251
|
Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone With Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E428. [PMID: 32121237 PMCID: PMC7152842 DOI: 10.3390/nano10030428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Applying electrical stimulation (ES) could affect different cellular mechanisms, thereby producing a bactericidal effect and an increase in human cell viability. Despite its relevance, this bioelectric effect has been barely reported in percolated conductive biopolymers. In this context, electroactive polycaprolactone (PCL) scaffolds with conductive Thermally Reduced Graphene Oxide (TrGO) nanoparticles were obtained by a 3D printing method. Under direct current (DC) along the percolated scaffolds, a strong antibacterial effect was observed, which completely eradicated S. aureus on the surface of scaffolds. Notably, the same ES regime also produced a four-fold increase in the viability of human mesenchymal stem cells attached to the 3D conductive PCL/TrGO scaffold compared with the pure PCL scaffold. These results have widened the design of novel electroactive composite polymers that could both eliminate the bacteria adhered to the scaffold and increase human cell viability, which have great potential in tissue engineering applications.
Collapse
Affiliation(s)
- Carolina Angulo-Pineda
- Department of Chemical Engineering and Biotechnology and Materials, University of Chile, Santiago 8370456, Chile
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, Santiago 8370456, Chile
| | - Kasama Srirussamee
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand;
| | - Patricia Palma
- Department of Pathology and Oral Medicine, University of Chile, Santiago 8380492, Chile;
| | | | - Sarah H. Cartmell
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Humberto Palza
- Department of Chemical Engineering and Biotechnology and Materials, University of Chile, Santiago 8370456, Chile
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
252
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti-Infective Application of Graphene-Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9:e1901375. [PMID: 31894648 DOI: 10.1002/adhm.201901375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/16/2019] [Indexed: 12/19/2022]
Abstract
The increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene-like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad-spectrum bactericidal activity against Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant-related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
253
|
In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times. Diagn Microbiol Infect Dis 2020; 96:114901. [DOI: 10.1016/j.diagmicrobio.2019.114901] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 01/27/2023]
|
254
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti‐Infective Application of Graphene‐Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9. [DOI: doi.org/10.1002/adhm.201901375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 09/08/2023]
Abstract
AbstractThe increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene‐like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad‐spectrum bactericidal activity against Gram (−) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant‐related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
255
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
256
|
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 2020; 8:2653-2665. [DOI: 10.1039/d0bm00140f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study shows the development of a biodegradable bi-functional composite scaffold that can reduce bacterial infection, while promotes bone regeneration in osteomyelitis, without the need for revision surgery.
Collapse
Affiliation(s)
- Amit G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Manitha B. Nair
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| |
Collapse
|
257
|
Ahmad F, Al-Douri Y, Kumar D, Ahmad S. Metal-oxide powder technology in biomedicine. METAL OXIDE POWDER TECHNOLOGIES 2020:121-168. [DOI: 10.1016/b978-0-12-817505-7.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
258
|
Shi M, Zhang P, Zhao Q, Shen K, Qiu Y, Xiao Y, Yuan Q, Zhang Y. Dual Functional Monocytes Modulate Bactericidal and Anti-Inflammation Process for Severe Osteomyelitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905185. [PMID: 31880088 DOI: 10.1002/smll.201905185] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Osteomyelitis is an inflammatory bone disease caused by infection microorganisms which leads to progressive bone destruction and loss. Drug resistance and inflammatory damage make it urgent to develop new dual-functional therapies. Based on the powerful bactericidal effect of monocyte/macrophage cells by nature, a functional monocyte with programed anti-inflammatory ability is promising for osteomyelitis treatment. Herein, gold nanocage (GNC)-modified monocytes are developed which contain aspirin to realize the controlled antibacterial and anti-inflammatory process for bone infection treatment effectively. Aspirin@GNC-laden monocytes inherit the biological functions of origin monocytes such as chemotaxis to bacteria, differentiation potential, and phagocytic ability. The controlled release of aspirin from GNC has a beneficial effect on improving the rate and amount of bone regeneration after the anti-infection stage due to its ability to suppress the activity of natural immunity and induce osteoblast differentiation during the treatment of osteomyelitis. The present work described here is the first to utilize living monocytes to achieve a dual effect to antibacteria and anti-inflammation in a time-oriented and programed way, and provides an inspiration for future therapy based on this concept.
