profiling studies comparing islets from diabetic and non-diabetic human subjects demonstrate the perturbation of beta cell DNA methylation patterns, corresponding to the dysregulation of gene expression associated with mature beta cell state in diabetes. This article will discuss the molecular underpinnings of shaping the islet DNA methylation landscape, its mechanistic role in the specification and maintenance of the functional beta cell phenotype, and its dysregulation in diabetes. We will also review recent advances in utilizing beta cell specific DNA methylation patterns for the development of biomarkers for diabetes, and targeting DNA methylation to develop translational approaches for supplementing the functional beta cell mass deficit in diabetes.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
275
|
Cheng MY, You XJ, Ding JH, Dai Y, Chen MY, Yuan BF, Feng YQ. Novel dual methylation of cytidines in the RNA of mammals. Chem Sci 2021; 12:8149-8156. [PMID: 34194705 PMCID: PMC8208307 DOI: 10.1039/d1sc01972d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA modifications play critical roles in regulating a variety of physiological processes. Methylation is the most prevalent modification occurring in RNA. Three isomeric cytidine methylation modifications have been reported in RNA, including 3-methylcytidine (m3C), N4-methylcytidine (m4C), and 5-methylcytidine (m5C), in mammals. Aside from the single methylation on the nucleobase of cytidines, dual methylation modifications occurring in both the 2′ hydroxyl of ribose and the nucleobase of cytidines also have been reported, including N4,2′-O-dimethylcytidine (m4Cm) and 5,2′-O-dimethylcytidine (m5Cm). m4Cm has been found in the 16S rRNA of E. coli, while m5Cm has been found in the tRNA of terminal thermophilic archaea and mammals. However, unlike m4Cm and m5Cm, the presumed dual methylation of 3,2′-O-dimethylcytidine (m3Cm) has never been discovered in living organisms. Thus, the presence of m3Cm in RNA remains an open question. In the current study, we synthesized m3Cm and established a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to determine the dimethylation of cytidines, m3Cm, m4Cm and m5Cm. Under optimized analytical conditions, m3Cm, m4Cm and m5Cm can be clearly distinguished. Using the method, we discovered the existence of m3Cm in the RNA of mammals. The identified m3Cm is a novel modification that hasn't been reported in the three-domain system, including archaea, bacteria, and eukaryotes. We confirmed that m3Cm mainly existed in the small RNA (<200 nt) of mammals. In addition, we identified, for the first time, the presence of m4Cm in the 18S rRNA of mammalian cells. The stable isotope tracing monitored by mass spectrometry demonstrated that S-adenosyl-l-methionine was a methyl donor for all three dimethylations of cytidines in RNA. The discovery of m3Cm broadens the diversity of RNA modifications in living organisms. In addition, the discovery of m3Cm and m4Cm in mammals opens new directions in understanding RNA modification-mediated RNA processing and gene expression regulation. We synthesized 3,2′-O-dimethylcytidine (m3Cm) and determined the dimethylation of cytidines in mammals by mass spectrometry analysis. We discovered m3Cm in small RNA and N4,2′-O-dimethylcytidine (m4Cm) in 18S rRNA of mammals.![]()
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Meng-Yuan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China .,School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
276
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
277
|
Whole Genomic DNA Methylation Profiling of CpG Sites in Promoter Regions of Dorsal Root Ganglion in Diabetic Neuropathic Pain Mice. J Mol Neurosci 2021; 71:2558-2565. [PMID: 33950354 DOI: 10.1007/s12031-021-01847-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation and demethylation play an important role in neuropathic pain. In general, DNA methylation of CpG sites in the promoter region impedes gene expression, whereas DNA demethylation contributes to gene expression. Here, we evaluated the methylation status of CpG sites in genomic DNA promoter regions in dorsal root ganglions (DRGs) of diabetic neuropathic pain (DNP) mice. In our research, streptozotocin (STZ) was intraperitoneally injected into mice to construct DNP models. The DNP mice showed higher fasting blood glucose (above 11.1 mmol/L), lower body weight, and mechanical allodynia than control mice. Whole-genome bisulfite sequencing (WGBS) revealed an altered methylation pattern in CpG sites in the DNA promoter regions in DRGs of DNP mice. The results showed 376 promoter regions with hypermethylated CpG sites and 336 promoter regions with hypomethylated CpG sites. In addition, our data indicated that altered DNA methylation occurs primarily on CpG sites in DNA promoter regions. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially methylated CpG sites annotated genes were involved in activities of the nervous and sensory systems. Enrichment analysis indicated that genes in these pathways contributed to diabetes or pain. In conclusion, our study enriched the role of DNA methylation in DNP.
