251
|
Sheets SM, Robles-Price AG, McKenzie RME, Casiano CA, Fletcher HM. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3215-38. [PMID: 18508429 PMCID: PMC3403687 DOI: 10.2741/2922] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence.
Collapse
Affiliation(s)
- Shaun M. Sheets
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Antonette G. Robles-Price
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Rachelle M. E. McKenzie
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Carlos A. Casiano
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
- The Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Hansel M. Fletcher
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
252
|
Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production. Infect Immun 2008; 76:2420-7. [PMID: 18391005 DOI: 10.1128/iai.00156-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the actin cytoskeleton and cytokine production among those significantly overpopulated with differentially regulated genes. Consistent with the transcriptional profile, a SerB mutant of P. gingivalis exhibited defective remodeling of actin in epithelial cells. Interaction between gingival epithelial cells and isolated SerB protein resulted in actin rearrangement and an increase in the F/G actin ratio. SerB protein was also required for P. gingivalis to antagonize interleukin-8 accumulation following stimulation of epithelial cells with Fusobacterium nucleatum. SerB is thus capable of modulating host cell signal transduction that impacts the actin cytoskeleton and cytokine production.
Collapse
|
253
|
Xia Q, Wang T, Taub F, Park Y, Capestany CA, Lamont RJ, Hackett M. Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics 2008; 7:4323-37. [PMID: 17979175 DOI: 10.1002/pmic.200700543] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 h within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were overexpressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be underexpressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction.
Collapse
Affiliation(s)
- Qiangwei Xia
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
254
|
Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50. J Bacteriol 2008; 190:2920-32. [PMID: 18263730 DOI: 10.1128/jb.01868-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously described a cell surface anionic polysaccharide (APS) in Porphyromonas gingivalis that is required for cell integrity and serum resistance. APS is a phosphorylated branched mannan that shares a common epitope with posttranslational additions to some of the Arg-gingipains. This study aimed to determine the mechanism of anchoring of APS to the surface of P. gingivalis. APS was purified on concanavalin A affinity columns to minimize the loss of the anchoring system that occurred during chemical extraction. (1)H nuclear magnetic resonance spectroscopy of the lectin-purified APS confirmed the previous structure but also revealed additional signals that suggested the presence of a lipid A. This was confirmed by fatty acid analysis of the APS and matrix-assisted laser desorption ionization-time of flight mass spectrometry of the lipid A released by treatment with sodium acetate buffer (pH 4.5). Hence, P. gingivalis synthesizes two distinct lipopolysaccharide (LPS) macromolecules containing different glycan repeating units: O-LPS (with O-antigen tetrasaccharide repeating units) and A-LPS (with APS repeating units). Nonphosphorylated penta-acylated and nonphosphorylated tetra-acylated species were detected in lipid A from P. gingivalis total LPS and in lipid A from A-LPS. These lipid A species were unique to lipid A derived from A-LPS. Biological assays demonstrated a reduced proinflammatory activity of A-LPS compared to that of total LPS. Inactivation of a putative O-antigen ligase (waaL) at PG1051, which is required for the final step of LPS biosynthesis, abolished the linkage of both the O antigen and APS to the lipid A core of O-LPS and A-LPS, respectively, suggesting that WaaL in P. gingivalis has dual specificity for both O-antigen and APS repeating units.
Collapse
|
255
|
Allhorn M, Olsén A, Collin M. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol 2008; 8:3. [PMID: 18182097 PMCID: PMC2266755 DOI: 10.1186/1471-2180-8-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 01/08/2008] [Indexed: 12/18/2022] Open
Abstract
Background The endoglycosidase EndoS and the cysteine proteinase SpeB from the human pathogen Streptococcus pyogenes are functionally related in that they both hydrolyze IgG leading to impairment of opsonizing antibodies and thus enhance bacterial survival in human blood. In this study, we further investigated the relationship between EndoS and SpeB by examining their in vitro temporal production and stability and activity of EndoS. Furthermore, theoretical structure modeling of EndoS combined with site-directed mutagenesis and chemical blocking of amino acids was used to identify amino acids required for the IgG glycan-hydrolyzing activity of EndoS. Results We could show that during growth in vitro S. pyogenes secretes the IgG glycan-hydrolyzing endoglycosidase EndoS prior to the cysteine proteinase SpeB. Upon maturation SpeB hydrolyzes EndoS that then loses its IgG glycan-hydrolyzing activity. Sequence analysis and structural homology modeling of EndoS provided a basis for further analysis of the prerequisites for IgG glycan-hydrolysis. Site-directed mutagenesis and chemical modification of amino acids revealed that glutamic acid 235 is an essential catalytic residue, and that tryptophan residues, but not the abundant lysine or the single cysteine residues, are important for EndoS activity. Conclusion We present novel information about the amino acid requirements for IgG glycan-hydrolyzing activity of the immunomodulating enzyme EndoS. Furthermore, we show that the cysteine proteinase SpeB processes/degrades EndoS and thus emphasize the importance of the SpeB as a degrading/processing enzyme of proteins from the bacterium itself.
Collapse
Affiliation(s)
- Maria Allhorn
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Biomedical Center B14, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
256
|
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with chronic adult periodontitis. Its ecological niche is the gingival crevice, where the organism adapts to the challenges of the infectious process such as host defence and bacterial products. Bacterial responses to environmental changes are partly regulated by two-component signal transduction systems. Several intact systems were annotated in the genome of P. gingivalis, as well as an orphan regulator encoding a homologue of RprY, a response regulator from Bacteroides fragilis. With the goal of defining the environmental cues that activate RprY in P. gingivalis, we used several strategies to identify its regulon. Results from gene expression and DNA-protein binding assays identified target genes that were either involved in transport functions or associated with oxidative stress, and indicated that RprY can act as an activator and a repressor. RprY positively activated the primary sodium pump, NADH : ubiquinone oxidoreductase (NQR), and RprY protein also interacted with the promoter regions of nqrA genes from B. fragilis and Vibrio cholerae. Given that gingival bleeding and infiltration of host defence cells are symptoms of periodontal infection, iron products released from blood and reactive oxygen species from polymorphonuclear leucocytes may be potential inducers of the RprY regulon.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Molecular Genetics, Forsyth Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
257
|
Yilmaz O, Yao L, Maeda K, Rose TM, Lewis EL, Duman M, Lamont RJ, Ojcius DM. ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 2007; 10:863-75. [PMID: 18005240 DOI: 10.1111/j.1462-5822.2007.01089.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purinergic receptor P2X(7) is involved in cell death, inhibition of intracellular infection and secretion of inflammatory cytokines. The role of the P2X(7) receptor in bacterial infection has been primarily established in macrophages. Here we show that primary gingival epithelial cells, an important component of the oral innate immune response, also express functional P2X(7) and are sensitive to ATP-induced apoptosis. Porphyromonas gingivalis, an intracellular bacterium and successful colonizer of oral tissues, can inhibit gingival epithelial cell apoptosis induced by ATP ligation of P2X(7) receptors. A P. gingivalis homologue of nucleoside diphosphate kinase (NDK), an ATP-consuming enzyme, is secreted extracellularly and is required for maximal suppression of apoptosis. An ndk-deficient mutant was unable to prevent ATP-induced host-cell death nor plasma membrane permeabilization in the epithelial cells. Treatment with purified recombinant NDK inhibited ATP-mediated host-cell plasma membrane permeabilization in a dose-dependent manner. Therefore, NDK promotes survival of host cells by hydrolysing extracellular ATP and preventing apoptosis-mediated through P2X(7).
