251
|
Tao J, Zhang Y, Shen A, Yang Y, Diao L, Wang L, Cai D, Hu Y. Injectable Chitosan-Based Thermosensitive Hydrogel/Nanoparticle-Loaded System for Local Delivery of Vancomycin in the Treatment of Osteomyelitis. Int J Nanomedicine 2020; 15:5855-5871. [PMID: 32848394 PMCID: PMC7428380 DOI: 10.2147/ijn.s247088] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Osteomyelitis, particularly chronic osteomyelitis, remains a major challenge for orthopedic surgeons. The traditional treatment for osteomyelitis, which involves antibiotics and debridement, does not provide a complete solution for infection and bone repair. Antibiotics such as vancomycin (VCM) are commonly used to treat osteomyelitis in clinical settings. VCM use is limited by a lack of effective delivery methods that provide sustained, high doses to entirely fill irregular bone tissue to treat infections. Methods We engineered a chitosan (CS)-based thermosensitive hydrogel to produce a VCM-nanoparticle (NPs)/Gel local drug delivery system. The VCM-NPs were formed with quaternary ammonium chitosan and carboxylated chitosan nanoparticles (VCM-NPs) by positive and negative charge adsorption to enhance the encapsulation efficiency and drug loading of VCM, with the aim of simultaneously preventing infection and repairing broken bones. This hydrogel was evaluated in a rabbit osteomyelitis model. Results The VCM-NPs had high encapsulation efficiency and drug loading, with values of 60.1±2.1% and 24.1±0.84%, respectively. When embedded in CS-Gel, the VCM-NPs maintained their particle size and morphology, and the injectability and thermosensitivity of the hydrogel, which were evaluated by injectability test and rheological measurement, were retained. The VCM-NPs/Gel exhibited sustained release of VCM over 26 days. In vitro tests revealed that the VCM-NPs/Gel promoted osteoblast proliferation and activity against Staphylococcus aureus. In vivo, VCM-NPs/Gel (with 10 mg vancomycin per rabbit) was used to treat rabbits with osteomyelitis. The VCM-NPs/Gel showed excellent anti-infection properties and accelerating bone repair under osteomyelitis conditions. Conclusion The reported multifunctional NPs hydrogel system for local antibiotic delivery (VCM-NPs/Gel) showed bone regeneration promotion and anti-infection properties, demonstrating significant potential as a scaffold for effective treatment of osteomyelitis.
Collapse
Affiliation(s)
- Jin Tao
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, People's Republic of China
| | - Yang Zhang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ao Shen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yunxu Yang
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, People's Republic of China
| | - Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Luye Wang
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, People's Republic of China
| | - Danwei Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Zhejiang Pharmaceutical College, Ningbo, Zhejiang, People's Republic of China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
252
|
Kang J, Dietz MJ, Hughes K, Xing M, Li B. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus. J Antimicrob Chemother 2020; 74:1578-1585. [PMID: 30778552 DOI: 10.1093/jac/dkz053] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Bone and joint infections caused by Staphylococcus aureus are becoming increasingly difficult to treat due to rising antibiotic resistance, resilient biofilms and intracellular survival of S. aureus. It has been challenging to identify and develop antimicrobial agents that can be used to kill extracellular and intracellular bacteria while having limited toxicity towards host cells. In addressing this challenge, this study investigates the antimicrobial efficacy and toxicity of silver nanoparticles (AgNPs). METHODS Intracellular bacteria were generated using a co-culture model of human osteoblast cells and S. aureus. Extracellular and intracellular S. aureus were treated with AgNPs, antibiotics and their combinations, and numbers of colonies were quantified. Toxicity of AgNPs against human osteoblast cells was determined by quantifying the number of viable cells after treatment. RESULTS AgNPs demonstrated excellent antimicrobial activity against extracellular S. aureus with a 100% killing efficacy at concentrations as low as 56 μM, along with a high intracellular killing efficacy of 76% at 371 μM. AgNPs were non-toxic or slightly toxic towards human osteoblasts at the concentrations studied (up to 927 μM). Moreover, smaller-sized (40 nm) AgNPs were more efficacious in killing bacteria compared with their larger-sized (100 nm) counterparts and synergistic antimicrobial effects against extracellular bacteria were observed when AgNPs were combined with gentamicin. CONCLUSIONS AgNPs and their combination with antibiotics have demonstrated high extracellular and intracellular bacterial killing and presented unique aspects for potential clinical applications, especially for chronic and recurrent infections where intracellular bacteria may be the cause.
Collapse
Affiliation(s)
- Jason Kang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Matthew J Dietz
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Krystal Hughes
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
- The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV, USA
- Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
253
|
Scoble PJ, Reilly J, Tillotson GS. Real-World Use of Oritavancin for the Treatment of Osteomyelitis. Drugs Real World Outcomes 2020; 7:46-54. [PMID: 32588387 PMCID: PMC7334326 DOI: 10.1007/s40801-020-00194-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteomyelitis is a difficult-to-treat disease that can require both surgical debridement and a prolonged course of antimicrobial therapy. Current standard of care for the antimicrobial treatment of osteomyelitis is fraught with multiple challenges and limitations. Patients typically require the insertion of an indwelling catheter for single or multiple daily intravenous antibiotic infusions for up to 6 weeks. Currently, there are treatment guidelines for only vertebral osteomyelitis, indicating the complexity of the condition. Oritavancin is a long-acting, second-generation lipoglycopeptide, administered intravenously once per week, which has potential to be a useful alternative in the treatment of osteomyelitis. This article reviews occurrence and outcomes of off-label oritavancin use for treatment of osteomyelitis as described in case reports. Analysis included 23 patients treated for osteomyelitis with single- or multiple-dose oritavancin. Overall, clinical cure or improvement was achieved in 87% of patients, and adverse events were mild and reported in only two patients. Clinical efficacy was demonstrated in 81.8% of methicillin-resistant Staphylococcus aureus (MRSA), 71.4% of methicillin-sensitive S. aureus (MSSA), 50% of vancomycin-resistant Enterococcus (VRE), and in the single case of Streptococcus pyogenes. Oritavancin has shown efficacy against Gram-positive pathogens in osteomyelitis, and offers a possible outpatient treatment option for osteomyelitis patients. Future studies are needed to determine dosing frequency in osteomyelitis patients.