Collapse
|
278
|
Kusuyama J, Alves-Wagner AB, Conlin RH, Makarewicz NS, Albertson BG, Prince NB, Kobayashi S, Kozuka C, Møller M, Bjerre M, Fuglsang J, Miele E, Middelbeek RJW, Xiudong Y, Xia Y, Garneau L, Bhattacharjee J, Aguer C, Patti ME, Hirshman MF, Jessen N, Hatta T, Ovesen PG, Adamo KB, Nozik-Grayck E, Goodyear LJ. Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab 2021; 33:939-956.e8. [PMID: 33770509 PMCID: PMC8103776 DOI: 10.1016/j.cmet.2021.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance. In humans, SOD3 is upregulated in serum and placenta from physically active pregnant women. The discovery of maternal exercise-induced cross talk between placenta-derived SOD3 and offspring liver provides a central mechanism for improved offspring metabolic health. These findings may lead to novel therapeutic approaches to limit the transmission of metabolic disease to the next generation.
Collapse
Affiliation(s)
- Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan.
| | - Ana Barbara Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brent G Albertson
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Noah B Prince
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chisayo Kozuka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Magnus Møller
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Fuglsang
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Emily Miele
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yang Xiudong
- Graduate School of Biomedical Sciences, University of Texas at Houston, Houston, TX, USA
| | - Yang Xia
- Graduate School of Biomedical Sciences, University of Texas at Houston, Houston, TX, USA
| | - Léa Garneau
- Institut du Savoir Montfort, recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Céline Aguer
- Institut du Savoir Montfort, recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Mary Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
279
|
González-Rodríguez P, Cheray M, Füllgrabe J, Salli M, Engskog-Vlachos P, Keane L, Cunha V, Lupa A, Li W, Ma Q, Dreij K, Rosenfeld MG, Joseph B. The DNA methyltransferase DNMT3A contributes to autophagy long-term memory. Autophagy 2021; 17:1259-1277. [PMID: 32876528 PMCID: PMC8143216 DOI: 10.1080/15548627.2020.1816664] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that targets cytoplasmic components for their degradation and recycling in an autophagosome-dependent lysosomal manner. Under physiological conditions, this process maintains cellular homeostasis. However, autophagy can be stimulated upon different forms of cellular stress, ranging from nutrient starvation to exposure to drugs. Thus, this pathway can be seen as a central component of the integrated and adaptive stress response. Here, we report that even brief induction of autophagy is coupled in vitro to a persistent downregulation of the expression of MAP1LC3 isoforms, which are key components of the autophagy core machinery. In fact, DNA-methylation mediated by de novo DNA methyltransferase DNMT3A of MAP1LC3 loci upon autophagy stimulation leads to the observed long-term decrease of MAP1LC3 isoforms at transcriptional level. Finally, we report that the downregulation of MAP1LC3 expression can be observed in vivo in zebrafish larvae and mice exposed to a transient autophagy stimulus. This epigenetic memory of autophagy provides some understanding of the long-term effect of autophagy induction and offers a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: ACTB: actin beta; ATG: autophagy-related; 5-Aza: 5-aza-2'-deoxycytidine; BafA1: bafilomycin A1; CBZ: carbamazepine; CDKN2A: cyclin dependent kinase inhibitor 2A; ChIP: chromatin immunoprecipitation; Clon.: clonidine; CpG: cytosine-guanine dinucleotide: DMSO: dimethyl sulfoxide; DNA: deoxyribonucleic acid; DNMT: DNA methyltransferase; DNMT1: DNA methyltransferase 1; DNMT3A: DNA methyltransferase alpha; DNMT3B: DNA methyltransferase beta; dpf: days post-fertilization; EBSS: Earle's balanced salt solution; EM: Zebrafish embryo medium; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRO-Seq: Global Run-On sequencing; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAP1LC3B2: microtubule-associated protein 1 light chain 3 beta 2; MEM: minimum essential medium; MEF: mouse embryonic fibroblasts; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RT-qPCR: quantitative reverse transcription polymerase chain reaction; SQSTM1/p62: sequestosome 1; Starv.: starvation; Treh.: trehalose; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Jens Füllgrabe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Salli
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Virginia Cunha
- Institute of Environmental Medicine, Biochemical Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Agata Lupa
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Kristian Dreij
- Institute of Environmental Medicine, Biochemical Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
280
|
Muyle A, Ross-Ibarra J, Seymour DK, Gaut BS. Gene body methylation is under selection in Arabidopsis thaliana. Genetics 2021; 218:6237897. [PMID: 33871638 PMCID: PMC8225343 DOI: 10.1093/genetics/iyab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
In plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation (gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-frequency spectrum of allelic states. Using a population genetics model specifically designed for epigenetic data, we found that genes with ancestral gbM are under significant selection to remain methylated. Conversely, ancestrally unmethylated genes were under selection to remain unmethylated. Repeating the analyses at the level of individual cytosines confirmed these results. Estimated selection coefficients were small, on the order of 4 Nes = 1.4, which is similar to the magnitude of selection acting on codon usage. We also estimated that A. thaliana is losing gbM threefold more rapidly than gaining it, which could be due to a recent reduction in the efficacy of selection after a switch to selfing. Finally, we investigated the potential function of gbM through its link with gene expression. Across genes with polymorphic methylation states, the expression of gene body methylated alleles was consistently and significantly higher than unmethylated alleles. Although it is difficult to disentangle genetic from epigenetic effects, our work suggests that gbM has a small but measurable effect on fitness, perhaps due to its association to a phenotype-like gene expression.
Collapse
Affiliation(s)
- Aline Muyle
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Jeffrey Ross-Ibarra
- Evolution and Ecology, Center for Population Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Danelle K Seymour
- Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon S Gaut
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
281
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
282
|
|
283
|
Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, Pulecio J, Caspi I, Lee K, Stransky S, Glezer A, Liu C, Rivas M, Kumar R, Lan Y, Torregroza I, He C, Sidoli S, Evans T, Elemento O, Huangfu D. QSER1 protects DNA methylation valleys from de novo methylation. Science 2021; 372:eabd0875. [PMID: 33833093 PMCID: PMC8185639 DOI: 10.1126/science.abd0875] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.
Collapse
Affiliation(s)
- Gary Dixon
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Bess P Rosen
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Therande Jashari
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University-The Rockefeller University-Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abigail Glezer
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marco Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
284
|
High Methionine Diet-Induced Alzheimer's Disease like Symptoms Are Accompanied by 5-Methylcytosine Elevated Levels in the Brain. Behav Neurol 2021; 2021:6683318. [PMID: 33880134 PMCID: PMC8046555 DOI: 10.1155/2021/6683318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Background Excessive or insufficient intake of methionine (Met) causes neuronal dysfunction, neurodegeneration, cerebrovascular dysfunction, vascular leakage, and short-term memory loss, which result in the occurrence of Alzheimer's disease- (AD-) like symptoms. Objective To determine the relationship between high methionine diets (HMD) induced AD-like symptoms and 5-methylcytosine (5-mC) level. Methods C57BL/6J mice were randomly divided into two groups: the control group (Maintain diets) and the model group (2% HMD). Mice were fed with 2% HMD for 9 weeks. Animals were weighed and food intake was recorded weekly. Open field test, nesting ability test, Y maze test, new object recognition test, and Morris water maze test were used to detect the motor, learning, and memory ability. Hematoxylin-eosin (HE) staining was used to observe the damage of cells in hippocampus and cortex. Immunofluorescence (IF) staining was used to detect the expression and distribution of amyloid-β 1-40 (Aβ1-40), amyloid-β 1-42 (Aβ1-42), and 5-methylcytosine (5-mC) in hippocampus and cortex. Western blotting (WB) was used to determine the expression of Aβ and DNA methyltransferases- (DNMTs-) related proteins in the cortex. Enzyme-linked immunosorbent assay (ELISA) was performed to detect homocysteine (Hcy) level (ELISA). Results Feeding of HMD decreased the body weight and food intake of mice. Behavioral testing revealed that HMD caused learning, memory, and motor ability impairment in the mice. HE staining results showed that HMD feeding caused damage of hippocampal and cortical neurons, along with disordered cell arrangement, and loss of neurons. Furthermore, HMD increased the contents of Aβ1-40, Aβ1-42, and 5-mC in the hippocampus and cortex. WB results showed that HMD increased the expression of Aβ production-related proteins, such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1), and decreased the expression of Aβ metabolism-related protein in the cortex, including insulin-degrading enzyme (IDE) and neprilysin (NEP). Additionally, the decreased expression of DNA methyltransferase1 (DNMT1) was observed in HMD-treated mice, but there was no significant change of DNMT3a level. ELISA results showed that HMD increased the levels of Hcy in serum. Conclusion Our result suggested that the HMD can cause neurotoxicity, leading to AD-like symptoms in mice, which may be related to 5-mC elevated.