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Nishiyama SI, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F. Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. MICROBIOLOGY-SGM 2007; 153:1916-1925. [PMID: 17526848 DOI: 10.1099/mic.0.2006/005561-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The FimA fimbriae of Porphyromonas gingivalis, the causative agent of periodontitis, have been implicated in various aspects of pathogenicity, such as colonization, adhesion and aggregation. In this study, the four open reading frames (ORF1, ORF2, ORF3 and ORF4) downstream of the fimbrilin gene (fimA) in strain ATCC 33277 were examined. ORF2, ORF3 and ORF4 were demonstrated to encode minor components of the fimbriae and were therefore renamed fimC, fimD and fimE, respectively. Immunoblotting analyses revealed that inactivation of either fimC or fimD by an ermF-ermAM insertion, but not inactivation of ORF1, was accompanied by concomitant loss of the products from the downstream genes, raising the possibility that fimC, fimD and fimE constitute a transcription unit. The fimE mutant produced FimC and FimD, but fimbriae purified from it contained neither protein, suggesting that FimE is required for the assembly of FimC and FimD onto the fimbrilin (FimA) fibre. The fimC, fimD and fimE mutants lost autoaggregation abilities. Fimbriae purified from these three mutants showed attenuated binding activities to glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis and to two extracellular matrix proteins, fibronectin and type I collagen. These results suggest that FimE, as well as FimC and FimD, play critical roles in the adhesive activities of the mature FimA fimbriae in P. gingivalis.
Collapse
Affiliation(s)
- So-Ichiro Nishiyama
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Hideki Nagata
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Shizukuishi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ikuro Kawagishi
- Department of Biological Science, Graduate School of Science and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
259
|
Bercy P, Lasserre J. Susceptibility to various oral antiseptics of Porphyromonas gingivalis W83 within a biofilm. Adv Ther 2007; 24:1181-91. [PMID: 18165200 DOI: 10.1007/bf02877764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of chronic periodontal disease is strongly related to the nature and physiology of the subgingival bacterial biofilm, of which Porphyromonas gingivalis is a main protagonist. This study was conducted in vitro, to test the susceptibility of the W83 strain of P gingivalis to several oral antiseptics, bearing in mind its mode of growth as biofilm. To this end, the investigators inoculated a brain-heart infusion broth with Streptococcus gordonii, to which P gingivalis was added before perfusion for 7 d via a closed circuit containing a modified Robbins device. Then, various antiseptics were perfused through the circuit over 30 min, and their bactericidal effects were evaluated after culture by comparison of the mean proportion of bacteria killed. The average proportion of P gingivalis W83 killed after 15 min of contact with antiseptics was 90.51% (+/-4.78) for chlorhexidine 0.2%, 89.87% (+/-6.58) for povidone-iodine 1%, and 98.6% (+/-0.86) for Listerine (McNeil-PPC, Inc., Morris Plains, NJ). After 30 min of contact, survival of P gingivalis was nil, irrespective of the antimicrobial agent used. Preliminary results show that antiseptic mouth rinses, when used in pure concentrations in the traditional way, are effective in killing P gingivalis W83 within a biofilm. Furthermore, in light of these experiments, it appears that the best results are obtained when Listerine is used; however, new trials should be conducted to confirm this observation.
Collapse
Affiliation(s)
- Pierre Bercy
- Department of Periodontology, Catholic University of Louvain, School of Dental Medicine and Stomatology, Brussels, Belgium.
| | | |
Collapse
|
260
|
Nagano K, Murakami Y, Nishikawa K, Sakakibara J, Shimozato K, Yoshimura F. Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol 2007; 56:1536-1548. [DOI: 10.1099/jmm.0.47289-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major outer-membrane proteins RagA and RagB ofPorphyromonas gingivalisare considered to form a receptor complex functionally linked to TonB. In this study,P.gingivalismutants withragA,ragBor both deleted were constructed from strain W83 as the parent to examine the physiological and pathological functions of RagA and RagB. The double-deletion mutant completely lacked both RagA and RagB, whereas the ΔragAmutant reduced RagB expression considerably and the ΔragBmutant produced degraded RagA. Growth of the three mutants in a nutrient-rich medium and synthetic media containing digested protein as a unique nutrient source was similar to that of the parental strain; however, both the ΔragAand ΔragABmutants exhibited very slow growth in a synthetic medium containing undigested, native protein, and the two mutants tended to lose their viability during experiments, although gingipain (protease) activities were unchanged in the mutants. A mouse model showed that the ΔragBmutant had reduced virulence. Cell-surface labelling with biotin and dextran revealed that both RagA and RagB localized on the outermost cell surface. A cross-linking experiment using wild-typeP. gingivalisshowed that RagA and RagB were closely associated with each other. Furthermore, co-immunoprecipitation confirmed that RagA and RagB formed a protein–protein complex. These results suggest that physically associated RagA and RagB may stabilize themselves on the cell surface and function as active transporters of large degradation products of protein and in part as a virulence factor.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Junpei Sakakibara
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Kazuo Shimozato
- Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
261
|
fimA genotypes and multilocus sequence types of Porphyromonas gingivalis from patients with periodontitis. J Clin Microbiol 2007; 46:31-42. [PMID: 17977992 DOI: 10.1128/jcm.00986-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae are important virulence factors of pathogenic bacteria, facilitating their attachment to host and bacterial cells. In the periodontal pathogen Porphyromonas gingivalis, the fimA gene is classified into six types (genotypes I, Ib, II, III, IV, and V) on the basis of different nucleotide sequences, with fimA genotypes II and IV being prevalent in isolates from patients with periodontitis. The aims of this study were to examine the distribution of fimA genotypes in a collection of 82 P. gingivalis isolates from adult periodontitis patients of worldwide origin and to investigate the relationship between the fimA genotypes and the sequence types (STs), as determined by multilocus sequence typing (MLST), of the isolates. The fimA gene was amplified by PCR with primer sets specific for each genotype. The STs of all strains were assigned according to the MLST database for P. gingivalis (www.pubmlst.org/pgingivalis). The 82 strains showed extensive genetic diversity and were assigned to 69 STs. Only isolates with closely related STs harbored the same fimA genotype. Twenty-eight (34.1%) strains harbored fimA genotype II, while only the reference strain for fimA genotype V reacted with the primers specific for this genotype. Twenty-one isolates (25.6%) were positive by more than one of the fimA PCR assays; the most frequent combinations were genotypes I, Ib, and II (eight isolates) and genotypes I and II (four isolates). Sequencing of the fimA gene from selected isolates did not support the observed specific fimA genotype combinations, suggesting that the genotyping method used for the major fimbriae in P. gingivalis should be reevaluated.