Collapse
Affiliation(s)
| | - Joseph Reilly
- Atlanticare Regional Medical Center, Pomona, NJ, USA
| | | |
Collapse
|
254
|
Muthukrishnan G, Soin S, Beck CA, Grier A, Brodell JD, Lee CC, Ackert-Bicknell CL, Lee FEH, Schwarz EM, Daiss JL. A Bioinformatic Approach to Utilize a Patient's Antibody-Secreting Cells against Staphylococcus aureus to Detect Challenging Musculoskeletal Infections. Immunohorizons 2020; 4:339-351. [PMID: 32571786 DOI: 10.4049/immunohorizons.2000024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Noninvasive diagnostics for Staphylococcus aureus musculoskeletal infections (MSKI) remain challenging. Abs from newly activated, pathogen-specific plasmablasts in human blood, which emerge during an ongoing infection, can be used for diagnosing and tracking treatment response in diabetic foot infections. Using multianalyte immunoassays on medium enriched for newly synthesized Abs (MENSA) from Ab-secreting cells, we assessed anti-S. aureus IgG responses in 101 MSKI patients (63 culture-confirmed S. aureus, 38 S. aureus-negative) and 52 healthy controls. MENSA IgG levels were assessed for their ability to identify the presence and type of S. aureus MSKI using machine learning and multivariate receiver operating characteristic curves. Eleven S. aureus-infected patients were presented with prosthetic joint infections, 15 with fracture-related infections, 5 with native joint septic arthritis, 15 with diabetic foot infections, and 17 with suspected orthopedic infections in the soft tissue. Anti-S. aureus MENSA IgG levels in patients with non-S. aureus infections and healthy controls were 4-fold (***p = 0.0002) and 8-fold (****p < 0.0001) lower, respectively, compared with those with culture-confirmed S. aureus infections. Comparison of MENSA IgG responses among S. aureus culture-positive patients revealed Ags predictive of active MSKI (IsdB, SCIN, Gmd) and Ags predictive of MSKI type (IsdB, IsdH, Amd, Hla). When combined, IsdB, IsdH, Gmd, Amd, SCIN, and Hla were highly discriminatory of S. aureus MSKI (area under the ROC curve = 0.89 [95% confidence interval 0.82-0.93, p < 0.01]). Collectively, these results demonstrate the feasibility of a bioinformatic approach to use a patient's active immune proteome against S. aureus to diagnose challenging MSKI.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Sandeep Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - James D Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Charles C Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopedics, University of Colorado Denver, Denver, CO 80045; and
| | - Frances Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642; .,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
255
|
Wang Y, Lin Y, Cheng C, Chen P, Zhang P, Wu H, Li K, Deng Y, Qian J, Zhang X, Yu B. NF-κB/TWIST1 Mediates Migration and Phagocytosis of Macrophages in the Mice Model of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Microbiol 2020; 11:1301. [PMID: 32595631 PMCID: PMC7304240 DOI: 10.3389/fmicb.2020.01301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infection-induced osteomyelitis is a great challenge in clinic treatment. Identification of the essential genes and biological processes that are specifically changed in mononuclear cells at an early stage of S. aureus osteomyelitis is of great clinical significance. Based on transcriptional dataset GSE16129 available publicly, a bioinformatic analysis was performed to identify the differentially expressed genes of osteomyelitis caused by S. aureus infection. ERBB2, TWIST1, and NANOG were screened out as the most valuable osteomyelitis-related genes (OMRGs). A mice model of implant-associated S. aureus osteomyelitis was used to verify the above genes. We found significantly up-regulated expression of TWIST1 in macrophages and accumulation of macrophages around the infected implant. Meanwhile, S. aureus infection increased the expression of TWIST1, MMP9, and MMP13, and stimulated the migration and phagocytosis function of Raw 264.7 cells. Additionally, knock-down of the expression of TWIST1 by siRNA could significantly down-regulate MMP9 and MMP13 and suppress the migration and phagocytosis ability of macrophages in response to S. aureus infection. Furthermore, we found that NF-κB signaling was activated in Raw 264.7 cells by S. aureus and that inhibition of NF-κB signaling by Bay11-7082 blocked the expression of TWIST1, MMP9, and MMP13 as well as cell migration and phagocytosis evoked by S. aureus. Our findings demonstrate that NF-κB/TWIST1 is necessary for migration and phagocytosis of macrophages in response to S. aureus infection. Our study highlights the essential role of NF-κB/TWIST1 in early innate immune response to S. aureus infection in bone.
Collapse
Affiliation(s)
- Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihuang Lin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangtian Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiqun Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jikun Qian
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
256
|
Landersdorfer CB, Kinzig M, Höhl R, Kempf P, Nation RL, Sörgel F. Physiologically Based Population Pharmacokinetic Modeling Approach for Ciprofloxacin in Bone of Patients Undergoing Orthopedic Surgery. ACS Pharmacol Transl Sci 2020; 3:444-454. [PMID: 32566910 DOI: 10.1021/acsptsci.0c00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/22/2023]
Abstract
Ciprofloxacin is highly active against bacteria that commonly cause bone infections. However, the time-course of ciprofloxacin in bone has not been characterized using population pharmacokinetic modeling. Thirty-nine patients received a 1-h infusion of 400 mg of ciprofloxacin before orthopedic surgery. Blood and bone samples were collected at 0.5 to 20 h following the start of the infusion. Bone samples were separated into cortical and cancellous bone and pulverized under liquid nitrogen using a cryogenic mill. Ciprofloxacin in plasma, and cortical and cancellous bone was quantified by liquid chromatography-tandem mass spectrometry. A physiologically based pharmacokinetic modeling approach was utilized to describe the concentration-time profiles in plasma and bone. Ciprofloxacin concentrations ranged from 0.176 to 5.98 mg/L (median, 1.67; density, 1.99 g/cm3) in cortical, and 0.224 to 14.6 mg/L (median, 1.22; 1.92 g/cm3) in cancellous bone. The average observed cortical bone/plasma concentration ratio was 0.67 at 0.5 to 2 h (n = 7) and 5.1 at 13 to 20 h (n = 9). For cancellous bone the respective average ratios were 0.77 and 4.4. The population PK model included a central (blood) compartment, two peripheral tissue compartments, and compartments for the organic and inorganic (hydroxyapatite) matrix in cortical and cancellous bone. The population mean ciprofloxacin clearance was 20.7 L/h. The estimated partition coefficients of the organic bone matrix were 3.39 for cortical and 5.11 for cancellous bone. Ciprofloxacin achieved higher concentrations in bone than plasma. Slow redistribution from bone to plasma may have been due to binding to the inorganic bone matrix. The developed model presents a step toward optimized antibiotic dosing in osteomyelitis.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- IBMP-Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, 90562, Germany.,Centre for Medicine Use and Safety, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, 3052, Australia
| | - Martina Kinzig
- IBMP-Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, 90562, Germany
| | - Rainer Höhl
- Institute for Clinical Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical Private University, Nürnberg Hospital, Nürnberg, 90419, Germany
| | - Peter Kempf
- Department of Surgery, Municipal Hospital, Rüsselsheim, 65428, Germany
| | - Roger L Nation
- Centre for Medicine Use and Safety, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, 3052, Australia
| | - Fritz Sörgel
- IBMP-Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, 90562, Germany.,Department of Pharmacology, University of Duisburg-Essen, Essen, 47057, Germany
| |
Collapse
|
257
|
Wan Y, Xu W, Ren X, Wang Y, Dong B, Wang L. Microporous Frameworks as Promising Platforms for Antibacterial Strategies Against Oral Diseases. Front Bioeng Biotechnol 2020; 8:628. [PMID: 32596233 PMCID: PMC7304413 DOI: 10.3389/fbioe.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Nowadays, the heavy burden of oral diseases such as dental caries, periodontitis, endodontic infections, etc., and their consequences on the patients' quality of life indicate a strong need for developing effective therapies. Bacterial infections played an important role in the field of oral diseases, in-depth insight of such oral diseases have given rise to the demand for antibacterial therapeutic strategies. Recently, microporous frameworks have attracted tremendous interest in antibacterial application due to their well-defined porous structures for drug delivery. In addition, intensive efforts have been made to enhance the antibacterial performance of microporous frameworks, such as ion doping, photosensitizer incorporation as building blocks, and surface modifications. This review article aims on the major recent developments of microporous frameworks for antibacterial applications against oral diseases. The first part of this paper puts concentration on the cutting-edge researches on the versatile antibacterial strategies of microporous materials via drug delivery, inherent activity, and structural modification. The second part discusses the antibacterial applications of microporous frameworks against oral diseases. The applications of microporous frameworks not only have promising therapeutic potential to inhibit bacterial plaque-initiated oral infectious diseases, but also have a wide applicability to other biomedical applications.