Collapse
Affiliation(s)
- Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Kailun Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
259
|
Depypere M, Kuehl R, Metsemakers WJ, Senneville E, McNally MA, Obremskey WT, Zimmerli W, Atkins BL, Trampuz A. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma 2020; 34:30-41. [PMID: 31567902 PMCID: PMC6903362 DOI: 10.1097/bot.0000000000001626] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
Abstract
Fracture-related infection (FRI) is a major complication in musculoskeletal trauma and one of the leading causes of morbidity. Standardization of general treatment strategies for FRI has been poor. One of the reasons is the heterogeneity in this patient population, including various anatomical locations, multiple fracture patterns, different degrees of soft-tissue injury, and different patient conditions. This variability makes treatment complex and hard to standardize. As these infections are biofilm-related, surgery remains the cornerstone of treatment, and this entails multiple key aspects (eg, fracture fixation, tissue sampling, debridement, and soft-tissue management). Another important aspect, which is sometimes less familiar to the orthopaedic trauma surgeon, is systemic antimicrobial therapy. The aim of this article is to summarize the available evidence and provide recommendations for systemic antimicrobial therapy with respect to FRI, based on the most recent literature combined with expert opinion. LEVEL OF EVIDENCE:: Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Richard Kuehl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | | | - Eric Senneville
- Department of Infectious Diseases, Gustave Dron Hospital, University of Lille, Lille, France
| | - Martin A. McNally
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - William T. Obremskey
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN
| | - Werner Zimmerli
- Kantonsspital Baselland, Interdisciplinary Unit for Orthopedic Infections, Liestal, Switzerland; and
| | - Bridget L. Atkins
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
260
|
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep 2019; 17:395-404. [PMID: 31721069 PMCID: PMC7344867 DOI: 10.1007/s11914-019-00548-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the primary pathogen responsible for osteomyelitis, which remains a major healthcare burden. To understand its dominance, here we review the unique pathogenic mechanisms utilized by S. aureus that enable it to cause incurable osteomyelitis. RECENT FINDINGS Using an arsenal of toxins and virulence proteins, S. aureus kills and usurps immune cells during infection, to produce non-neutralizing pathogenic antibodies that thwart adaptive immunity. S. aureus also has specific mechanisms for distinct biofilm formation on implants, necrotic bone tissue, bone marrow, and within the osteocyte lacuno-canicular networks (OLCN) of live bone. In vitro studies have also demonstrated potential for intracellular colonization of osteocytes, osteoblasts, and osteoclasts. S. aureus has evolved a multitude of virulence mechanisms to achieve life-long infection of the bone, most notably colonization of OLCN. Targeting S. aureus proteins involved in these pathways could provide new targets for antibiotics and immunotherapies.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
261
|
Memar MY, Adibkia K, Farajnia S, Kafil HS, Maleki Dizaj S, Ghotaslou R. Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
262
|
Cosma S, Borella F, Carosso A, Ingala A, Fassio F, Robba T, Maina A, Bertero L, Benedetto C. Osteomyelitis of the pubic symphysis caused by methicillin-resistant Staphylococcus aureus after vaginal delivery: a case report and literature review. BMC Infect Dis 2019; 19:952. [PMID: 31703612 PMCID: PMC6842141 DOI: 10.1186/s12879-019-4595-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteomyelitis of the pubic symphysis is a rare cause of pelvic pain after delivery, mainly caused by Staphylococcus aureus and Pseudomonas aeruginosa. The clinical context is the same as the more common diastasis of the pubic bone, but the presence of intense local pain in association with fever should prompt further clinical work-up based on blood chemistry, microbiology and diagnostic imaging. We report the first case of methicillin-resistant Staphylococcus aureus osteomyelitis of the pubic symphysis occuring after the delivery. CASE PRESENTATION A 39-year-old woman developed pain over the pubic bone 12 h after the delivery. After 72 h fever rose and laboratory examination showed elevation of C-reactive protein and procalcitonin levels. Pelvic x-rays and magnetic resonance showed pubic diastasis, joint effusion, tiny irregularities of articular surfaces and, severe bone edema. The patient was started on broad spectrum intravenous (IV) antibiotics (piperacillin-tazobactam) and then replaced to IV vancomycin and oral levofloxacin based on antibiogram result. She was then discharged with oral antibiotic therapy and fully recovered. CONCLUSIONS Due to the rarity of this disease, we compared our experience with the other cases of osteomyelitis of pubic symphysis occurring in peri-postpartum reported in the literature. The course of osteomyelitis was favourable in all patients, and only in one case an additional orthopedic procedure for symphysis fixation was necessary. Knowledge of this rare condition is important to enable prompt diagnosis and treatment.