Collapse
|
285
|
Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res 2021; 49:3020-3032. [PMID: 33300031 PMCID: PMC8034647 DOI: 10.1093/nar/gkaa1154] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is essential to development and cellular physiology in mammals. Faulty DNA methylation is frequently observed in human diseases like cancer and neurological disorders. Molecularly, this epigenetic mark is linked to other chromatin modifications and it regulates key genomic processes, including transcription and splicing. Each round of DNA replication generates two hemi-methylated copies of the genome. These must be converted back to symmetrically methylated DNA before the next S-phase, or the mark will fade away; therefore the maintenance of DNA methylation is essential. Mechanistically, the maintenance of this epigenetic modification takes place during and after DNA replication, and occurs within the very dynamic context of chromatin re-assembly. Here, we review recent discoveries and unresolved questions regarding the mechanisms, dynamics and fidelity of DNA methylation maintenance in mammals. We also discuss how it could be regulated in normal development and misregulated in disease.
Collapse
Affiliation(s)
- Nataliya Petryk
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, F-75013 Paris, France
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | |
Collapse
|
286
|
Chi Z, Lu Y, Yang Y, Li B, Lu P. Transcriptional and epigenetic regulation of PD-1 expression. Cell Mol Life Sci 2021; 78:3239-3246. [PMID: 33738533 PMCID: PMC11073161 DOI: 10.1007/s00018-020-03737-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Programmed cell death-1 (PD-1) is a co-inhibitory receptor that plays important roles in regulating T cell immunity and peripheral tolerance. PD-1 signaling prevents T cells from overactivation during acute infections, but it maintains T cell exhaustion during chronic infections. Tumor cells can exploit the PD-1 signaling pathway to evade antitumor immune responses. The PD-1 signaling pathway is also essential for maintaining peripheral tolerance and prevention of autoimmunity. PD-1 expression is strictly and differentially regulated by diverse mechanisms in immune cells. It is activated and repressed by distinct transcription factors in different circumstances. Moreover, epigenetic mechanisms are also involved in regulating PD-1 expression. In this review, we summarize the knowledge of the transcriptional and epigenetic regulation of PD-1 expression during different immune responses.
Collapse
Affiliation(s)
- Zengde Chi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Yan Lu
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250014, China
| | - Yinlong Yang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Bingqing Li
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Peiyuan Lu
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
287
|
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines 2021; 9:biomedicines9040359. [PMID: 33807199 PMCID: PMC8065645 DOI: 10.3390/biomedicines9040359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which leads to changes in protein conformation and function. Pin1 is widely overexpressed in cancers and plays an important role in tumorigenesis. Mounting evidence has revealed that targeting Pin1 is a potential therapeutic approach for various cancers by inhibiting cell proliferation, reducing metastasis, and maintaining genome stability. In this review, we summarize the underlying mechanisms of Pin1-mediated upregulation of oncogenes and downregulation of tumor suppressors in cancer development. Furthermore, we also discuss the multiple roles of Pin1 in cancer hallmarks and examine Pin1 as a desirable pharmaceutical target for cancer therapy. We also summarize the recent progress of Pin1-targeted small-molecule compounds for anticancer activity.