Collapse
Affiliation(s)
- Yao Wan
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Wenzhou Xu
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xuan Ren
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Yu Wang
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| |
Collapse
|
258
|
Ebineshan K, Pallapati MS, Srikantam A. Occurrence of bacterial biofilm in leprosy plantar ulcers. LEPROSY REV 2020. [DOI: 10.47276/lr.91.2.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
259
|
Pediatric Community-Acquired Bone and Joint Staphylococcus Aureus Infections In Europe: Severe Infections are Associated to Panton-Valentine Leucocidin Presence. Pediatr Infect Dis J 2020; 39:e73-e76. [PMID: 32221170 DOI: 10.1097/inf.0000000000002640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To analyze host and pathogen factors related to disease severity of community-acquired bone and joint infections in children, a cohort of pediatric patients was prospectively recruited from 13 centers in 7 European countries. A total of 85 children were included, 11 (13%) had a severe infection. Panton-Valentine leukocidin-positive isolates were 17%, and 6% of the isolates were methicillin-resistant Staphylococcus aureus. Multivariate analysis identified Panton-Valentine leukocidin presence (adjusted odds ratio, 12.6; P = 0.01) as the only factor independently associated with severe outcome, regardless of methicillin resistance.
Collapse
|
260
|
Therapeutic potential of dalbavancin in a rat model of methicillin-resistant Staphylococcus aureus (MRSA)-osteomyelitis. Int J Antimicrob Agents 2020; 56:106021. [PMID: 32439480 DOI: 10.1016/j.ijantimicag.2020.106021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/02/2023]
Abstract
Bacterial osteomyelitis is a major clinical challenge in human and veterinary patients. This infection is an infrequent but feared complication of orthopedic surgery and is mainly caused by methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to evaluate the efficacy of dalbavancin (dosed for either 7 or 14 days) in an MRSA-osteomyelitis tibial bone model. A total of 39 rats were included in the study. All animals received an inoculum of a clinical strain of MRSA (106 colony-forming units [CFU]) injected into the proximal tibia under general anesthesia. Dalbavancin was injected intraperitoneally for 7 or 14 days in 13 animals each; the remaining 13 animals received saline solution. After treatment, the animals were sacrificed. Infected tibiae were recovered for histological evaluation and microbiological analysis (MRSA count per gram of bone). Rats that received dalbavancin showed a statistically significant reduction of MRSA counts compared with the control group: median 0 CFU/g bone (14 days of dalbavancin) vs. 70 CFU/g bone (7 days of dalbavancin) and 1600 CFU/g bone (control). Histological evaluation showed typical signs of osteomyelitis in the control group, whereas there were no signs of bone infection in 92% of the rats that received 14 days of dalbavancin. According to this model, dalbavancin seems to have good efficacy for treating serious Gram-positive bone infections, including those caused by MRSA.
Collapse
|
261
|
Nosé BD, Boysen WR, Kahokehr AA, Inouye BM, Eward WC, Hendershot EF, Peterson AC. Extirpative Cultures Reveal Infectious Pubic Bone Osteomyelitis in Prostate Cancer Survivors With Urinary-Pubic Symphysis Fistulae (UPF). Urology 2020; 142:221-225. [PMID: 32389815 DOI: 10.1016/j.urology.2020.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the infectious features of patients with urinary pubic symphysis fistula (UPF) and their association with osteomyelitis. METHODS We conducted a review of our quality improvement database for 36 patients with UPF undergoing bone resection and extirpative surgery from October 2012 to January 2019. An assessment of bone and urine cultures was carried out along with surgical, radiologic, and demographic data. We analyzed descriptive statistics and used Fisher Exact Tests and unpaired Welch t tests to assess for associations with positive bone cultures. RESULTS In our cohort, 33 patients (91.7%) had positive bone cultures with the 3 most common organisms being candida (22.0%), enterococcus (18.0%), and pseudomonas (10.0%). There was a correlation between positive preoperative urine culture and positive bone culture (P <.01), with 63.0% of those with positive urine cultures growing the same organism on bone culture. CONCLUSION In this series, 91.7% of patients undergoing extirpative surgery for UPF at our institution have positive bone cultures at time of pubic bone debridement. Additionally, we demonstrate a statistically significant correlation between positive urine cultures and positive bone cultures in these patients. This supports the need for a multidisciplinary approach including infectious disease, orthopedic surgery and reconstructive urology in order to address this complex clinical condition.
Collapse
Affiliation(s)
- Brent D Nosé
- Genitourinary Cancer Survivorship Program, Division of Urology, Duke University Medical Center, Durham, NC
| | - William R Boysen
- Genitourinary Cancer Survivorship Program, Division of Urology, Duke University Medical Center, Durham, NC
| | - Arman A Kahokehr
- Genitourinary Cancer Survivorship Program, Division of Urology, Duke University Medical Center, Durham, NC
| | - Brian M Inouye
- Genitourinary Cancer Survivorship Program, Division of Urology, Duke University Medical Center, Durham, NC
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC
| | | | - Andrew C Peterson
- Genitourinary Cancer Survivorship Program, Division of Urology, Duke University Medical Center, Durham, NC
| |
Collapse
|
262
|
Dearing ME, Burgess SV, Murphy V, Campbell S, Johnston L, Ramsey TD. Prescribing Patterns and Patient Outcomes for Bone and Joint Infections Treated with Cefazolin and Probenecid: A Retrospective Observational Study. Can J Hosp Pharm 2020; 73:202-208. [PMID: 32616946 PMCID: PMC7308159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previous studies have described the use of cefazolin with probenecid to treat uncomplicated skin and soft-tissue infections. Some prescribers are extrapolating from this evidence to treat more invasive infections, which have a greater potential for poor outcomes, including treatment failure that could lead to increased morbidity and mortality. Information supporting cefazolin with probenecid as effective treatment in this context is needed. OBJECTIVES To describe prescribing patterns and outcomes for patients who received cefazolin with probenecid for the treatment of bone and joint infections. METHODS This single-centre retrospective study involved adult outpatients for whom cefazolin and probenecid were prescribed for bone and joint infections between April 1, 2012, and March 31, 2017. Patient charts were reviewed, and data were collected for clinical and microbiological variables using a standardized data collection form. RESULTS In a total of 80 cases, the patient received cefazolin and probenecid for treatment of a bone or joint infection, of which 69 cases met the inclusion criteria. In most cases (n = 67), the patients were treated with cefazolin 2 g IV plus probenecid 1 g PO, both given twice daily. Completion of prescribed treatment occurred in 56 patient cases (81%), resolution of signs and symptoms in 53 (77%), readmission to hospital in 11 (16%), recurrence of infection in 6 (9%), and treatment failure requiring a change in therapy in 7 (10%). CONCLUSIONS The effectiveness of cefazolin and probenecid for the treatment of bone and joint infections appears to be similar to that of standard treatment, as reported in the literature. Antibiotic effectiveness is difficult to determine conclusively in a retrospective analysis, so these results should be interpreted with caution, but they may stimulate further research.