Collapse
|
262
|
Olczak T, Sroka A, Potempa J, Olczak M. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 2007; 189:197-210. [PMID: 17922109 DOI: 10.1007/s00203-007-0309-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 09/13/2007] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis HmuY is a putative heme-binding lipoprotein associated with the outer membrane. It is part of an operon together with a gene encoding an outer-membrane hemin utilization receptor (HmuR) and four uncharacterized genes. A similar operon organization was found in Bacteroides fragilis and B. thetaiotaomicron, with the former containing an additional HmuY homologue encoded upstream of the hmuR-like gene. In P. gingivalis cultured under heme-limited conditions, a approximately 1-kb hmuY transcript was produced at high levels along with some approximately 3.5 and approximately 9-kb transcripts. Compared with the parental strain, mutants deficient in hmuY or hmuR or hmuY-hmuR gene function grew more slowly and bound lower amounts of hemin and hemoglobin. Significantly, they grew more slowly or were unable to grow when human serum was used as the sole iron/heme source. Analysis of the hmu promoter showed that it is regulated by iron. The HmuY protein normally occurs as a homodimer, but in the presence of hemin it may form tetramers. These results show that HmuY may be the first reported member of a new class of proteins in Porphyromonas and Bacteroides species involved in heme utilization, a function being exerted in conjunction with HmuR, an outer-membrane heme transporter.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
263
|
Saiki K, Konishi K. Identification of a Porphyromonas gingivalis novel protein sov required for the secretion of gingipains. Microbiol Immunol 2007; 51:483-91. [PMID: 17579257 DOI: 10.1111/j.1348-0421.2007.tb03936.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gingipains are extracellular proteases important for the virulence of Porphyromonas gingivalis; however, the mechanism for the secretion of gingipains is poorly understood. In this report, we found that insertion mutants for PG0809 (83K1 and 83K2) were defective in black pigmentation and hemolysis. We cloned and sequenced PG0809 and found that PG0809 contains two additional nucleotides that are not deposited in the W83 genome database. The revised sequence reveals an in-frame fusion of PG0810 and PG0809 and is designated the sov gene. We constructed a sov deletion mutant (83K3) and showed that 83K3 was defective in the activities of black pigmentation, hemolysis, and hemagglutination. Furthermore, in 83K3, the activities of gingipains were severely reduced whereas those of other secreted proteases DPPIV, DPP-7, and PtpA were not affected. Immunoblot analysis using anti-RgpB antiserum showed that Arg-gingipains were poorly secreted in an outer membrane or into an extracellular portion but accumulated within the cells of 83K3, suggesting the secretion of gingipains is defected in 83K3. Taken together, our findings indicated that Sov is a novel protein required for the secretion of gingipains and suggested that the secretion system for gingipains is different from the conserved secretion systems.
Collapse
Affiliation(s)
- Keitarou Saiki
- Department of Microbiology, Nippon Dental University School of Life Dentistry at Tokyo, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | |
Collapse
|
264
|
Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H, Shimozato K, Yoshimura F. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. MICROBIOLOGY-SGM 2007; 153:866-876. [PMID: 17322207 DOI: 10.1099/mic.0.29275-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tannerella forsythensis, one of the important pathogens in periodontal disease, has a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. The S-layer in T. forsythensis is suggested to be associated with haemagglutinating activity, adhesion and invasion of host cells; however, its precise functions have been unknown. ORFs encoding the major S-layer proteins (230 and 270 kDa) of T. forsythensis ATCC 43037, tfsA and tfsB, respectively, following the names in a recent report [Lee, S.-W., Sabet, M., Um, H. S., Yang, L., Kim, H. C. & Zhu, W. (2006). Gene 371, 102-111] were determined. To verify the function of the S-layer proteins, three mutants with tfsA, tfsB, or both deleted were successfully constructed by a PCR-based overlapping method. S-layer proteins were completely lost in the double mutant. The single-deletion mutants appeared to lose one of the 230 and 270 kDa proteins. Thin-section microscopy clearly revealed that the 230 and 270 kDa proteins composed the S-layer. Although the S-layer proteins may be weakly related to haemagglutinating activity, these proteins were highly responsible for adherence to human gingival epithelial cells (Ca9-22) and KB cells. These results suggest that the S-layer proteins in T. forsythensis play an important role in the initiation stage of oral infection including periodontal disease.
Collapse
Affiliation(s)
- Junpei Sakakibara
- Department of Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Naoya Higuchi
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Hiroshi Nakamura
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kazuo Shimozato
- Department of Oral and Maxillofacial Surgery II, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
265
|
Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 2007; 189:7145-50. [PMID: 17644580 PMCID: PMC2045224 DOI: 10.1128/jb.00892-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavobacterium johnsoniae cells glide rapidly over surfaces by an unknown mechanism. Transposon-induced sprA mutants formed nonspreading colonies on agar, and the cells examined in wet mounts were deficient in attachment to surfaces and were almost completely nonmotile. Exposure of intact cells to proteinase K cleaved the 270-kDa SprA into several large peptides, suggesting that it is partially exposed on the cell surface.
