251
|
Abstract
Many aspects of the brain’s design can be understood as the result of evolutionary drive toward metabolic efficiency. In addition to the energetic costs of neural computation and transmission, experimental evidence indicates that synaptic plasticity is metabolically demanding as well. As synaptic plasticity is crucial for learning, we examine how these metabolic costs enter in learning. We find that when synaptic plasticity rules are naively implemented, training neural networks requires extremely large amounts of energy when storing many patterns. We propose that this is avoided by precisely balancing labile forms of synaptic plasticity with more stable forms. This algorithm, termed synaptic caching, boosts energy efficiency manifold and can be used with any plasticity rule, including back-propagation. Our results yield a novel interpretation of the multiple forms of neural synaptic plasticity observed experimentally, including synaptic tagging and capture phenomena. Furthermore, our results are relevant for energy efficient neuromorphic designs. The brain expends a lot of energy. While the organ accounts for only about 2% of a person’s bodyweight, it is responsible for about 20% of our energy use at rest. Neurons use some of this energy to communicate with each other and to process information, but much of the energy is likely used to support learning. A study in fruit flies showed that insects that learned to associate two stimuli and then had their food supply cut off, died 20% earlier than untrained flies. This is thought to be because learning used up the insects’ energy reserves. If learning a single association requires so much energy, how does the brain manage to store vast amounts of data? Li and van Rossum offer an explanation based on a computer model of neural networks. The advantage of using such a model is that it is possible to control and measure conditions more precisely than in the living brain. Analysing the model confirmed that learning many new associations requires large amounts of energy. This is particularly true if the memories must be stored with a high degree of accuracy, and if the neural network contains many stored memories already. The reason that learning consumes so much energy is that forming long-term memories requires neurons to produce new proteins. Using the computer model, Li and van Rossum show that neural networks can overcome this limitation by storing memories initially in a transient form that does not require protein synthesis. Doing so reduces energy requirements by as much as 10-fold. Studies in living brains have shown that transient memories of this type do in fact exist. The current results hence offer a hypothesis as to how the brain can learn in a more energy efficient way. Energy consumption is thought to have placed constraints on brain evolution. It is also often a bottleneck in computers. By revealing how the brain encodes memories energy efficiently, the current findings could thus also inspire new engineering solutions.
Collapse
Affiliation(s)
- Ho Ling Li
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Mark Cw van Rossum
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
252
|
Fellows AD, Rhymes ER, Gibbs KL, Greensmith L, Schiavo G. IGF1R regulates retrograde axonal transport of signalling endosomes in motor neurons. EMBO Rep 2020; 21:e49129. [PMID: 32030864 PMCID: PMC7054680 DOI: 10.15252/embr.201949129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 01/13/2023] Open
Abstract
Signalling endosomes are essential for trafficking of activated ligand-receptor complexes and their distal signalling, ultimately leading to neuronal survival. Although deficits in signalling endosome transport have been linked to neurodegeneration, our understanding of the mechanisms controlling this process remains incomplete. Here, we describe a new modulator of signalling endosome trafficking, the insulin-like growth factor 1 receptor (IGF1R). We show that IGF1R inhibition increases the velocity of signalling endosomes in motor neuron axons, both in vitro and in vivo. This effect is specific, since IGF1R inhibition does not alter the axonal transport of mitochondria or lysosomes. Our results suggest that this change in trafficking is linked to the dynein adaptor bicaudal D1 (BICD1), as IGF1R inhibition results in an increase in the de novo synthesis of BICD1 in the axon of motor neurons. Finally, we found that IGF1R inhibition can improve the deficits in signalling endosome transport observed in a mouse model of amyotrophic lateral sclerosis (ALS). Taken together, these findings suggest that IGF1R inhibition may be a new therapeutic target for ALS.
Collapse
Affiliation(s)
- Alexander D Fellows
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Katherine L Gibbs
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK
| |
Collapse
|
253
|
Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain. Cells 2020; 9:cells9020313. [PMID: 32012899 PMCID: PMC7072627 DOI: 10.3390/cells9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set of novel synaptic proteins differentially expressed between male and female individuals including the strong ASD candidates DDX3X, KMT2C, MYH10 and SET. Being the first comprehensive analysis of brain region-specific synaptic proteomes from male and female mice, our study provides crucial information on sex-specific differences in the molecular anatomy of the synapse. Our efforts should serve as a neurobiological framework to better understand the influence of sex on synapse biology in both health and disease.