Collapse
Affiliation(s)
- Stefano Cosma
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy.
| | - Andrea Carosso
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Agata Ingala
- Gynecology and Obstetrics 2, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Federica Fassio
- Gynecology and Obstetrics 2, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Tiziana Robba
- Department of Radiology, City of Health and Science, CTO Hospital, Torino, Italy
| | - Aldo Maina
- General Medicine Unit, City of Health and Science, Sant'Anna Hospital, Torino, Italy
| | - Luca Bertero
- Department of Medical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Chiara Benedetto
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| |
Collapse
|
263
|
Overview of Staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation. Mol Biol Rep 2019; 47:771-784. [DOI: 10.1007/s11033-019-05139-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
264
|
CORR Insights®: What Are the Effects of Irreversible Electroporation on a Staphylococcus aureus Rabbit Model of Osteomyelitis? Clin Orthop Relat Res 2019; 477:2378-2379. [PMID: 31498256 PMCID: PMC6999948 DOI: 10.1097/corr.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
265
|
Exebacase in Addition to Daptomycin Is More Active than Daptomycin or Exebacase Alone in Methicillin-Resistant Staphylococcus aureus Osteomyelitis in Rats. Antimicrob Agents Chemother 2019; 63:AAC.01235-19. [PMID: 31358593 DOI: 10.1128/aac.01235-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteriophage-derived lysins are being developed as anti-infective agents. In an acute osteomyelitis methicillin-resistant Staphylococcus aureus (MRSA) model, rats receiving no treatment or treatment with daptomycin, exebacase (CF-301), or daptomycin plus exebacase had means of 5.13, 4.09, 4.65, and 3.57 log10 CFU/gram of bone, respectively. All treated animals had fewer bacteria than did untreated animals (P ≤ 0.0001), with daptomycin plus exebacase being more active than daptomycin (P = 0.0042) or exebacase (P < 0.001) alone.
Collapse
|
266
|
Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110004. [PMID: 31500052 DOI: 10.1016/j.msec.2019.110004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
Abstract
Biodegradable materials that combine bioactivity with sustained drug release have been proved promising for the treatment and prophylaxis of bone infection. In this work, injection-molded nanocomposites were formulated from poly(3-hydroxybutyrate-co-3-6%hydroxyvalerate) (PHBV), nanodiamond (nD) and nanohydroxyapatite (nHA) loaded with vancomycin (VC). The components were compounded using a rotary evaporator (PHBV/nHA/VC/nD-R) or a spray-dryer (PHBV/nHA/VC/nD-SD). The nanoparticles acted as a nucleating agent, increasing PHBV crystallinity from 57.1% to up to 73.3% (PHBV/nHA/VC/nD-SD). The nHA particles were found to be well distributed on the formulations fracture surface observed by SEM-EDS micrographs. PHBV/nHA/VC/nD-SD presented higher glass transition temperature (18.1 vs 14.8 °C) and stronger interface than PHBV/nHA/VC/nD-R, as determined by dynamic mechanical analysis (DMA). Furthermore, the incorporation of nanoparticles increased PHBV flexural elastic modulus by 34% and match the reported for human bone. Both systems were able to present a sustained release of VC for 22 days, reaching 7.1 ± 1.3%(PHBV/nHA/VC/nD-R) and 4.8 ± 0.6% (PHBV/nHA/VC/nD-SD). VC presented antibacterial activity even after being processed at 178 °C in an injection molding machine. Moreover, in vitro assays showed a good adhesion and growth of cells on the specimens and suggested a non-cytotoxic and non-cytostatic behavior. These findings indicate that these systems can be further explored as bone defect filling material.