Collapse
|
288
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
289
|
Bartoccetti M, van der Veer BK, Luo X, Khoueiry R, She P, Bajaj M, Xu J, Janiszewski A, Thienpont B, Pasque V, Koh KP. Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming. Cell Rep 2021; 30:2150-2169.e9. [PMID: 32075734 DOI: 10.1016/j.celrep.2020.01.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) involves the reactivation of endogenous pluripotency genes and global DNA demethylation, but temporal resolution of these events using existing markers is limited. Here, we generate murine transgenic lines harboring reporters for the 5-methylcytosine dioxygenase Tet1 and for Oct4. By monitoring dual reporter fluorescence during pluripotency entry, we identify a sequential order of Tet1 and Oct4 activation by proximal and distal regulatory elements. Full Tet1 activation marks an intermediate stage that accompanies predominantly repression of somatic genes, preceding full Oct4 activation, and distinguishes two waves of global DNA demethylation that target distinct genomic features but are uncoupled from transcriptional changes. Tet1 knockout shows that TET1 contributes to both waves of demethylation and activates germline regulatory genes in reprogramming intermediates but is dispensable for Oct4 reactivation. Our dual reporter system for time-resolving pluripotency entry thus refines the molecular roadmap of iPSC maturation.
Collapse
Affiliation(s)
- Michela Bartoccetti
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Bernard K van der Veer
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Xinlong Luo
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Pinyi She
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Manmohan Bajaj
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Jiayi Xu
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
290
|
Yang Y, Fan X, Yan J, Chen M, Zhu M, Tang Y, Liu S, Tang Z. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Res 2021; 49:1313-1329. [PMID: 33434283 PMCID: PMC7897484 DOI: 10.1093/nar/gkaa1203] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is important for the epigenetic regulation of gene expression and plays a critical role in mammalian development. However, the dynamic regulation of genome-wide DNA methylation in skeletal muscle development remains largely unknown. Here, we generated the first single-base resolution DNA methylome and transcriptome maps of porcine skeletal muscle across 27 developmental stages. The overall methylation level decreased from the embryo to the adult, which was highly correlated with the downregulated expression of DNMT1 and an increase in partially methylated domains. Notably, we identified over 40 000 developmentally differentially methylated CpGs (dDMCs) that reconstitute the developmental trajectory of skeletal muscle and associate with muscle developmental genes and transcription factors (TFs). The dDMCs were significantly under-represented in promoter regulatory regions but strongly enriched as enhancer histone markers and in chromatin-accessible regions. Integrative analysis revealed the negative regulation of both promoter and gene body methylation in genes associated with muscle contraction and insulin signaling during skeletal muscle development. Mechanistically, DNA methylation affected the expression of muscle-related genes by modulating the accessibly of upstream myogenesis TF binding, indicating the involvement of the DNA methylation/SP1/IGF2BP3 axis in skeletal myogenesis. Our results highlight the function and regulation of dynamic DNA methylation in skeletal muscle development.
Collapse
Affiliation(s)
- Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Muya Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Min Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yijie Tang
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Siyuan Liu
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
| |
Collapse
|
291
|
The emergence of the brain non-CpG methylation system in vertebrates. Nat Ecol Evol 2021; 5:369-378. [PMID: 33462491 PMCID: PMC7116863 DOI: 10.1038/s41559-020-01371-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.
Collapse
|
292
|
Frias AB, Boi SK, Lan X, Youngblood B. Epigenetic regulation of T cell adaptive immunity. Immunol Rev 2021; 300:9-21. [PMID: 33644866 DOI: 10.1111/imr.12943] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
The conceptualization of adaptive immunity, founded on the observation of immunological memory, has served as the basis for modern vaccination and immunotherapy approaches. This fundamental concept has allowed immunologists to explore mechanisms that enable humoral and cellular lymphocytes to tailor immune response functions to a wide array of environmental insults and remain poised for future pathogenic encounters. Until recently, for T cells it has remained unclear how memory differentiation acquires and sustains a gene expression program that grants a cell with a capacity for a heightened recall response. Recent investigations into this critical question have identified epigenetic programs as a causal molecular mechanism governing T cell subset specification and immunological memory. Here, we outline the studies that have illustrated this concept and posit on how insights into T cell adaptive immunity can be applied to improve upon existing immunotherapies.