Collapse
Affiliation(s)
- Shawn S Nelson
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
| | | | | | | | | |
Collapse
|
266
|
Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton RS, Fulton LA, Clifton SW, Wilson RK, Knight RD, Gordon JI. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 2007; 5:e156. [PMID: 17579514 PMCID: PMC1892571 DOI: 10.1371/journal.pbio.0050156] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 04/09/2007] [Indexed: 11/20/2022] Open
Abstract
The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes. The total number of microbes that colonize the surfaces of our adult bodies is thought to be ten times greater than the total number of our human cells. Our microbial partners provide us with certain features that we have not had to evolve on our own. In this sense, we should consider ourselves to be a supraorganism whose genetic landscape includes both our own genome as well as the genomes of our resident microbes, and whose physiologic features are a synthesis of human and microbial metabolic traits. The largest collection of microbes resides in our gut, which harbors trillions of bacteria, representing hundreds of species, most falling into two groups—the Bacteroidetes and the Firmicutes. We have sequenced the genomes of two human gut-dwelling Bacteroidetes, and compared their genomes to the genomes of other bacteria that live both inside and outside of our bodies. Our results illustrate that adaptation to the gut habitat is a dynamic process that includes acquisition of genes from other microorganisms. These findings emphasize the importance of including the evolution of “our” microbial genomes when considering the evolution of humans. Human microbiome evolution was explored by comparing human gut Bacteroidete genomic sequences to available data; common modes of evolution were revealed that have enabled these gut-dwelling microbes to adapt to their environments.
Collapse
MESH Headings
- Adaptation, Physiological
- Bacteriophages/genetics
- Bacteroides/genetics
- Bacteroides/physiology
- Bacteroides/virology
- Conjugation, Genetic
- DNA Transposable Elements
- Ecosystem
- Evolution, Molecular
- Gene Duplication
- Gene Transfer, Horizontal
- Genetic Variation
- Genome, Bacterial
- Humans
- Intestines/microbiology
- Molecular Sequence Data
- Phylogeny
- Polysaccharides, Bacterial/biosynthesis
- Polysaccharides, Bacterial/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Species Specificity
- Symbiosis/genetics
Collapse
Affiliation(s)
- Jian Xu
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael A Mahowald
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ruth E Ley
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catherine A Lozupone
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Micah Hamady
- Department of Computer Science, University of Colorado, Boulder, Colorado, United States of America
| | - Eric C Martens
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bernard Henrissat
- Universités Aix-Marseille I and II, Marseille, France
- CNRS, UMR6098, Marseille, France
| | - Pedro M Coutinho
- Universités Aix-Marseille I and II, Marseille, France
- CNRS, UMR6098, Marseille, France
| | - Patrick Minx
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Philippe Latreille
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Holland Cordum
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Van Brunt
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kyung Kim
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert S Fulton
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucinda A Fulton
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sandra W Clifton
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard K Wilson
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robin D Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Jeffrey I Gordon
- Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
267
|
Tribble GD, Lamont GJ, Progulske-Fox A, Lamont RJ. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J Bacteriol 2007; 189:6382-8. [PMID: 17573478 PMCID: PMC1951918 DOI: 10.1128/jb.00460-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a major oral pathogen that contributes to the development of periodontal disease. There is a significant degree of genetic variation among strains of P. gingivalis, and the population structure has been predicted to be panmictic, indicating that horizontal DNA transfer and recombination between strains are likely. The molecular events underlying this genetic exchange are not understood, although a putative type IV secretion system is present in the genome sequence of strain W83, implying that DNA conjugation may be responsible for genetic transfer in these bacteria. In this study, we provide in vitro evidence for the horizontal transfer of DNA using plasmid- and chromosome-based assays. In the plasmid assays, Bacteroides-derived shuttle vectors were tested for transfer from P. gingivalis strains into Escherichia coli. Of the eight strains tested, five were able to transfer DNA into E. coli by a mechanism most consistent with conjugation. Additionally, strains W83 and 33277 tested positive for the transfer of chromosomally integrated antibiotic resistance markers. Ten chimeras resulting from the chromosomal transfer assay were further analyzed by Southern hybridization and were shown to have exchanged DNA fragments of between 1.1 and 5.6 kb, but the overall strain identity remained intact. Chimeras showed phenotypic changes in the ability to accrete into biofilms, implying that DNA transfer events are sufficient to generate measurable changes in complex behaviors. This ability to transfer chromosomal DNA between strains may be an adaptation mechanism in the complex environment of the host oral cavity.
Collapse
Affiliation(s)
- Gena D Tribble
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville 32610-0424, USA.
| | | | | | | |
Collapse
|
268
|
Reichert S, Stein J, Fuchs C, John V, Schaller HG, Machulla HKG. Are there common human leucocyte antigen associations in juvenile idiopathic arthritis and periodontitis? J Clin Periodontol 2007; 34:492-8. [PMID: 17509091 DOI: 10.1111/j.1600-051x.2007.01087.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to evaluate common human leucocyte antigen (HLA) associations in patients with juvenile idiopathic arthritis (N=110), in patients with generalized aggressive periodontitis (N=50) and in patients with chronic periodontitis (N=102) in comparison to healthy controls (no periodontitis, no arthritis N=102). MATERIAL AND METHODS HLA-class I and II markers were determined using microlymphocytotoxicity test and polymerase chain reaction with sequence specific primers. Statistical analyses were carried out by chi(2)-test and Yates' correction. If n<5 Fisher's exact test was performed. In the arthritis group the influence of HLA on attachment loss was determined by using backwards logistic regression considering age, gender, smoking, plaque level, and the duration of the disease. RESULTS In comparison with the controls HLA-DRB3(*) occurred more frequently in both females suffering from juvenile idiopathic arthritis (74.58%versus 54.54%, p=0.024) and females suffering from chronic periodontitis (73.02%versus 54.54%, p=0.035). Furthermore, among patients with juvenile idiopathic arthritis an increased odds ratio (OR) for attachment loss was found in subjects who expressed HLA-A(*)01 (OR=4.6, p=0.014) or HLA-A(*)01:DRB3(*) (OR=4.3, p=0.031). CONCLUSION HLA-DRB3(*) could be a common putative risk indicator for juvenile idiopathic arthritis and chronic periodontitis among females.
Collapse
Affiliation(s)
- Stefan Reichert
- University School of Dental Medicine, Department of Operative Dentistry and Periodontology, Martin-Luther University, Halle-Wittenberg, Germany.
| | | | | | | | | | | |
Collapse
|
269
|
Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 2007; 24:1073-109. [PMID: 17898898 DOI: 10.1039/b514050c] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A total of 223 complete bacterial genomes are analyzed, with 281 citations, for the presence of genes encoding modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We report on the distribution of these systems in different bacterial taxa and, whenever known, the metabolites they synthesize. We also highlight, in the different bacterial lineages, the PKS and NRPS genes and, whenever known, the corresponding products.