Collapse
Affiliation(s)
- Marci E Dearing
- , RPh, BSc(Pharm), ACPR, PharmD, is with the Pharmacy Department, Nova Scotia Health Authority, Halifax, Nova Scotia
| | - Sarah V Burgess
- , RPh, BSc(Pharm), ACPR, PharmD, is with the Pharmacy Department, Nova Scotia Health Authority, and the College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia
| | - Valerie Murphy
- , RPh, BSc(Pharm), ACPR, is with the Pharmacy Department, Nova Scotia Health Authority, Halifax, Nova Scotia
| | - Samuel Campbell
- , MB BCh, CCFP(EM), DipPEC(SA), FCCHL, is with the Department of Emergency Medicine, Charles V Keating Emergency and Trauma Centre, Central Zone, Nova Scotia Health Authority, Halifax, Nova Scotia
| | - Lynn Johnston
- , MD, MSc, FRCPC, is with the Division of Infectious Diseases, Central Zone, Nova Scotia Health Authority, Halifax, Nova Scotia
| | - Tasha D Ramsey
- , RPh, BSc(Pharm), ACPR, PharmD, is with the Pharmacy Department, Nova Scotia Health Authority, and the College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia
| |
Collapse
|
263
|
He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater 2020; 7:515-525. [PMID: 33149940 PMCID: PMC7597801 DOI: 10.1093/rb/rbaa015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/21/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The repair of infective bone defects is a great challenge in clinical work. It is of vital importance to develop a kind of bone scaffold with good osteogenic properties and long-term antibacterial activity for local anti-infection and bone regeneration. A porous mineralized collagen (MC) scaffold containing poly(d,l-lactide-co-glycolic acid) (PLGA) microspheres loaded with two antibacterial synthetic peptides, Pac-525 or KSL-W was developed and characterized via scanning electron microscopy (SEM), porosity measurement, swelling and mechanical tests. The results showed that the MC scaffold embedded with smooth and compact PLGA microspheres had a positive effect on cell growth and also had antibacterial properties. Through toxicity analysis, cell morphology and proliferation analysis and alkaline phosphatase evaluation, the antibacterial scaffolds showed excellent biocompatibility and osteogenic activity. The antibacterial property evaluated with Staphylococcus aureus and Escherichia coli suggested that the sustained release of Pac-525 or KSL-W from the scaffolds could inhibit the bacterial growth aforementioned in the long term. Our results suggest that the antimicrobial peptides-loaded MC bone scaffold has good antibacterial and osteogenic activities, thus providing a great promise for the treatment of infective bone defects.
Collapse
Affiliation(s)
- Yuzhu He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Yahui Jin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China.,Department of Stomatology, Zhejiang Provincial Hospital of Chinese Medicine, The 9th Street, Economic and Technological Development Zone, Hangzhou 310018, China
| | - Xiaoxia Ying
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| | - Shenglian Yao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| | - Yuanyuan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China.,Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Huiying Liu
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Guowu Ma
- Department of Oral Prosthodontics, School of Stomatology, Dalian Medical University, Lvshun South Road, Lushunkou District, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084, China
| |
Collapse
|
264
|
Abdulrehman T, Qadri S, Skariah S, Sultan A, Mansour S, Azzi J, Haik Y. Boron doped silver-copper alloy nanoparticle targeting intracellular S. aureus in bone cells. PLoS One 2020; 15:e0231276. [PMID: 32275737 PMCID: PMC7147743 DOI: 10.1371/journal.pone.0231276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES Alloyed metallic nanoparticles of silver and copper are effective against intracellular infection. However, systemic toxicity may arise due to the non-specific delivery of the nanoparticles. In addressing the issue, this study deals with the targeting of silver-copper-boron (ACB) nanoparticles to infected osteoblasts, which could decrease systemic toxicity and form the basis of targeting specific markers expressed in bone infections. METHODS ACB nanoparticles were synthesized and conjugated to the Cadherin-11 antibody (OBAb). The effect of targeting nanoparticles against extracellular and intracellular S. aureus was determined by enumeration of bacterial growth. The binding of the targeting nanoparticles to infected osteoblasts as well as the visualization of live/dead bacteria due to treatment was carried out using fluorescence microscopy. MTT assay was used to determine the viability of osteoblasts with different concentrations of the nanoparticles. RESULTS The ACB nanoparticles conjugated to OBAb (ACB-OBAb) were effective against extracellular S. aureus. The ACB-OBAb nanoparticles showed a 1.32 log reduction of intracellular S. aureus at a concentration of 1mg/L. The ACB-OBAb nanoparticles were able to bind to the infected osteoblast and showed toxicity to osteoblasts at levels ≥20mg/L. Also, the percentage of silver, copper, and boron in the nanoparticles determined the effectiveness of their antibacterial activity. CONCLUSION The ACB-OBAb nanoparticles were able to target the osteoblasts and demonstrated significant antibacterial activity against intracellular S. aureus. Targeting shows promise as a strategy to target specific markers expressed on infected osteoblasts for efficient nanoparticle delivery, and further animal studies are recommended to test its efficacy in vivo.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shahnaz Qadri
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Sini Skariah
- Weil Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Ali Sultan
- Weil Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Said Mansour
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Jamil Azzi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, United States of America
| | - Yousef Haik
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
265
|
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1151-1163. [PMID: 32194053 DOI: 10.1016/j.ajpath.2020.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023]
Abstract
Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, Davos, Switzerland; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | | | | | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
266
|
Silago V, Mushi MF, Remi BA, Mwayi A, Swetala S, Mtemisika CI, Mshana SE. Methicillin resistant Staphylococcus aureus causing osteomyelitis in a tertiary hospital, Mwanza, Tanzania. J Orthop Surg Res 2020; 15:95. [PMID: 32138758 PMCID: PMC7059711 DOI: 10.1186/s13018-020-01618-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background Culture results of fluid/pus from sinuses or open wound are not reliable in establishing the causative agent of osteomyelitis due to the high chances of contamination of superficial contaminants. Bone fragments obtained during surgery have been recommended as ideal sample to establish pathogens causing osteomyelitis. This study investigated pathogens causing osteomyelitis among patients undergoing orthopedic surgical treatment at Bugando Medical Centre. Methods A cross-sectional hospital-based study was conducted from December 2017 to July 2018 among 74 patients with osteomyelitis who underwent surgical treatments at Bugando Medical Centre, Mwanza, Tanzania. Bone fragments were collected using sterile 10 ml of in-house prepared brain heart infusion broth (Oxoid, UK) during surgery. Specimens were processed according to standard operating procedures within an hour of collection. Data were analyzed using STATA 13.0. Results The median age of study participants was 12 with inter quartile range of 8–20 years. The majority 45 (60.8%) of participants were male. All 74 non-repetitive bone fragment specimens had positive culture, of which 17 had dual growth of bacteria resulting to 91 bacterial isolates. Out of 91 isolates, 63 (85.1%) were Staphylococcus aureus (S. aureus) of which 18 (28.6%) were confirmed to be methicillin resistant Staphylococcus aureus strains. Fever was significantly associated with Staphylococcal osteomyelitis (100% vs. 79.6%, p = 0.029). Conclusion About one third of cases of Staphylococcal osteomyelitis in the current study were caused by methicillin resistant Staphylococcus aureus. There is a need of tailoring antibiotic management of osteomyelitis based on culture and sensitivity results for the better treatment outcome of the patients.