Collapse
Affiliation(s)
- Adolfo B Frias
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon K Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
293
|
Regulation of MYB by distal enhancer elements in human myeloid leukemia. Cell Death Dis 2021; 12:223. [PMID: 33637692 PMCID: PMC7910426 DOI: 10.1038/s41419-021-03515-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022]
Abstract
MYB plays vital roles in regulating proliferation and differentiation of hematopoietic progenitor cells, dysregulation of MYB has been implicated in the pathogenesis of leukemia. Although the transcription of MYB has been well studied, its detailed underlying regulatory mechanisms still remain elusive. Here, we detected the long-range interaction between the upstream regions, −34k and −88k, and the MYB promoter in K562, U937, and HL-60 cells using circularized chromosome conformation capture (4C) assay, which declined when MYB was downregulated during chemical-induced differentiation. The enrichment of enhancer markers, H3K4me1 and H3K27ac, and enhancer activity at the −34k and −88k regions were confirmed by ChIP-qPCR and luciferase assay respectively. ChIP-qPCR showed the dynamic binding of GATA1, TAL1, and CCAAT/enhancer-binding protein (C/EBPβ) at −34k and −88k during differentiation of K562 cells. Epigenome editing by a CRISPR-Cas9-based method showed that H3K27ac at −34k enhanced TF binding and MYB expression, while DNA methylation inhibited MYB expression. Taken together, our data revealed that enhancer elements at −34k are required for MYB expression, TF binding, and epigenetic modification are closely involved in this process in human myeloid leukemia cells.
Collapse
|
294
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
295
|
Tang L, Zhu S, Peng W, Yin X, Tan C, Yang Y. Epigenetic identification of mitogen-activated protein kinase 10 as a functional tumor suppressor and clinical significance for hepatocellular carcinoma. PeerJ 2021; 9:e10810. [PMID: 33604188 PMCID: PMC7863782 DOI: 10.7717/peerj.10810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Mitogen-activated protein kinase 10 (Mapk10) is a member of the c-jun N-terminal kinases (jnk) subgroup in the MAPK superfamily, and was proposed as a tumor suppressor inactivated epigenetically. Its role in hepatocellular carcinoma (HCC) has not yet been illustrated. We aimed to investigate the expression and epigenetic regulation of mapk10 as well as its clinical significance in HCC. Results Mapk10 was expressed in almost all the normal tissues including liver, while we found that the protein expression of MAPK10 was significantly downregulated in clinical samples of HCC patients compared with these levels in adjacent normal tissues (29/46, P < 0.0001). Clinical significance of MAPK10 expression was then assessed in a cohort of 59 HCC cases, which indicated its negative expression was significantly correlated with advanced tumor stage (P = 0.001), more microsatellite nodules (P = 0.025), higher serum AFP (P = 0.001) and shorter overall survival time of HCC patients. Methylation was further detected in 58% of the HCC cell lines we tested and in 66% of primary HCC tissues by methylation-specific PCR (MSP), which was proved to be correlated with the silenced or downregulated expression of mapk10. To get the mechanisms more clear, the transcriptional silencing of mapk10 was reversed by pharmacological demethylation, and ectopic expression of mapk10 in silenced HCC cell lines significantly inhibited the colony formation ability, induced apoptosis, or enhanced the chemosensitivity of HCC cells to 5-fluorouracil. Conclusion Mapk10 appears to be a functional tumor suppressor gene frequently methylated in HCC, which could be a valuable biomarker or a new diagnosis and therapy target in a clinical setting.
Collapse
Affiliation(s)
- Liping Tang
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical Detection, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cui Tan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
296
|
Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer Immunity. Cancers (Basel) 2021; 13:cancers13030545. [PMID: 33535484 PMCID: PMC7867049 DOI: 10.3390/cancers13030545] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shafaat A. Rabbani
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-843-1632
| |
Collapse
|
297
|
Zhang Y, Hu J, Zou X, Ma F, Qiu JG, Zhang CY. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem Commun (Camb) 2021; 57:2073-2076. [PMID: 33507186 DOI: 10.1039/d0cc08306b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate the development of a new fluorescent biosensor for sensitive DNA methylation assay by integrating single-molecule detection with endo IV-assisted signal amplification. This biosensor possesses the characteristics of good selectivity and high sensitivity with a detection limit of 7.3 × 10-17 M. It can distinguish as low as 0.01% methylation level, and can analyze genomic DNA methylation even in a single cancer cell.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
298
|
Kovalenko TF, Morozova KV, Pavlyukov MS, Anufrieva KS, Bobrov MY, Gamisoniya AM, Ozolinya LA, Dobrokhotova YE, Shakhparonov MI, Patrushev LI. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS One 2021; 16:e0243093. [PMID: 33481830 PMCID: PMC7822536 DOI: 10.1371/journal.pone.0243093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processed pseudogene PTENP1 is involved in the regulation of the expression of the PTEN and acts as a tumor suppressor in many types of malignances. In our previous study we showed that PTENP1 methylation is present not only in tumor, but also in normal endometrium tissues of women over 45 years old. Here we used methylation-specific PCR to analyze methylation status of CpG island located near promoter region of PTENP1 in malignant and non-malignant endometrium tissues collected from 236 women of different age groups. To confirm our results, we also analyzed RNA sequencing and microarray data from 431 women with endometrial cancer from TCGA database. We demonstrated that methylation of PTENP1 is significantly increased in older patients. We also found an age-dependent increase in the level of PTENP1 expression in endometrial tissue. According to our data, PTENP1 methylation elevates the level of the pseudogene sense transcript. In turn, a high level of this transcript correlates with a more favorable prognosis in endometrial cancer. The data obtained suggested that PTENP1 methylation is associated with age-related changes in normal and hyperplastic endometrial tissues. We assumed that age-related increase in PTENP1 methylation and subsequent elevation of its expression may serve as a protective mechanism aimed to prevent malignant transformation of endometrial tissue in women during the perimenopause, menopause, and postmenopause periods.