Collapse
|
270
|
Gupta RS, Lorenzini E. Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol Biol 2007; 7:71. [PMID: 17488508 PMCID: PMC1887533 DOI: 10.1186/1471-2148-7-71] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/08/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no) biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. RESULTS Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum) DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum) TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres) have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE) and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also reported based on concatenated sequences for 12 conserved proteins by different methods including the character compatibility (or clique) approach. The placement of Salinibacter ruber with other Bacteroidetes species was not resolved by other phylogenetic methods, but this affiliation was strongly supported by the character compatibility approach. CONCLUSION The molecular signatures described here provide novel tools for identifying and circumscribing species from the Bacteroidetes and Chlorobi phyla as well as some of their main groups in clear terms. These results also provide strong evidence that species from these two phyla (and also possibly Fibrobacteres) are specifically related to each other and they form a single superphylum. Functional studies on these proteins and indels should aid in the discovery of novel biochemical and physiological characteristics that are unique to these groups of bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, L8N3Z5, Canada
| | - Emily Lorenzini
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, L8N3Z5, Canada
| |
Collapse
|
271
|
Shi X, Hanley SA, Faray-Kele MC, Fawell SC, Aduse-Opoku J, Whiley RA, Curtis MA, Hall LMC. The rag locus of Porphyromonas gingivalis contributes to virulence in a murine model of soft tissue destruction. Infect Immun 2007; 75:2071-4. [PMID: 17283109 PMCID: PMC1865673 DOI: 10.1128/iai.01785-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rag locus of Porphyromonas gingivalis encodes a putative TonB-dependent outer membrane receptor, RagA, and a 55-kDa immunodominant antigen, RagB. Inactivation of either ragA or ragB prevented expression of both RagA and RagB. Both the ragA and ragB mutants were significantly less virulent than wild-type strains in a murine model of infection.
Collapse
Affiliation(s)
- Xiaoju Shi
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Lewis JP, Plata K, Yu F, Rosato A, Anaya C. Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. MICROBIOLOGY-SGM 2007; 152:3367-3382. [PMID: 17074906 DOI: 10.1099/mic.0.29011-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, an oral bacterium associated with periodontal disease, requires haemin for growth. Although several multigenic clusters encoding haemin-uptake systems are present on the genome of P. gingivalis, little is known regarding their transcriptional organization and expression. This study identified a 23 kDa iron-regulated haemin-binding protein encoded by a larger than previously reported variant of hmuY. It was shown that the hmu locus is larger than previously reported and is composed of six genes, hmuYRSTUV, encoding a novel hybrid haemin-uptake system. The locus has an operonic organization and the transcriptional start site is located 292 bp upstream of hmuY. The data indicate that the regulation of the operon is iron-dependent. Interestingly, differential regulation within the operon was demonstrated, resulting in excess of the hmuYR message encoding the outer-membrane proteins when compared to the full-length transcript. In addition, the hmuY transcript is more prevalent than the hmuR transcript. Secondary structure analysis of the hmuYRSTUV mRNA predicted the formation of several potential stem-loops in the 5' ends of hmuR- and hmuS-specific mRNAs, consistent with the differential regulation observed. Finally, it was demonstrated that haemin binding and uptake are elevated in iron-depleted conditions and are reduced 45 % and 70 %, respectively, in an hmu-deficient strain when compared to the parental strain, indicating that the hmu locus plays a major role in haemin acquisition in P. gingivalis. Since homologues of the hmu locus were also found in Bacteroides fragilis, Bacteroides thetaiotaomicron and Prevotella intermedia, these findings may have implications for a better understanding of haemin acquisition in those organisms as well.
Collapse
Affiliation(s)
- Janina P Lewis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Konrad Plata
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Fan Yu
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Adriana Rosato
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecilia Anaya
- University of San Luis, San Luis, Argentina
- The Philips Institute, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
273
|
Xia Q, Wang T, Park Y, Lamont RJ, Hackett M. Differential quantitative proteomics of Porphyromonas gingivalis by linear ion trap mass spectrometry: non-label methods comparison, q-values and LOWESS curve fitting. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:105-116. [PMID: 19337574 PMCID: PMC2662607 DOI: 10.1016/j.ijms.2006.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Differential analysis of whole cell proteomes by mass spectrometry has largely been applied using various forms of stable isotope labeling. While metabolic stable isotope labeling has been the method of choice, it is often not possible to apply such an approach. Four different label free ways of calculating expression ratios in a classic "two-state" experiment are compared: signal intensity at the peptide level, signal intensity at the protein level, spectral counting at the peptide level, and spectral counting at the protein level. The quantitative data were mined from a dataset of 1245 qualitatively identified proteins, about 56% of the protein encoding open reading frames from Porphyromonas gingivalis, a Gram-negative intracellular pathogen being studied under extracellular and intracellular conditions. Two different control populations were compared against P. gingivalis internalized within a model human target cell line. The q-value statistic, a measure of false discovery rate previously applied to transcription microarrays, was applied to proteomics data. For spectral counting, the most logically consistent estimate of random error came from applying the locally weighted scatter plot smoothing procedure (LOWESS) to the most extreme ratios generated from a control technical replicate, thus setting upper and lower bounds for the region of experimentally observed random error.
Collapse
Affiliation(s)
- Qiangwei Xia
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Yoonsuk Park
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Richard J. Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
- Address correspondence to: Murray Hackett, Department of Chemical Engineering, Box 355014, University of Washington, Seattle, WA 98195, U.S.A., Telephone: 206 616-8071, Fax: 206 616-5721, E-mail:
| |
Collapse
|
274
|
Sharma S, Stumpo DJ, Balajee AS, Bock CB, Lansdorp PM, Brosh RM, Blackshear PJ. RECQL, a member of the RecQ family of DNA helicases, suppresses chromosomal instability. Mol Cell Biol 2006; 27:1784-94. [PMID: 17158923 PMCID: PMC1820448 DOI: 10.1128/mcb.01620-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse gene Recql is a member of the RecQ subfamily of DEx-H-containing DNA helicases. Five members of this family have been identified in both humans and mice, and mutations in three of these, BLM, WRN, and RECQL4, are associated with human diseases and a cellular phenotype that includes genomic instability. To date, no human disease has been associated with mutations in RECQL and no cellular phenotype has been associated with its deficiency. To gain insight into the physiological function of RECQL, we disrupted Recql in mice. RECQL-deficient mice did not exhibit any apparent phenotypic differences compared to wild-type mice. Cytogenetic analyses of embryonic fibroblasts from the RECQL-deficient mice revealed aneuploidy, spontaneous chromosomal breakage, and frequent translocation events. In addition, the RECQL-deficient cells were hypersensitive to ionizing radiation, exhibited an increased load of DNA damage, and displayed elevated spontaneous sister chromatid exchanges. These results provide evidence that RECQL has a unique cellular role in the DNA repair processes required for genomic integrity. Genetic background, functional redundancy, and perhaps other factors may protect the unstressed mouse from the types of abnormalities that might be expected from the severe chromosomal aberrations detected at the cellular level.