Collapse
|
267
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
268
|
G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci (Lond) 2019; 133:1297-1308. [PMID: 31175224 DOI: 10.1042/cs20181001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment. The present study aimed to elucidate how S. aureus infection in bone might induce bone loss. The C57BL/6 mice were injected with S. aureus (106 CFU/ml, 100 μl) or with the same amount of vehicle (control) via the tail vein. Microcomputed tomography (microCT) analysis showed bone loss progressing from week 1 to week 5 after infection, accompanied by a decreased number of osteocalcin-positive stained osteoblasts and the suppressed mRNA expression of Runx2 and osteocalcin. Transcriptome profiles of GSE30119 were downloaded and analyzed to determine the differences in expression of inflammatory factors between patients with S. aureus infected osteomyelitis and healthy controls, the data showed significantly higher mRNA expression of granulocyte colony-stimulating factor (G-CSF) in the whole blood from patients with S. aureus infection. Enzyme-linked immunosorbent assay (ELISA) analysis confirmed an increased level of G-CSF in the bone marrow and serum from S. aureus infected mice, which might have been due to the increased amount of F4/80+ macrophages. Interestingly, G-CSF neutralizing antibody treatment significantly rescued the bone loss after S. aureus infection, as evidenced by its roles in improving BV/TV and preserving osteocalcin- and osterix-positive stained cells. Importantly, we found that G-CSF level was significantly up-regulated in the serum from osteomyelitis patients infected by S. aureus Together, S. aureus infection might suppress the function of osteoblastic cells and induce progressive bone loss by up-regulating the level G-CSF, suggesting a therapeutic potential for G-CSF neutralization in combating bone loss in S. aureus osteomyelitis.
Collapse
|
269
|
Hwang SC, Hwang DS, Kim HY, Kim MJ, Kang YH, Byun SH, Rho GJ, Lee HJ, Lee HC, Kim SH, Baik SC, Park JS, Oh SH, Byun JH. Development of bone regeneration strategies using human periosteum-derived osteoblasts and oxygen-releasing microparticles in mandibular osteomyelitis model of miniature pig. J Biomed Mater Res A 2019; 107:2183-2194. [PMID: 31116505 DOI: 10.1002/jbm.a.36728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Hypoxia and limited vascularization inhibit bone growth and recovery after surgical debridement to treat osteomyelitis. Similarly, despite significant efforts to create functional tissue-engineered organs, clinical success is often hindered by insufficient oxygen diffusion and poor vascularization. To overcome these shortcomings, we previously used the oxygen carrier perfluorooctane (PFO) to develop PFO emulsion-loaded hollow microparticles (PFO-HPs). PFO-HPs act as a local oxygen source that increase cell viability and maintains the osteogenic differentiation potency of human periosteum-derived cells (hPDCs) under hypoxic conditions. In the present study, we used a miniature pig model of mandibular osteomyelitis to investigate bone regeneration using hPDCs seeded on PFO-HPs (hPDCs/PFO-HP) or hPDCs seeded on phosphate-buffered saline (PBS)-HPs (hPDCs/PBS-HP). Osteomyelitis is characterized by a series of microbial invasion, vascular disruption, bony necrosis, and sequestrum formation due to impaired host defense response. Sequential plain radiography, computed tomography (CT), and 3D reconstructed CT images revealed new bone formation was more advanced in defects that had been implanted with the hPDCs/PFO-HPs than in defects implanted with the hPDCs/PBS-HP. Thus, PFO-HPs are a promising tissue engineering approach to repair challenging bone defects and regenerate structurally organized bone tissue with 3D architecture.