Collapse
Affiliation(s)
- Vitus Silago
- Microbiology and Immunology department, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Martha F Mushi
- Microbiology and Immunology department, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania.
| | - Boniface A Remi
- Microbiology and Immunology department, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Alute Mwayi
- Microbiology and Immunology department, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| | - Stephen Swetala
- Department of Surgery, Bugando Medical Centre, P. O. Box 1370, Mwanza, Tanzania
| | - Conjester I Mtemisika
- Central Pathology Laboratory, Bugando Medical Centre, P. O. Box 1370, Mwanza, Tanzania
| | - Stephen E Mshana
- Microbiology and Immunology department, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P. O. Box 1464, Mwanza, Tanzania
| |
Collapse
|
267
|
Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. Electroactive 3D Printed Scaffolds Based on Percolated Composites of Polycaprolactone With Thermally Reduced Graphene Oxide for Antibacterial and Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E428. [PMID: 32121237 PMCID: PMC7152842 DOI: 10.3390/nano10030428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Applying electrical stimulation (ES) could affect different cellular mechanisms, thereby producing a bactericidal effect and an increase in human cell viability. Despite its relevance, this bioelectric effect has been barely reported in percolated conductive biopolymers. In this context, electroactive polycaprolactone (PCL) scaffolds with conductive Thermally Reduced Graphene Oxide (TrGO) nanoparticles were obtained by a 3D printing method. Under direct current (DC) along the percolated scaffolds, a strong antibacterial effect was observed, which completely eradicated S. aureus on the surface of scaffolds. Notably, the same ES regime also produced a four-fold increase in the viability of human mesenchymal stem cells attached to the 3D conductive PCL/TrGO scaffold compared with the pure PCL scaffold. These results have widened the design of novel electroactive composite polymers that could both eliminate the bacteria adhered to the scaffold and increase human cell viability, which have great potential in tissue engineering applications.
Collapse
Affiliation(s)
- Carolina Angulo-Pineda
- Department of Chemical Engineering and Biotechnology and Materials, University of Chile, Santiago 8370456, Chile
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, Santiago 8370456, Chile
| | - Kasama Srirussamee
- Department of Biomedical Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand;
| | - Patricia Palma
- Department of Pathology and Oral Medicine, University of Chile, Santiago 8380492, Chile;
| | | | - Sarah H. Cartmell
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Humberto Palza
- Department of Chemical Engineering and Biotechnology and Materials, University of Chile, Santiago 8370456, Chile
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
268
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti-Infective Application of Graphene-Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9:e1901375. [PMID: 31894648 DOI: 10.1002/adhm.201901375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/16/2019] [Indexed: 12/19/2022]
Abstract
The increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene-like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad-spectrum bactericidal activity against Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant-related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
269
|
In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times. Diagn Microbiol Infect Dis 2020; 96:114901. [DOI: 10.1016/j.diagmicrobio.2019.114901] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 01/27/2023]
|
270
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti‐Infective Application of Graphene‐Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9. [DOI: doi.org/10.1002/adhm.201901375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 09/08/2023]
Abstract
AbstractThe increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene‐like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad‐spectrum bactericidal activity against Gram (−) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant‐related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
271
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
272
|
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 2020; 8:2653-2665. [DOI: 10.1039/d0bm00140f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study shows the development of a biodegradable bi-functional composite scaffold that can reduce bacterial infection, while promotes bone regeneration in osteomyelitis, without the need for revision surgery.
Collapse
Affiliation(s)
- Amit G. Krishnan
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Raja Biswas
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| | - Manitha B. Nair
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- India
| |
Collapse
|
273
|
Ahmad F, Al-Douri Y, Kumar D, Ahmad S. Metal-oxide powder technology in biomedicine. METAL OXIDE POWDER TECHNOLOGIES 2020:121-168. [DOI: 10.1016/b978-0-12-817505-7.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
274
|
Shi M, Zhang P, Zhao Q, Shen K, Qiu Y, Xiao Y, Yuan Q, Zhang Y. Dual Functional Monocytes Modulate Bactericidal and Anti-Inflammation Process for Severe Osteomyelitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905185. [PMID: 31880088 DOI: 10.1002/smll.201905185] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Osteomyelitis is an inflammatory bone disease caused by infection microorganisms which leads to progressive bone destruction and loss. Drug resistance and inflammatory damage make it urgent to develop new dual-functional therapies. Based on the powerful bactericidal effect of monocyte/macrophage cells by nature, a functional monocyte with programed anti-inflammatory ability is promising for osteomyelitis treatment. Herein, gold nanocage (GNC)-modified monocytes are developed which contain aspirin to realize the controlled antibacterial and anti-inflammatory process for bone infection treatment effectively. Aspirin@GNC-laden monocytes inherit the biological functions of origin monocytes such as chemotaxis to bacteria, differentiation potential, and phagocytic ability. The controlled release of aspirin from GNC has a beneficial effect on improving the rate and amount of bone regeneration after the anti-infection stage due to its ability to suppress the activity of natural immunity and induce osteoblast differentiation during the treatment of osteomyelitis. The present work described here is the first to utilize living monocytes to achieve a dual effect to antibacteria and anti-inflammation in a time-oriented and programed way, and provides an inspiration for future therapy based on this concept.