Collapse
Affiliation(s)
- Sudha Sharma
- NIEHS MD A2-05, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Nguyen KA, Travis J, Potempa J. Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-Negative bacteria? J Bacteriol 2006; 189:833-43. [PMID: 17142394 PMCID: PMC1797278 DOI: 10.1128/jb.01530-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mature 507-residue RgpB protein belongs to an important class of extracellular outer membrane-associated proteases, the gingipains, from the oral pathogen Porphyromonas gingivalis that has been shown to play a central role in the virulence of the organism. The C termini of these gingipains along with other outer membrane proteins from the organism share homologous sequences and have been suggested to function in attachment of these proteins to the outer membrane. In this report, we have created a series of truncated and site-directed mutants of the C terminus from a representative member of this class, the RgpB protease, to investigate its role in the maturation of these proteins. Truncation of the last two residues (valyl-lysine) from the C terminus is sufficient to create an inactive version of the protein that lacks the posttranslational glycosylation seen in the wild type, and the protein remains trapped behind the outer membrane. Alanine scanning of the last five residues revealed the importance of the C-terminal motif in mediating correct posttranslational modification of the protein. This result may have a wider implication in a novel secretory pathway in distinct members of the Cytophaga-Flavobacterium-Bacteroidetes phylum.
Collapse
Affiliation(s)
- Ky-Anh Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Life Science Bldg., Rm A322, Athens, GA 30602, USA.
| | | | | |
Collapse
|
276
|
Slaney JM, Gallagher A, Aduse-Opoku J, Pell K, Curtis MA. Mechanisms of resistance of Porphyromonas gingivalis to killing by serum complement. Infect Immun 2006; 74:5352-61. [PMID: 16926430 PMCID: PMC1594826 DOI: 10.1128/iai.00304-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The complement system plays an important role in the host defense against infection, and the formation of the terminal complement complex on the bacterial surface has been shown to be particularly important in killing of gram-negative bacteria. The gram-negative periodontal pathogen Porphyromonas gingivalis is resistant to complement killing, and possible mechanisms suggested for this resistance include protease production and capsule formation. In this study, P. gingivalis Arg- and Lys-gingipain deletion mutants and polysaccharide synthesis deletion mutants have been used to investigate these hypotheses. When Arg- and Lys-gingipain protease mutants were incubated in 20% normal human serum, deposition of complement components on the cell surface was significantly increased compared to that for the wild-type organism. However, despite the increased deposition, the protease mutants maintained resistance to killing and their viability was equal to that seen with heat-inactivated serum. Similar data were obtained when the wild-type organism was treated with gingipain protease inhibitors. K-antigen expression mutants were also resistant to killing. However, mutants which no longer synthesized a surface anionic polysaccharide (APS) (a phosphorylated branched mannan) were extremely sensitive to serum killing. These mutants lack the organized dense glycan surface layer present on the parent strain on the basis of electron microscopy. We conclude that the production of APS at the surface of P. gingivalis rather than Arg- and Lys-gingipain synthesis is the principal mechanism of serum resistance in P. gingivalis.
Collapse
Affiliation(s)
- Jennifer M Slaney
- MRC Molecular Pathogenesis Group, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, United Kingdom
| | | | | | | | | |
Collapse
|
277
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
278
|
Affiliation(s)
- Adam P Roberts
- Division of Microbial Diseases, Eastman Dental Institute, University College London, University of London, London, UK
| | | |
Collapse
|
279
|
Shanks OC, Santo Domingo JW, Lamendella R, Kelty CA, Graham JE. Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 2006; 72:4054-60. [PMID: 16751515 PMCID: PMC1489641 DOI: 10.1128/aem.00023-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host-specific markers. Here we describe the application of a genome fragment enrichment (GFE) method to identify host-specific genetic markers from fecal microbial community DNA. As a proof of concept, bovine fecal DNA was challenged against a porcine fecal DNA background to select for bovine-specific DNA sequences. Bioinformatic analyses of 380 bovine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode membrane-associated and secreted proteins. Oligonucleotide primers capable of annealing to select Bacteroidales-like bovine GFE sequences exhibited extremely high specificity (>99%) in PCR assays with total fecal DNAs from 279 different animal sources. These primers also demonstrated a broad distribution of corresponding genetic markers (81% positive) among 148 different bovine sources. These data demonstrate that direct metagenomic DNA analysis by the competitive solution hybridization approach described is an efficient method for identifying potentially useful fecal genetic markers and for characterizing differences between environmental microbial communities.
Collapse
Affiliation(s)
- Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, MS-387, Cincinnati, OH 45268.
| | | | | | | | | |
Collapse
|
280
|
Davey ME, Duncan MJ. Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol 2006; 188:5510-23. [PMID: 16855241 PMCID: PMC1540017 DOI: 10.1128/jb.01685-05] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a biofilm-mediated disease. Porphyromonas gingivalis is an obligate anaerobe consistently associated with severe manifestations of this disease. As an opportunistic pathogen, the ability to proliferate within and disseminate from subgingival biofilm (plaque) is central to its virulence. Here, we report the isolation of a P. gingivalis transposon insertion mutant altered in biofilm development and the reconstruction and characterization of this mutation in three different wild-type strains. The mutation responsible for the altered biofilm phenotype was in a gene with high sequence similarity ( approximately 61%) to a glycosyltransferase gene. The gene is located in a region of the chromosome that includes up to 16 genes predicted to be involved in the synthesis and transport of capsular polysaccharide. The phenotype of the reconstructed mutation in all three wild-type backgrounds is that of enhanced biofilm formation. In addition, in strain W83, a strain that is encapsulated, the glycosyltransferase mutation resulted in a loss of capsule. Further experiments showed that the W83 mutant strain was more hydrophobic and exhibited increased auto-aggregation. Our results indicate that we have identified a gene involved in capsular-polysaccharide synthesis in P. gingivalis and that the production of capsule prevented attachment and the initiation of in vitro biofilm formation on polystyrene microtiter plates.