Collapse
Affiliation(s)
- Tatyana F. Kovalenko
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Ksenia V. Morozova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marat S. Pavlyukov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Ksenia S. Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russia
| | - Mikhail Yu. Bobrov
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina M. Gamisoniya
- Laboratory of Molecular Pathophysiology, Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of oxylipins, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lyudmila A. Ozolinya
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yulia E. Dobrokhotova
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail I. Shakhparonov
- Laboratory of membrane bioenergetics, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Lev I. Patrushev
- Educational & scientific center, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
299
|
Peng Y, Pei H. DNA alkylation lesion repair: outcomes and implications in cancer chemotherapy. J Zhejiang Univ Sci B 2021; 22:47-62. [PMID: 33448187 DOI: 10.1631/jzus.b2000344] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkylated DNA lesions, induced by both exogenous chemical agents and endogenous metabolites, represent a major form of DNA damage in cells. The repair of alkylation damage is critical in all cells because such damage is cytotoxic and potentially mutagenic. Alkylation chemotherapy is a major therapeutic modality for many tumors, underscoring the importance of the repair pathways in cancer cells. Several different pathways exist for alkylation repair, including base excision and nucleotide excision repair, direct reversal by methyl-guanine methyltransferase (MGMT), and dealkylation by the AlkB homolog (ALKBH) protein family. However, maintaining a proper balance between these pathways is crucial for the favorable response of an organism to alkylating agents. Here, we summarize the progress in the field of DNA alkylation lesion repair and describe the implications for cancer chemotherapy.
Collapse
Affiliation(s)
- Yihan Peng
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA. .,GW Cancer Center, the George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| |
Collapse
|
300
|
Khouider S, Borges F, LeBlanc C, Ungru A, Schnittger A, Martienssen R, Colot V, Bouyer D. Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nat Commun 2021; 12:410. [PMID: 33462227 PMCID: PMC7813888 DOI: 10.1038/s41467-020-20606-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Active DNA demethylation is required for sexual reproduction in plants but the molecular determinants underlying this epigenetic control are not known. Here, we show in Arabidopsis thaliana that the DNA glycosylases DEMETER (DME) and REPRESSOR OF SILENCING 1 (ROS1) act semi-redundantly in the vegetative cell of pollen to demethylate DNA and ensure proper pollen tube progression. Moreover, we identify six pollen-specific genes with increased DNA methylation as well as reduced expression in dme and dme;ros1. We further show that for four of these genes, reinstalling their expression individually in mutant pollen is sufficient to improve male fertility. Our findings demonstrate an essential role of active DNA demethylation in regulating genes involved in pollen function.
Collapse
Affiliation(s)
- Souraya Khouider
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
| | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.,Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.,Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Alexander Ungru
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Arp Schnittger
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.,Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University Strasbourg, 67084, Strasbourg, France.,University Hamburg, 22609, Hamburg, Germany
| | - Robert Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005, Paris, France.
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005, Paris, France. .,Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University Strasbourg, 67084, Strasbourg, France. .,Laboratoire Reproduction et Développement des Plantes (RDP), UnivLyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, CNRS, INRAE, 69342, Lyon, France.
| |
Collapse
|