Collapse
Affiliation(s)
- Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae Seok Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University and Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Chul Baik
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| |
Collapse
|
270
|
Zhu X, Zhang K, Lu K, Shi T, Shen S, Chen X, Dong J, Gong W, Bao Z, Shi Y, Ma Y, Teng H, Jiang Q. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:170. [PMID: 31168451 DOI: 10.21037/atm.2019.03.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Osteomyelitis is a severe bone infection and typically leads to progressive bone resorption, destruction and dysfunction. Pyroptosis is a form of programmed cell death involved in various infectious diseases. However, the identification of pyroptosis and the role it plays in osteomyelitis remains to be clarified. In this study, we investigated the expression of pyroptosis-associated proteins in osteomyelitis and the effects of inhibiting pyroptosis on S. aureus-induced osteomyelitis both in vitro and in vivo. Methods The expression of pyroptosis-associated protein-NLRP3 (NLR Family Pyrin Domain Containing 3), Caspase1 and GSDMD (GasderminD) were examined in murine and human infectious bone fragments by western blot. Bone destruction was evaluated by microcomputed tomography (µCT). The concentration of inflammatory factors was tested by Enzyme linked Immunosorbent Assay (ELISA). The expression of pyroptosis-associated gene was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Results The expression of pyroptosis-associated proteins in infectious bone fragments from patients with osteomyelitis was significantly higher than uninfected bone. Additionally, in S. aureus-induced murine osteomyelitis model, higher expression of pyroptosis-associated proteins was noticed. Furthermore, the inhibitors of pyroptosis-associated proteins alleviated S. aureus-induced pyroptosis both in vivo and in vitro. More importantly, the inhibition of pyroptosis restored the bone formative property, attenuated the aberrant activation of osteoclast in vitro and reversed bone injury in vivo. Conclusions Our study identified pyroptosis as a key pathway in osteomyelitis and elaborated that the inhibition of pyroptosis could attenuate S. aureus-induced bone destruction in osteomyelitis, providing a potential treatment target to osteomyelitis.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xingren Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wang Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Zhengyuan Bao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yuze Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
271
|
Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 2019; 197:405-416. [PMID: 30708184 DOI: 10.1016/j.biomaterials.2019.01.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
The bone infection osteomyelitis (typically by Staphylococcus aureus) usually requires a multistep procedure of surgical debridement, long-term systemic high-dose antibiotics, and - for larger defects - bone grafting. This, combined with the alarming rise in antibiotic resistance, necessitates development of alternative approaches. Herein, we describe a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials with a regenerative collagen-based scaffold. To maximise efficacy, we utilised bioactive glass, an established osteoconductive material with immense capacity for bone repair, as a delivery platform for copper ions (proven antibacterial, angiogenic, and osteogenic properties). Multifunctional collagen-copper-doped bioactive glass scaffolds (CuBG-CS) were fabricated with favourable microarchitectural and mechanical properties (up to 1.9-fold increase in compressive modulus over CS) within the ideal range for bone tissue engineering. Scaffolds demonstrated antibacterial activity against Staphylococcus aureus (up to 66% inhibition) whilst also enhancing osteogenesis (up to 3.6-fold increase in calcium deposition) and angiogenesis in vitro. Most significantly, when assessed in a chick embryo in vivo model, CuBG-CS not only demonstrated biocompatibility, but also a significant angiogenic and osteogenic response, consistent with in vitro studies. Collectively, these results indicate that the CuBG-CS developed here show potential as a one-step osteomyelitis treatment: reducing infection, whilst enhancing bone healing.
Collapse
|
272
|
Palza H, Zapata PA, Angulo-Pineda C. Electroactive Smart Polymers for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E277. [PMID: 30654487 PMCID: PMC6357059 DOI: 10.3390/ma12020277] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023]
Abstract
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications. This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, 8370456 Santiago, Chile.
| | - Paula Andrea Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, 8350709 Santiago, Chile.