Collapse
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA.
| | | |
Collapse
|
281
|
He J, Miyazaki H, Anaya C, Yu F, Yeudall WA, Lewis JP. Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect Immun 2006; 74:4214-23. [PMID: 16790796 PMCID: PMC1489711 DOI: 10.1128/iai.00014-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobic bacterium, is a recognized periodontopathogen. It exhibits a high degree of aerotolerance and is able to survive in host cells, indicating that efficient oxidative stress protection mechanisms must be present in this organism. Manganese homeostasis plays a major role in oxidative stress protection in a variety of organisms; however, the transport and role of this metal in P. gingivalis is not well understood. Analysis of the genome of P. gingivalis W83 revealed the presence of two genes encoding homologs of a ferrous iron transport protein, FeoB1 and FeoB2. FeoB2 has been implicated in manganese accumulation in P. gingivalis. We sought to determine the role of the FeoB2 protein in metal transport as well as its contribution to resistance to oxygen radicals. Quantitative reverse transcriptase PCR analyses demonstrated that expression of feoB2 is induced in the presence of oxygen. The role of FeoB2 was investigated using an isogenic mutant strain deficient in the putative transporter. We characterized the FeoB2-mediated metal transport using (55)Fe(2+) and (54)Mn(2+). The FeoB2-deficient mutant had dramatically reduced rates of manganese uptake (0.028 pmol/min/10(7) bacteria) compared with the parental strain (0.33 pmol/min/10(7) bacteria) (after 20 min of uptake using 50 nM of (54)Mn(2+)). The iron uptake rates, however, were higher in the mutant strain (0.75 pmol/min/10(7) bacteria) than in the wild type (0.39 pmol/min/10(7) bacteria). Interestingly, reduced survival rates were also noted for the mutant strain after exposure to H(2)O(2) and to atmospheric oxygen compared to the parental strain cultured under the same conditions. In addition, in vitro infection of host cells with the wild type, the FeoB2-deficient mutant, and the same-site revertant revealed that the mutant had a significantly decreased capability for intracellular survival in the host cells compared to the wild-type strain. Our results demonstrate that feoB2 encodes a major manganese transporter required for protection of the bacterium from oxidative stress generated by atmospheric oxygen and H(2)O(2). Furthermore, we show that FeoB2 and acquisition of manganese are required for intracellular survival of P. gingivalis in host cells.
Collapse
Affiliation(s)
- Jia He
- Philips Institute of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, P.O. Box 980566, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
282
|
Olczak T. Analysis of conserved glutamate residues in Porphyromonas gingivalis outer membrane receptor HmuR: toward a further understanding of heme uptake. Arch Microbiol 2006; 186:393-402. [PMID: 16874469 DOI: 10.1007/s00203-006-0151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/05/2006] [Accepted: 07/10/2006] [Indexed: 11/29/2022]
Abstract
The aim of this study was to broaden the current knowledge about the Porphyromonas gingivalis heme receptor HmuR. Site-directed mutagenesis was employed to replace Glu427, Glu448, Glu458 and Glu503 by alanines and to construct a triple Glu427Ala/Glu448Ala/Glu 458Ala mutant. All iron/heme-starved P. gingivalis mutants showed decreased growth recovery when human serum as the iron/heme source was used, hmuR::ermF, hmuR (E503A) and hmuR (E427A,E448A,E458A) mutant strains being the most affected. E. coli cells expressing HmuR with mutated glutamate residues bound hemin, hemoglobin and hemin-serum albumin complex with the same efficiency as did the wild-type recombinant protein, suggesting that the residues were not directly involved in heme binding. These data indicate that in addition to two conserved histidine residues (His95 and His434), NPDL and YRAP motifs, conserved glutamate residues are important for HmuR to utilize heme present in serum hemoproteins.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Institute of Biochemistry and Molecular Biology, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| |
Collapse
|
283
|
Ohara N, Kikuchi Y, Shoji M, Naito M, Nakayama K. Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR. MICROBIOLOGY-SGM 2006; 152:955-966. [PMID: 16549660 DOI: 10.1099/mic.0.28537-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inspection of the genomic DNA sequence of the oral anaerobe Porphyromonas gingivalis reveals that the micro-organism possesses the peroxide-sensing transcription activator OxyR, but not the superoxide-sensing transcription factor SoxR. Investigatation of oxidative-stress-responsive proteins in P. gingivalis by two-dimensional gel electrophoresis showed that two proteins were predominantly upregulated in oxidative conditions. In a P. gingivalis oxyR mutant these two proteins were not induced by treatment with hydrogen peroxide under aerobic conditions. By N-terminal amino acid sequencing, the two proteins were found to be superoxide dismutase and alkyl hydroperoxide reductase, encoded by sod and ahpC, respectively. Northern blot and lacZ fusion analyses revealed that P. gingivalis sod and ahpC were positively regulated by OxyR. Primer extension analysis located the promoter regions of sod and ahpC, and putative -35 boxes of these promoters were found immediately adjacent to their putative OxyR-binding sequences. Moreover, the promoter regions of sod and ahpC had the ability to bind P. gingivalis OxyR protein. These results demonstrate that P. gingivalis sod is one of the OxyR regulons, suggesting that OxyR functions as an intracellular redox sensor rather than a peroxide sensor in this organism. A sod gene of Bacteroides fragilis, which is taxonomically related to P. gingivalis, is inducible by redox stresses but not controlled by its OxyR. A DNA fragment including the B. fragilis sod promoter region could bind the P. gingivalis OxyR protein; however, a putative OxyR binding sequence within the DNA fragment was 14 bases distant from a putative -35 box of its promoter.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Artificial Gene Fusion
- Bacterial Proteins/analysis
- Base Sequence
- Blotting, Northern
- DNA, Bacterial
- Electrophoresis, Gel, Two-Dimensional
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Hydrogen Peroxide/pharmacology
- Molecular Sequence Data
- Mutation
- Oxidants/pharmacology
- Oxidation-Reduction
- Oxidative Stress
- Peroxidases/biosynthesis
- Peroxidases/genetics
- Peroxiredoxins
- Porphyromonas gingivalis/enzymology
- Porphyromonas gingivalis/genetics
- Promoter Regions, Genetic
- Protein Binding
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Superoxide Dismutase/biosynthesis
- Superoxide Dismutase/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Naoya Ohara
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yuichiro Kikuchi
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
284
|
Tribble GD, Mao S, James CE, Lamont RJ. A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci U S A 2006; 103:11027-32. [PMID: 16832066 PMCID: PMC1544168 DOI: 10.1073/pnas.0509813103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Indexed: 12/23/2022] Open
Abstract
Haloacid dehalogenase (HAD) family phosphatases are widespread in prokaryotes and are generally involved in metabolic processes. Porphyromonas gingivalis, an invasive periodontal pathogen, secretes the HAD family phosphoserine phosphatase SerB653 when in contact with gingival epithelial cells. Here we characterize the structure and enzymatic activity of SerB653 and show that a SerB653 allelic replacement mutant of P. gingivalis is deficient in internalization and persistence in gingival epithelial cells. In contrast, mutation of a second HAD family serine phosphatase of P. gingivalis (SerB1170), or of a serine transporter, did not affect invasion. A pull-down assay identified GAPDH and heat-shock protein 90 as potential substrates for SerB653. Furthermore, exogenous phosphatase regulated microtubule dynamics in host cells. These data indicate that P. gingivalis has adapted a formerly metabolic enzyme to facilitate entry into host cells by modulating host cytoskeletal architecture. Our findings define a virulence-related role of a HAD family phosphatase and reveal an invasin of an important periodontal pathogen.
