251
|
Abstract
Companion nanoparticle imaging merges with drug delivery technologies toward personalized nanomedicine (Miller et al., this issue).
Collapse
Affiliation(s)
- Gregory T Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
252
|
Black KCL, Ibricevic A, Gunsten SP, Flores JA, Gustafson TP, Raymond JE, Samarajeewa S, Shrestha R, Felder SE, Cai T, Shen Y, Löbs AK, Zhegalova N, Sultan DH, Berezin M, Wooley KL, Liu Y, Brody SL. In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ĉerenkov imaging. Biomaterials 2016; 98:53-63. [PMID: 27179433 PMCID: PMC4899101 DOI: 10.1016/j.biomaterials.2016.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Nanoparticles (NPs) play expanding roles in biomedical applications including imaging and therapy, however, their long-term fate and clearance profiles have yet to be fully characterized in vivo. NP delivery via the airway is particularly challenging, as the clearance may be inefficient and lung immune responses complex. Thus, specific material design is required for cargo delivery and quantitative, noninvasive methods are needed to characterize NP pharmacokinetics. Here, biocompatible poly(acrylamidoethylamine)-b-poly(dl-lactide) block copolymer-based degradable, cationic, shell-cross-linked knedel-like NPs (Dg-cSCKs) were employed to transfect plasmid DNA. Radioactive and optical beacons were attached to monitor biodistribution and imaging. The preferential release of cargo in acidic conditions provided enhanced transfection efficiency compared to non-degradable counterparts. In vivo gene transfer to the lung was correlated with NP pharmacokinetics by radiolabeling Dg-cSCKs and performing quantitative biodistribution with parallel positron emission tomography and Čerenkov imaging. Quantitation of imaging over 14 days corresponded with the pharmacokinetics of NP movement from the lung to gastrointestinal and renal routes, consistent with predicted degradation and excretion. This ability to noninvasively and accurately track NP fate highlights the advantage of incorporating multifunctionality into particle design.
Collapse
Affiliation(s)
- Kvar C L Black
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Aida Ibricevic
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jeniree A Flores
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Tiffany P Gustafson
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jeffery E Raymond
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77843, USA
| | - Sandani Samarajeewa
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ritu Shrestha
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Simcha E Felder
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tianyi Cai
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yuefei Shen
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Ann-Kathrin Löbs
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia Zhegalova
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Deborah H Sultan
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Mikhail Berezin
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Karen L Wooley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, TX 77843, USA
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Radiology, Washington University, St. Louis, MO 63110, USA; Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
254
|
Shiekh FA, Farooq O, Mian SH, Bautista RL, Arja SB, Andrabi KI. The pitfalls of growing nanomaterials. Nanomedicine (Lond) 2016; 11:1635-8. [PMID: 27348020 DOI: 10.2217/nnm-2016-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Farooq A Shiekh
- Department of Basic Medical Sciences, Avalon University School of Medicine, Curacao
| | - Omar Farooq
- Department of Neurology, Government Medical College (GMC), Srinagar, India
| | - Sarah H Mian
- Department of Basic Medical Sciences, Avalon University School of Medicine, Curacao
| | - Roxanne L Bautista
- Department of Basic Medical Sciences, Avalon University School of Medicine, Curacao
| | - Sateesh B Arja
- Department of Basic Medical Sciences, Avalon University School of Medicine, Curacao
| | | |
Collapse
|
255
|
Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc Natl Acad Sci U S A 2016; 113:7750-5. [PMID: 27342857 DOI: 10.1073/pnas.1605841113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anaplastic thyroid cancer (ATC), one of the most aggressive solid tumors, is characterized by rapid tumor growth and severe metastasis to other organs. Owing to the lack of effective treatment options, ATC has a mortality rate of ∼100% and median survival of less than 5 months. RNAi nanotechnology represents a promising strategy for cancer therapy through nanoparticle (NP) -mediated delivery of RNAi agents (e.g., siRNA) to solid tumors for specific silencing of target genes driving growth and/or metastasis. Nevertheless, the clinical success of RNAi cancer nanotherapies remains elusive in large part because of the suboptimal systemic siRNA NP delivery to tumors and the fact that tumor heterogeneity produces variable NP accumulation and thus, therapeutic response. To address these challenges, we here present an innovative theranostic NP platform composed of a near-infrared (NIR) fluorescent polymer for effective in vivo siRNA delivery to ATC tumors and simultaneous tracking of the tumor accumulation by noninvasive NIR imaging. The NIR polymeric NPs are small (∼50 nm), show long blood circulation and high tumor accumulation, and facilitate tumor imaging. Systemic siRNA delivery using these NPs efficiently silences the expression of V-Raf murine sarcoma viral oncogene homolog B (BRAF) in tumor tissues and significantly suppresses tumor growth and metastasis in an orthotopic mouse model of ATC. These results suggest that this theranostic NP system could become an effective tool for NIR imaging-guided siRNA delivery for personalized treatment of advanced malignancies.
Collapse
|
256
|
Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater 2016; 33:34-9. [PMID: 26826531 DOI: 10.1016/j.actbio.2016.01.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 02/01/2023]
Abstract
Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. STATEMENT OF SIGNIFICANCE Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities.
Collapse
|
257
|
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 2016; 116:2602-63. [PMID: 26854975 PMCID: PMC5509216 DOI: 10.1021/acs.chemrev.5b00346] [Citation(s) in RCA: 1726] [Impact Index Per Article: 191.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|