| | - Carolina Angulo-Pineda
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
| |
Collapse
|
273
|
Rappo U, Puttagunta S, Shevchenko V, Shevchenko A, Jandourek A, Gonzalez PL, Suen A, Mas Casullo V, Melnick D, Miceli R, Kovacevic M, De Bock G, Dunne MW. Dalbavancin for the Treatment of Osteomyelitis in Adult Patients: A Randomized Clinical Trial of Efficacy and Safety. Open Forum Infect Dis 2018; 6:ofy331. [PMID: 30648126 PMCID: PMC6326511 DOI: 10.1093/ofid/ofy331] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022] Open
Abstract
Background Osteomyelitis is a challenging infection that can involve 4-6 weeks of intravenous (IV) antibiotics. Dalbavancin, approved for acute bacterial skin and skin structure infections, has potent activity against gram-positive pathogens. This study assessed the efficacy and safety of dalbavancin as a 2-dose regimen for osteomyelitis. Methods This study was a randomized, open-label, comparator-controlled trial in adults with a first episode of osteomyelitis defined by clinical symptoms, radiologic findings, and elevated C-reactive protein. Patients were randomized 7:1 to dalbavancin (1500 mg IV on days 1 and 8) or standard of care (SOC) for osteomyelitis (oral or IV) per investigator judgment for 4-6 weeks. The primary endpoint was clinical response at day 42, defined as recovery without need for additional antibiotics in the clinically evaluable (CE) population. Clinical response was also assessed at day 21, 6 months, and 1 year. Results Eighty patients were randomized to dalbavancin (n = 70) or SOC (n = 10). All had baseline debridement; Staphylococcus aureus was the most common pathogen (60% of patients). Clinical cure at day 42 was seen in 65/67 (97%) and 7/8 (88%) patients in the dalbavancin group and SOC group in the CE population, respectively. Clinical response was similar in the dalbavancin group at day 21 (94%), 6 months, and 1 year (96%). Treatment-emergent adverse events occurred in 10 patients in the dalbavancin group; no patient discontinued treatment due to an adverse event. Conclusions A 2-dose regimen of weekly dalbavancin is effective and well tolerated for the treatment of osteomyelitis in adults. Clinical Trials Registration NCT02685033.
Collapse
Affiliation(s)
- Urania Rappo
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | - Vadym Shevchenko
- Orthopedic and Trauma Department, Cherkasy Regional Hospital, Cherkasy, Ukraine
| | - Alena Shevchenko
- Orthopedic and Trauma Department, Cherkasy Regional Hospital, Cherkasy, Ukraine
| | | | | | - Amy Suen
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | - David Melnick
- Clinical Development, Allergan plc, Madison, New Jersey
| | - Rosa Miceli
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | | | | |
Collapse
|
274
|
Chastain DB, Davis A. Treatment of chronic osteomyelitis with multidose oritavancin: A case series and literature review. Int J Antimicrob Agents 2018; 53:429-434. [PMID: 30537532 DOI: 10.1016/j.ijantimicag.2018.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 01/28/2023]
Abstract
Osteomyelitis remains difficult to treat, typically requiring a prolonged course of intravenous (i.v.) antibiotics. The optimal route and duration of antibiotics remains ill-defined due to limited prospective clinical trials. Oritavancin is a long-acting, semisynthetic lipoglycopeptide antibiotic with rapid concentration-dependent bactericidal activity against many Gram-positive organisms. Favourable pharmacokinetics makes oritavancin an appealing alternative to currently available antibiotics requiring daily infusion to decrease the risk of vascular access complications associated with outpatient antimicrobial therapy. The purpose of this study was to report the outcomes of nine patients with chronic osteomyelitis receiving multidose oritavancin. Using electronic medical records, patients aged ≥18 years treated with i.v. oritavancin between September 2015 and April 2018 at Downtown Dublin Wound Center, a hospital-owned outpatient wound care clinic and infusion centre affiliated with Meadows Regional Health System in Dublin, GA, were identified. Of 12 cases reviewed, 9 patients received at least two doses of i.v. oritavancin for the treatment of chronic osteomyelitis. All nine patients experienced clinical cure at 6-month follow-up after the last dose of oritavancin. Multidose oritavancin was found to be a safe and efficacious option for chronic osteomyelitis when treatment options are limited by patient complexities or barriers in their ability to access healthcare services.
Collapse
Affiliation(s)
- Daniel B Chastain
- University of Georgia College of Pharmacy, 1000 Jefferson Street, Albany, GA 31701, USA.
| | - Anthony Davis
- Downtown Dublin Wound Center, Meadows Regional Medical Center, Dublin, GA 31021, USA
| |
Collapse
|