Collapse
Affiliation(s)
- Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Peng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Kailun Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yun Qiu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
275
|
Depypere M, Kuehl R, Metsemakers WJ, Senneville E, McNally MA, Obremskey WT, Zimmerli W, Atkins BL, Trampuz A. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma 2020; 34:30-41. [PMID: 31567902 PMCID: PMC6903362 DOI: 10.1097/bot.0000000000001626] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
Abstract
Fracture-related infection (FRI) is a major complication in musculoskeletal trauma and one of the leading causes of morbidity. Standardization of general treatment strategies for FRI has been poor. One of the reasons is the heterogeneity in this patient population, including various anatomical locations, multiple fracture patterns, different degrees of soft-tissue injury, and different patient conditions. This variability makes treatment complex and hard to standardize. As these infections are biofilm-related, surgery remains the cornerstone of treatment, and this entails multiple key aspects (eg, fracture fixation, tissue sampling, debridement, and soft-tissue management). Another important aspect, which is sometimes less familiar to the orthopaedic trauma surgeon, is systemic antimicrobial therapy. The aim of this article is to summarize the available evidence and provide recommendations for systemic antimicrobial therapy with respect to FRI, based on the most recent literature combined with expert opinion. LEVEL OF EVIDENCE:: Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Richard Kuehl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | | | - Eric Senneville
- Department of Infectious Diseases, Gustave Dron Hospital, University of Lille, Lille, France
| | - Martin A. McNally
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - William T. Obremskey
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN
| | - Werner Zimmerli
- Kantonsspital Baselland, Interdisciplinary Unit for Orthopedic Infections, Liestal, Switzerland; and
| | - Bridget L. Atkins
- The Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
276
|
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep 2019; 17:395-404. [PMID: 31721069 PMCID: PMC7344867 DOI: 10.1007/s11914-019-00548-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the primary pathogen responsible for osteomyelitis, which remains a major healthcare burden. To understand its dominance, here we review the unique pathogenic mechanisms utilized by S. aureus that enable it to cause incurable osteomyelitis. RECENT FINDINGS Using an arsenal of toxins and virulence proteins, S. aureus kills and usurps immune cells during infection, to produce non-neutralizing pathogenic antibodies that thwart adaptive immunity. S. aureus also has specific mechanisms for distinct biofilm formation on implants, necrotic bone tissue, bone marrow, and within the osteocyte lacuno-canicular networks (OLCN) of live bone. In vitro studies have also demonstrated potential for intracellular colonization of osteocytes, osteoblasts, and osteoclasts. S. aureus has evolved a multitude of virulence mechanisms to achieve life-long infection of the bone, most notably colonization of OLCN. Targeting S. aureus proteins involved in these pathways could provide new targets for antibiotics and immunotherapies.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
277
|
Memar MY, Adibkia K, Farajnia S, Kafil HS, Maleki Dizaj S, Ghotaslou R. Biocompatibility, cytotoxicity and antimicrobial effects of gentamicin-loaded CaCO3 as a drug delivery to osteomyelitis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
278
|
Cosma S, Borella F, Carosso A, Ingala A, Fassio F, Robba T, Maina A, Bertero L, Benedetto C. Osteomyelitis of the pubic symphysis caused by methicillin-resistant Staphylococcus aureus after vaginal delivery: a case report and literature review. BMC Infect Dis 2019; 19:952. [PMID: 31703612 PMCID: PMC6842141 DOI: 10.1186/s12879-019-4595-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteomyelitis of the pubic symphysis is a rare cause of pelvic pain after delivery, mainly caused by Staphylococcus aureus and Pseudomonas aeruginosa. The clinical context is the same as the more common diastasis of the pubic bone, but the presence of intense local pain in association with fever should prompt further clinical work-up based on blood chemistry, microbiology and diagnostic imaging. We report the first case of methicillin-resistant Staphylococcus aureus osteomyelitis of the pubic symphysis occuring after the delivery. CASE PRESENTATION A 39-year-old woman developed pain over the pubic bone 12 h after the delivery. After 72 h fever rose and laboratory examination showed elevation of C-reactive protein and procalcitonin levels. Pelvic x-rays and magnetic resonance showed pubic diastasis, joint effusion, tiny irregularities of articular surfaces and, severe bone edema. The patient was started on broad spectrum intravenous (IV) antibiotics (piperacillin-tazobactam) and then replaced to IV vancomycin and oral levofloxacin based on antibiogram result. She was then discharged with oral antibiotic therapy and fully recovered. CONCLUSIONS Due to the rarity of this disease, we compared our experience with the other cases of osteomyelitis of pubic symphysis occurring in peri-postpartum reported in the literature. The course of osteomyelitis was favourable in all patients, and only in one case an additional orthopedic procedure for symphysis fixation was necessary. Knowledge of this rare condition is important to enable prompt diagnosis and treatment.
Collapse
Affiliation(s)
- Stefano Cosma
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy.
| | - Andrea Carosso
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Agata Ingala
- Gynecology and Obstetrics 2, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Federica Fassio
- Gynecology and Obstetrics 2, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Tiziana Robba
- Department of Radiology, City of Health and Science, CTO Hospital, Torino, Italy
| | - Aldo Maina
- General Medicine Unit, City of Health and Science, Sant'Anna Hospital, Torino, Italy
| | - Luca Bertero
- Department of Medical Sciences, City of Health and Science, University of Torino, Torino, Italy
| | - Chiara Benedetto
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Torino, Torino, Italy
| |
Collapse
|
279
|
Overview of Staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation. Mol Biol Rep 2019; 47:771-784. [DOI: 10.1007/s11033-019-05139-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
280
|
CORR Insights®: What Are the Effects of Irreversible Electroporation on a Staphylococcus aureus Rabbit Model of Osteomyelitis? Clin Orthop Relat Res 2019; 477:2378-2379. [PMID: 31498256 PMCID: PMC6999948 DOI: 10.1097/corr.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
281
|
Exebacase in Addition to Daptomycin Is More Active than Daptomycin or Exebacase Alone in Methicillin-Resistant Staphylococcus aureus Osteomyelitis in Rats. Antimicrob Agents Chemother 2019; 63:AAC.01235-19. [PMID: 31358593 DOI: 10.1128/aac.01235-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteriophage-derived lysins are being developed as anti-infective agents. In an acute osteomyelitis methicillin-resistant Staphylococcus aureus (MRSA) model, rats receiving no treatment or treatment with daptomycin, exebacase (CF-301), or daptomycin plus exebacase had means of 5.13, 4.09, 4.65, and 3.57 log10 CFU/gram of bone, respectively. All treated animals had fewer bacteria than did untreated animals (P ≤ 0.0001), with daptomycin plus exebacase being more active than daptomycin (P = 0.0042) or exebacase (P < 0.001) alone.
Collapse
|
282
|
Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110004. [PMID: 31500052 DOI: 10.1016/j.msec.2019.110004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
Abstract
Biodegradable materials that combine bioactivity with sustained drug release have been proved promising for the treatment and prophylaxis of bone infection. In this work, injection-molded nanocomposites were formulated from poly(3-hydroxybutyrate-co-3-6%hydroxyvalerate) (PHBV), nanodiamond (nD) and nanohydroxyapatite (nHA) loaded with vancomycin (VC). The components were compounded using a rotary evaporator (PHBV/nHA/VC/nD-R) or a spray-dryer (PHBV/nHA/VC/nD-SD). The nanoparticles acted as a nucleating agent, increasing PHBV crystallinity from 57.1% to up to 73.3% (PHBV/nHA/VC/nD-SD). The nHA particles were found to be well distributed on the formulations fracture surface observed by SEM-EDS micrographs. PHBV/nHA/VC/nD-SD presented higher glass transition temperature (18.1 vs 14.8 °C) and stronger interface than PHBV/nHA/VC/nD-R, as determined by dynamic mechanical analysis (DMA). Furthermore, the incorporation of nanoparticles increased PHBV flexural elastic modulus by 34% and match the reported for human bone. Both systems were able to present a sustained release of VC for 22 days, reaching 7.1 ± 1.3%(PHBV/nHA/VC/nD-R) and 4.8 ± 0.6% (PHBV/nHA/VC/nD-SD). VC presented antibacterial activity even after being processed at 178 °C in an injection molding machine. Moreover, in vitro assays showed a good adhesion and growth of cells on the specimens and suggested a non-cytotoxic and non-cytostatic behavior. These findings indicate that these systems can be further explored as bone defect filling material.