Collapse
|
254
|
Evans HT, Bodea LG, Götz J. Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. eLife 2020; 9:e52990. [PMID: 31904341 PMCID: PMC6944461 DOI: 10.7554/elife.52990] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
The formation of spatial long-term memory (LTM) requires the de novo synthesis of distinct sets of proteins; however, a non-biased examination of the de novo proteome in this process is lacking. Here, we generated a novel mouse strain, which enables cell-type-specific labelling of newly synthesised proteins with non-canonical amino acids (NCAAs) by genetically restricting the expression of the mutant tRNA synthetase, NLL-MetRS, to hippocampal neurons. By combining this labelling technique with an accelerated version of the active place avoidance task and bio-orthogonal non-canonical amino acid tagging (BONCAT) followed by SWATH quantitative mass spectrometry, we identified 156 proteins that were altered in synthesis in hippocampal neurons during spatial memory formation. In addition to observing increased synthesis of known proteins important in memory-related processes, such as glutamate receptor recycling, we also identified altered synthesis of proteins associated with mRNA splicing as a potential mechanism involved in spatial LTM formation.
Collapse
Affiliation(s)
- Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
255
|
Singh AK, Abdullahi A, Soller M, David A, Brogna S. Visualisation of ribosomes in Drosophila axons using Ribo-BiFC. Biol Open 2020; 8:bio047233. [PMID: 31822474 PMCID: PMC6955225 DOI: 10.1242/bio.047233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
The distribution of assembled, and potentially translating, ribosomes within cells can be visualised in Drosophila by using Bimolecular Fluorescence Complementation (BiFC) to monitor the interaction between tagged pairs of 40S and 60S ribosomal proteins (RPs) that are close neighbours across inter-subunit junctions in the assembled 80S ribosome. Here we describe transgenes expressing two novel RP pairs tagged with Venus-based BiFC fragments that considerably increase the sensitivity of this technique we termed Ribo-BiFC. This improved method should provide a convenient way of monitoring the local distribution of ribosomes in most Drosophila cells and we suggest that it could be implemented in other organisms. We visualised 80S ribosomes in different neurons, particularly photoreceptors in the larva, pupa and adult brain. Assembled ribosomes are most abundant in the various neuronal cell bodies, but they are also present along the full length of axons. They are concentrated in growth cones of developing photoreceptors and are apparent at the terminals of mature larval photoreceptors targeting the larval optical neuropil. Surprisingly, there is relatively less puromycin incorporation in the distal portion of axons in the larval optic stalk, suggesting that some of the ribosomes that have initiated translation may not be engaged in elongation in growing axons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anand K Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Akilu Abdullahi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Soller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexandre David
- Oncology Department, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
256
|
Arey RN, Kaletsky R, Murphy CT. Nervous system-wide profiling of presynaptic mRNAs reveals regulators of associative memory. Sci Rep 2019; 9:20314. [PMID: 31889133 PMCID: PMC6937282 DOI: 10.1038/s41598-019-56908-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Presynaptic protein synthesis is important in the adult central nervous system; however, the nervous system-wide set of mRNAs localized to presynaptic areas has yet to be identified in any organism. Here we differentially labeled somatic and synaptic compartments in adult C. elegans with fluorescent proteins, and isolated synaptic and somatic regions from the same population of animals. We used this technique to determine the nervous system-wide presynaptic transcriptome by deep sequencing. Analysis of the synaptic transcriptome reveals that synaptic transcripts are predicted to have specialized functions in neurons. Differential expression analysis identified 542 genes enriched in synaptic regions relative to somatic regions, with synaptic functions conserved in higher organisms. We find that mRNAs for pumilio RNA-binding proteins are abundant in synaptic regions, which we confirmed through high-sensitivity in situ hybridization. Presynaptic PUMILIOs regulate associative memory. Our approach enables the identification of new mechanisms that regulate synaptic function and behavior.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
257
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
258
|
Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN, LeDoux JE, Lhakhang T, Tsirigos A, Heguy A, Klann E. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. eLife 2019; 8:e51607. [PMID: 31825308 PMCID: PMC6924958 DOI: 10.7554/elife.51607] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | | | - Robert Sears
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkUnited States
| | - Zachary Deane
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Rahul N Kanadia
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph E LeDoux
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
| | - Tenzin Lhakhang
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
| | - Aristotelis Tsirigos
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
- Department of PathologyNew York University School of MedicineNew YorkUnited States
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkUnited States
- Genome Technology CenterNew York University School of MedicineNew YorkUnited States
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkUnited States
| |
Collapse
|
259
|
Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathol 2019; 138:971-986. [PMID: 31451907 DOI: 10.1007/s00401-019-02063-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.