Collapse
|
283
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
284
|
G-CSF partially mediates bone loss induced by Staphylococcus aureus infection in mice. Clin Sci (Lond) 2019; 133:1297-1308. [PMID: 31175224 DOI: 10.1042/cs20181001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment. The present study aimed to elucidate how S. aureus infection in bone might induce bone loss. The C57BL/6 mice were injected with S. aureus (106 CFU/ml, 100 μl) or with the same amount of vehicle (control) via the tail vein. Microcomputed tomography (microCT) analysis showed bone loss progressing from week 1 to week 5 after infection, accompanied by a decreased number of osteocalcin-positive stained osteoblasts and the suppressed mRNA expression of Runx2 and osteocalcin. Transcriptome profiles of GSE30119 were downloaded and analyzed to determine the differences in expression of inflammatory factors between patients with S. aureus infected osteomyelitis and healthy controls, the data showed significantly higher mRNA expression of granulocyte colony-stimulating factor (G-CSF) in the whole blood from patients with S. aureus infection. Enzyme-linked immunosorbent assay (ELISA) analysis confirmed an increased level of G-CSF in the bone marrow and serum from S. aureus infected mice, which might have been due to the increased amount of F4/80+ macrophages. Interestingly, G-CSF neutralizing antibody treatment significantly rescued the bone loss after S. aureus infection, as evidenced by its roles in improving BV/TV and preserving osteocalcin- and osterix-positive stained cells. Importantly, we found that G-CSF level was significantly up-regulated in the serum from osteomyelitis patients infected by S. aureus Together, S. aureus infection might suppress the function of osteoblastic cells and induce progressive bone loss by up-regulating the level G-CSF, suggesting a therapeutic potential for G-CSF neutralization in combating bone loss in S. aureus osteomyelitis.
Collapse
|
285
|
Hwang SC, Hwang DS, Kim HY, Kim MJ, Kang YH, Byun SH, Rho GJ, Lee HJ, Lee HC, Kim SH, Baik SC, Park JS, Oh SH, Byun JH. Development of bone regeneration strategies using human periosteum-derived osteoblasts and oxygen-releasing microparticles in mandibular osteomyelitis model of miniature pig. J Biomed Mater Res A 2019; 107:2183-2194. [PMID: 31116505 DOI: 10.1002/jbm.a.36728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Hypoxia and limited vascularization inhibit bone growth and recovery after surgical debridement to treat osteomyelitis. Similarly, despite significant efforts to create functional tissue-engineered organs, clinical success is often hindered by insufficient oxygen diffusion and poor vascularization. To overcome these shortcomings, we previously used the oxygen carrier perfluorooctane (PFO) to develop PFO emulsion-loaded hollow microparticles (PFO-HPs). PFO-HPs act as a local oxygen source that increase cell viability and maintains the osteogenic differentiation potency of human periosteum-derived cells (hPDCs) under hypoxic conditions. In the present study, we used a miniature pig model of mandibular osteomyelitis to investigate bone regeneration using hPDCs seeded on PFO-HPs (hPDCs/PFO-HP) or hPDCs seeded on phosphate-buffered saline (PBS)-HPs (hPDCs/PBS-HP). Osteomyelitis is characterized by a series of microbial invasion, vascular disruption, bony necrosis, and sequestrum formation due to impaired host defense response. Sequential plain radiography, computed tomography (CT), and 3D reconstructed CT images revealed new bone formation was more advanced in defects that had been implanted with the hPDCs/PFO-HPs than in defects implanted with the hPDCs/PBS-HP. Thus, PFO-HPs are a promising tissue engineering approach to repair challenging bone defects and regenerate structurally organized bone tissue with 3D architecture.
Collapse
Affiliation(s)
- Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae Seok Hwang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University and Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| | - Sung-Hoon Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Chul Baik
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, Gyeongsang National University School of Medicine, Institute of Health Sciences, Jinju, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,The Korean Society of Maxillofacial Aesthetic Surgery, Seoul, Republic of Korea
| |
Collapse
|
286
|
Zhu X, Zhang K, Lu K, Shi T, Shen S, Chen X, Dong J, Gong W, Bao Z, Shi Y, Ma Y, Teng H, Jiang Q. Inhibition of pyroptosis attenuates Staphylococcus aureus-induced bone injury in traumatic osteomyelitis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:170. [PMID: 31168451 DOI: 10.21037/atm.2019.03.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Osteomyelitis is a severe bone infection and typically leads to progressive bone resorption, destruction and dysfunction. Pyroptosis is a form of programmed cell death involved in various infectious diseases. However, the identification of pyroptosis and the role it plays in osteomyelitis remains to be clarified. In this study, we investigated the expression of pyroptosis-associated proteins in osteomyelitis and the effects of inhibiting pyroptosis on S. aureus-induced osteomyelitis both in vitro and in vivo. Methods The expression of pyroptosis-associated protein-NLRP3 (NLR Family Pyrin Domain Containing 3), Caspase1 and GSDMD (GasderminD) were examined in murine and human infectious bone fragments by western blot. Bone destruction was evaluated by microcomputed tomography (µCT). The concentration of inflammatory factors was tested by Enzyme linked Immunosorbent Assay (ELISA). The expression of pyroptosis-associated gene was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Results The expression of pyroptosis-associated proteins in infectious bone fragments from patients with osteomyelitis was significantly higher than uninfected bone. Additionally, in S. aureus-induced murine osteomyelitis model, higher expression of pyroptosis-associated proteins was noticed. Furthermore, the inhibitors of pyroptosis-associated proteins alleviated S. aureus-induced pyroptosis both in vivo and in vitro. More importantly, the inhibition of pyroptosis restored the bone formative property, attenuated the aberrant activation of osteoclast in vitro and reversed bone injury in vivo. Conclusions Our study identified pyroptosis as a key pathway in osteomyelitis and elaborated that the inhibition of pyroptosis could attenuate S. aureus-induced bone destruction in osteomyelitis, providing a potential treatment target to osteomyelitis.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Tianshu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xingren Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Wang Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Zhengyuan Bao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Yuze Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
287
|
Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 2019; 197:405-416. [PMID: 30708184 DOI: 10.1016/j.biomaterials.2019.01.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
The bone infection osteomyelitis (typically by Staphylococcus aureus) usually requires a multistep procedure of surgical debridement, long-term systemic high-dose antibiotics, and - for larger defects - bone grafting. This, combined with the alarming rise in antibiotic resistance, necessitates development of alternative approaches. Herein, we describe a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials with a regenerative collagen-based scaffold. To maximise efficacy, we utilised bioactive glass, an established osteoconductive material with immense capacity for bone repair, as a delivery platform for copper ions (proven antibacterial, angiogenic, and osteogenic properties). Multifunctional collagen-copper-doped bioactive glass scaffolds (CuBG-CS) were fabricated with favourable microarchitectural and mechanical properties (up to 1.9-fold increase in compressive modulus over CS) within the ideal range for bone tissue engineering. Scaffolds demonstrated antibacterial activity against Staphylococcus aureus (up to 66% inhibition) whilst also enhancing osteogenesis (up to 3.6-fold increase in calcium deposition) and angiogenesis in vitro. Most significantly, when assessed in a chick embryo in vivo model, CuBG-CS not only demonstrated biocompatibility, but also a significant angiogenic and osteogenic response, consistent with in vitro studies. Collectively, these results indicate that the CuBG-CS developed here show potential as a one-step osteomyelitis treatment: reducing infection, whilst enhancing bone healing.