Collapse
|
260
|
Cefaliello C, Penna E, Barbato C, Di Ruberto G, Mollica MP, Trinchese G, Cigliano L, Borsello T, Chun JT, Giuditta A, Perrone-Capano C, Miniaci MC, Crispino M. Deregulated Local Protein Synthesis in the Brain Synaptosomes of a Mouse Model for Alzheimer's Disease. Mol Neurobiol 2019; 57:1529-1541. [PMID: 31784883 DOI: 10.1007/s12035-019-01835-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
While protein synthesis in neurons is largely attributed to cell body and dendrites, the capability of synaptic regions to synthesize new proteins independently of the cell body has been widely demonstrated as an advantageous mechanism subserving synaptic plasticity. Thus, the contribution that local protein synthesis at synapses makes to physiology and pathology of brain plasticity may be more prevalent than initially thought. In this study, we tested if local protein synthesis at synapses is deregulated in the brains of TgCRND8 mice, an animal model for Alzheimer's disease (AD) overexpressing mutant human amyloid precursor protein (APP). To this end, we used synaptosomes as a model system to study the functionality of the synaptic regions in mouse brains. Our results showed that, while TgCRND8 mice exhibit early signs of brain inflammation and deficits in learning, the electrophoretic profile of newly synthesized proteins in their synaptosomes was subtly different from that of the control mice. Interestingly, APP itself was, in part, locally synthesized in the synaptosomes, underscoring the potential importance of local translation at synapses. More importantly, after the contextual fear conditioning, de novo synthesis of some individual proteins was significantly enhanced in the synaptosomes of control animals, but the TgCRND8 mice failed to display such synaptic modulation by training. Taken together, our results demonstrate that synaptic synthesis of proteins is impaired in the brain of a mouse model for AD, and raise the possibility that this deregulation may contribute to the early progression of the pathology.
Collapse
Affiliation(s)
- Carolina Cefaliello
- Department of Biology, University of Naples Federico II, Naples, Italy.,current address: Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmela Barbato
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Antonio Giuditta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati Traverso," CNR, Naples, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
261
|
The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice. Proc Natl Acad Sci U S A 2019; 116:24639-24650. [PMID: 31754024 PMCID: PMC6900516 DOI: 10.1073/pnas.1911921116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The conserved proteasome-binding protein PI31 serves as an adapter to couple proteasomes with cellular motors to mediate their transport to distal tips of neurons where protein breakdown occurs. We generated global and conditional PI31 knockout mouse strains and show that this protein is required for protein homeostasis, and that its conditional inactivation in neurons disrupts synaptic structures and long-term survival. This work establishes a critical role for PI31 and local protein degradation in the maintenance of neuronal architecture, circuitry, and function. Because mutations in the PI31 pathway cause neurodegenerative diseases in humans, reduced PI31 activity may contribute to the etiology of these diseases. Proteasome-mediated degradation of intracellular proteins is essential for cell function and survival. The proteasome-binding protein PI31 (Proteasomal Inhibitor of 31kD) promotes 26S assembly and functions as an adapter for proteasome transport in axons. As localized protein synthesis and degradation is especially critical in neurons, we generated a conditional loss of PI31 in spinal motor neurons (MNs) and cerebellar Purkinje cells (PCs). A cKO of PI31 in these neurons caused axon degeneration, neuronal loss, and progressive spinal and cerebellar neurological dysfunction. For both MNs and PCs, markers of proteotoxic stress preceded axonal degeneration and motor dysfunction, indicating a critical role for PI31 in neuronal homeostasis. The time course of the loss of MN and PC function in developing mouse central nervous system suggests a key role for PI31 in human neurodegenerative diseases.
Collapse
|
262
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
263
|
Farris S, Ward JM, Carstens KE, Samadi M, Wang Y, Dudek SM. Hippocampal Subregions Express Distinct Dendritic Transcriptomes that Reveal Differences in Mitochondrial Function in CA2. Cell Rep 2019; 29:522-539.e6. [PMID: 31597108 PMCID: PMC6894405 DOI: 10.1016/j.celrep.2019.08.093] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
RNA localization is one mechanism neurons use to spatially and temporally regulate gene expression at synapses. Here, we test the hypothesis that cells exhibiting distinct forms of synaptic plasticity will have differences in dendritically localized RNAs. Indeed, we discover that each major subregion of the adult mouse hippocampus expresses a unique complement of dendritic RNAs. Specifically, we describe more than 1,000 differentially expressed dendritic RNAs, suggesting that RNA localization and local translation are regulated in a cell type-specific manner. Furthermore, by focusing Gene Ontology analyses on the plasticity-resistant CA2, we identify an enrichment of mitochondria-associated pathways in CA2 cell bodies and dendrites, and we provide functional evidence that these pathways differentially influence plasticity and mitochondrial respiration in CA2. These data indicate that differences in dendritic transcriptomes may regulate cell type-specific properties important for learning and memory and may influence region-specific differences in disease pathology.
Collapse
Affiliation(s)
- Shannon Farris
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Kelly E Carstens
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Mahsa Samadi
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Yu Wang
- Cellular and Molecular Pathology, National Toxicology Program, NIH, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
264
|
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM. C. elegans neurons have functional dendritic spines. eLife 2019; 8:e47918. [PMID: 31584430 PMCID: PMC6802951 DOI: 10.7554/elife.47918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
Collapse
Affiliation(s)
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - Siwei He
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Sierra Palumbos
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteUniversity of TorontoTorontoCanada
| | - David M Miller
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUnited States
- Neuroscience ProgramVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
265
|
Campbell BFN, Tyagarajan SK. Cellular Mechanisms Contributing to the Functional Heterogeneity of GABAergic Synapses. Front Mol Neurosci 2019; 12:187. [PMID: 31456660 PMCID: PMC6700328 DOI: 10.3389/fnmol.2019.00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022] Open
Abstract
GABAergic inhibitory neurotransmission contributes to diverse aspects of brain development and adult plasticity, including the expression of complex cognitive processes. This is afforded for in part by the dynamic adaptations occurring at inhibitory synapses, which show great heterogeneity both in terms of upstream signaling and downstream effector mechanisms. Single-particle tracking and live imaging have revealed that complex receptor-scaffold interactions critically determine adaptations at GABAergic synapses. Super-resolution imaging studies have shown that protein interactions at synaptic sites contribute to nano-scale scaffold re-arrangements through post-translational modifications (PTMs), facilitating receptor and scaffold recruitment to synaptic sites. Additionally, plasticity mechanisms may be affected by the protein composition at individual synapses and the type of pre-synaptic input. This mini-review article examines recent discoveries of plasticity mechanisms that are operational within GABAergic synapses and discusses their contribution towards functional heterogeneity in inhibitory neurotransmission.
Collapse
Affiliation(s)
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
266
|
Koren SA, Gillett DA, D'Alton SV, Hamm MJ, Abisambra JF. Proteomic Techniques to Examine Neuronal Translational Dynamics. Int J Mol Sci 2019; 20:ijms20143524. [PMID: 31323794 PMCID: PMC6678648 DOI: 10.3390/ijms20143524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/30/2023] Open
Abstract
Impairments in translation have been increasingly implicated in the pathogenesis and progression of multiple neurodegenerative diseases. Assessing the spatiotemporal dynamics of translation in the context of disease is a major challenge. Recent developments in proteomic analyses have enabled the resolution of nascent peptides in a short timescale on the order of minutes. In addition, a quantitative analysis of translation has progressed in vivo, showing remarkable potential for coupling these techniques with cognitive and behavioral outcomes. Here, we review these modern approaches to measure changes in translation and ribosomal function with a specific focus on current applications in the mammalian brain and in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shon A Koren
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32601, USA
| | - Drew A Gillett
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32601, USA
| | - Simon V D'Alton
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32601, USA
| | - Matthew J Hamm
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32601, USA
| | - Jose F Abisambra
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32601, USA.
| |
Collapse
|
267
|
Local translation in neurons: visualization and function. Nat Struct Mol Biol 2019; 26:557-566. [PMID: 31270476 DOI: 10.1038/s41594-019-0263-5] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Neurons are among the most compartmentalized and interactive of all cell types. Like all cells, neurons use proteins as the main sensors and effectors. The modification of the proteome in axons and dendrites is used to guide the formation of synaptic connections and to store information. In this Review, we discuss the data indicating that an important source of protein for dendrites, axons and their associated elements is provided by the local synthesis of proteins. We review the data indicating the presence of the machinery required for protein synthesis, the direct visualization and demonstration of protein synthesis, and the established functional roles for local translation for many different neuronal functions. Finally, we consider the open questions and future directions in this field.
Collapse
|