Collapse
|
288
|
Palza H, Zapata PA, Angulo-Pineda C. Electroactive Smart Polymers for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E277. [PMID: 30654487 PMCID: PMC6357059 DOI: 10.3390/ma12020277] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023]
Abstract
The flexibility in polymer properties has allowed the development of a broad range of materials with electroactivity, such as intrinsically conductive conjugated polymers, percolated conductive composites, and ionic conductive hydrogels. These smart electroactive polymers can be designed to respond rationally under an electric stimulus, triggering outstanding properties suitable for biomedical applications. This review presents a general overview of the potential applications of these electroactive smart polymers in the field of tissue engineering and biomaterials. In particular, details about the ability of these electroactive polymers to: (1) stimulate cells in the context of tissue engineering by providing electrical current; (2) mimic muscles by converting electric energy into mechanical energy through an electromechanical response; (3) deliver drugs by changing their internal configuration under an electrical stimulus; and (4) have antimicrobial behavior due to the conduction of electricity, are discussed.
Collapse
Affiliation(s)
- Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
- Millenium Nuclei in Soft Smart Mechanical Metamaterials, Universidad de Chile, 8370456 Santiago, Chile.
| | - Paula Andrea Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, 8350709 Santiago, Chile.
| | - Carolina Angulo-Pineda
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370456 Santiago, Chile.
| |
Collapse
|
289
|
Rappo U, Puttagunta S, Shevchenko V, Shevchenko A, Jandourek A, Gonzalez PL, Suen A, Mas Casullo V, Melnick D, Miceli R, Kovacevic M, De Bock G, Dunne MW. Dalbavancin for the Treatment of Osteomyelitis in Adult Patients: A Randomized Clinical Trial of Efficacy and Safety. Open Forum Infect Dis 2018; 6:ofy331. [PMID: 30648126 PMCID: PMC6326511 DOI: 10.1093/ofid/ofy331] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022] Open
Abstract
Background Osteomyelitis is a challenging infection that can involve 4-6 weeks of intravenous (IV) antibiotics. Dalbavancin, approved for acute bacterial skin and skin structure infections, has potent activity against gram-positive pathogens. This study assessed the efficacy and safety of dalbavancin as a 2-dose regimen for osteomyelitis. Methods This study was a randomized, open-label, comparator-controlled trial in adults with a first episode of osteomyelitis defined by clinical symptoms, radiologic findings, and elevated C-reactive protein. Patients were randomized 7:1 to dalbavancin (1500 mg IV on days 1 and 8) or standard of care (SOC) for osteomyelitis (oral or IV) per investigator judgment for 4-6 weeks. The primary endpoint was clinical response at day 42, defined as recovery without need for additional antibiotics in the clinically evaluable (CE) population. Clinical response was also assessed at day 21, 6 months, and 1 year. Results Eighty patients were randomized to dalbavancin (n = 70) or SOC (n = 10). All had baseline debridement; Staphylococcus aureus was the most common pathogen (60% of patients). Clinical cure at day 42 was seen in 65/67 (97%) and 7/8 (88%) patients in the dalbavancin group and SOC group in the CE population, respectively. Clinical response was similar in the dalbavancin group at day 21 (94%), 6 months, and 1 year (96%). Treatment-emergent adverse events occurred in 10 patients in the dalbavancin group; no patient discontinued treatment due to an adverse event. Conclusions A 2-dose regimen of weekly dalbavancin is effective and well tolerated for the treatment of osteomyelitis in adults. Clinical Trials Registration NCT02685033.
Collapse
Affiliation(s)
- Urania Rappo
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | - Vadym Shevchenko
- Orthopedic and Trauma Department, Cherkasy Regional Hospital, Cherkasy, Ukraine
| | - Alena Shevchenko
- Orthopedic and Trauma Department, Cherkasy Regional Hospital, Cherkasy, Ukraine
| | | | | | - Amy Suen
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | - David Melnick
- Clinical Development, Allergan plc, Madison, New Jersey
| | - Rosa Miceli
- Clinical Development, Allergan plc, Madison, New Jersey
| | | | | | | |
Collapse
|
290
|
Chastain DB, Davis A. Treatment of chronic osteomyelitis with multidose oritavancin: A case series and literature review. Int J Antimicrob Agents 2018; 53:429-434. [PMID: 30537532 DOI: 10.1016/j.ijantimicag.2018.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 01/28/2023]
Abstract
Osteomyelitis remains difficult to treat, typically requiring a prolonged course of intravenous (i.v.) antibiotics. The optimal route and duration of antibiotics remains ill-defined due to limited prospective clinical trials. Oritavancin is a long-acting, semisynthetic lipoglycopeptide antibiotic with rapid concentration-dependent bactericidal activity against many Gram-positive organisms. Favourable pharmacokinetics makes oritavancin an appealing alternative to currently available antibiotics requiring daily infusion to decrease the risk of vascular access complications associated with outpatient antimicrobial therapy. The purpose of this study was to report the outcomes of nine patients with chronic osteomyelitis receiving multidose oritavancin. Using electronic medical records, patients aged ≥18 years treated with i.v. oritavancin between September 2015 and April 2018 at Downtown Dublin Wound Center, a hospital-owned outpatient wound care clinic and infusion centre affiliated with Meadows Regional Health System in Dublin, GA, were identified. Of 12 cases reviewed, 9 patients received at least two doses of i.v. oritavancin for the treatment of chronic osteomyelitis. All nine patients experienced clinical cure at 6-month follow-up after the last dose of oritavancin. Multidose oritavancin was found to be a safe and efficacious option for chronic osteomyelitis when treatment options are limited by patient complexities or barriers in their ability to access healthcare services.
Collapse
Affiliation(s)
- Daniel B Chastain
- University of Georgia College of Pharmacy, 1000 Jefferson Street, Albany, GA 31701, USA.
| | - Anthony Davis
- Downtown Dublin Wound Center, Meadows Regional Medical Center, Dublin, GA 31021, USA
| |
Collapse
|