Collapse
Affiliation(s)
- Gena D. Tribble
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, FL 32610-0424
| | - Song Mao
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, FL 32610-0424
| | - Chloe E. James
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, FL 32610-0424
| | - Richard J. Lamont
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, FL 32610-0424
| |
Collapse
|
285
|
Olczak T, Siudeja K, Olczak M. Purification and initial characterization of a novel Porphyromonas gingivalis HmuY protein expressed in Escherichia coli and insect cells. Protein Expr Purif 2006; 49:299-306. [PMID: 16829134 DOI: 10.1016/j.pep.2006.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Porphyromonas gingivalis acquires iron and heme from the host environment using gingipains, lipoproteins, and outer-membrane receptors. Recently, we identified and characterized a heme receptor HmuR. The hmuR gene is localized in an operon together with a hmuY gene encoding a putative heme-binding protein. The aim of this study was to overexpress and perform a preliminary analysis of the recombinant HmuY protein. We constructed and examined several recombinant HmuY variants which were overexpressed and purified from Escherichia coli and insect cells. Recombinant HmuY protein was expressed in insect cells at levels similar to those in E. coli cells. This protein is predominantly present in a monomeric form but also dimerizes and several other oligomerization forms were found. Hemin and ATP binding to the purified HmuY showed that this protein may play a regulatory function in hemin utilization in P. gingivalis.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Biochemistry, Institute of Biochemistry and Molecular Biology, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | |
Collapse
|
286
|
Diaz PI, Slakeski N, Reynolds EC, Morona R, Rogers AH, Kolenbrander PE. Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 2006; 188:2454-62. [PMID: 16547032 PMCID: PMC1428421 DOI: 10.1128/jb.188.7.2454-2462.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is an anaerobic microorganism that inhabits the oral cavity, where oxidative stress represents a constant challenge. A putative transcriptional regulator associated with oxidative stress, an oxyR homologue, is known from the P. gingivalis W83 genome sequence. We used microarrays to characterize the response of P. gingivalis to H2O2 and examine the role of oxyR in the regulation of this response. Most organisms in which oxyR has been investigated are facultative anaerobes or aerobes. In contrast to the OxyR-regulated response of these microorganisms to H2O2, the main feature of the response in P. gingivalis was a concerted up-regulation of insertion sequence elements related to IS1 transposases. Common OxyR-regulated genes such as dps and ahpFC were not positively regulated in P. gingivalis in response to H2O2. However, their expression was dependent on the presence of a functional OxyR, as revealed by microarray comparison of an oxyR mutant to the wild type. Phenotypic characterization of the oxyR mutant showed that OxyR plays a role in both the resistance to H2O2 and the aerotolerance of P. gingivalis. Escherichia coli and other bacteria with more complex respiratory requirements use OxyR for regulating resistance to H2O2 and use a separate regulator for aerotolerance. In P. gingivalis, the presence of a single protein combining the two functions might be related to the comparatively smaller genome size of this anaerobic microorganism. In conclusion, these results suggest that OxyR does not act as a sensor of H2O2 in P. gingivalis but constitutively activates transcription of oxidative-stress-related genes under anaerobic growth.
Collapse
Affiliation(s)
- Patricia I Diaz
- National Institutes of Health/NIDCR, Building 30, Room 310, 30 Convent Drive, Bethesda, MD 20892-4350, USA
| | | | | | | | | | | |
Collapse
|
287
|
Enersen M, Olsen I, van Winkelhoff AJ, Caugant DA. Multilocus sequence typing of Porphyromonas gingivalis strains from different geographic origins. J Clin Microbiol 2006; 44:35-41. [PMID: 16390944 PMCID: PMC1351961 DOI: 10.1128/jcm.44.1.35-41.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is an important periodontal pathogen that can be isolated from both active and inactive periodontal lesions. Apparently, differences in virulence between P. gingivalis strains exist, but the mechanisms underlying these differences are not yet fully understood. To obtain more information about pathogenicity and virulence of P. gingivalis, it is relevant to assess the genetic population structure of the species and to examine the occurrence of putative virulence factors against the genetic background. Presently, multilocus sequence typing (MLST) is the best method for analyzing bacterial population structures. Forty P. gingivalis strains from worldwide sources were analyzed by MLST. Internal 310- to 420-bp DNA fragments of the eight ubiquitous chromosomal genes, ftsQ, hagB, gdpxJ, pepO, mcmA, recA, pga, and nah, were amplified by PCR and then sequenced. The number of alleles at individual loci ranged from 2 to 19, and a total of 33 allelic profiles, or sequence types (STs), were identified. Nucleotide variation between alleles was located at one or a few sites. Identical or similar STs were found in isolates from different geographic regions. Our results showed signs of a clonal population structure with a level of recombination not as high as that previously suggested for the species. We also found that P. gingivalis isolates from individual patients were genetically heterogeneous.
Collapse
Affiliation(s)
- Morten Enersen
- Institute of Oral Biology, Dental Faculty, University of Oslo, Norway.
| | | | | | | |
Collapse
|
288
|
Okano S, Shibata Y, Shiroza T, Abiko Y. Proteomics-based analysis of a counter-oxidative stress system in Porphyromonas gingivalis. Proteomics 2006; 6:251-8. [PMID: 16281182 DOI: 10.1002/pmic.200401338] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic pathogen associated with chronic periodontitis. Although anaerobic, P. gingivalis exhibits a high degree of aerotolerance, which enables it to survive within periodontal pockets. The aim of the present study was to examine the effect of oxidative stress on protein expression in P. gingivalis to obtain a better understanding of the mechanism underlying its aerotolerance. To accomplish this, P. gingivalis cells were grown under conditions of hemin limitation (0.01 microg/mL) to avoid the oxygen protective effect of hemin on oxidative stress. The proteins were then extracted from cultures either left untreated or subjected to oxidative stress and separated by 2-DE. The resultant protein expression profiles were examined by image scanning, and those found to differ depending on the presence or absence of aeration were subjected to MALDI-MS and then analyzed using the ORF database of P. gingivalis W83 from The Institute of Genomic Research. Oxidative stress was found to affect the expression of numerous proteins in P. gingivalis cells. In particular, the levels of HtpG, GroEL, DnaK, AhpC, TPR domain protein, and trigger factor were substantially increased.
Collapse
Affiliation(s)
- Soichiro Okano
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587 Chiba, Japan
| | | | | | | |
Collapse
|
289
|
Liu X, Olczak T, Guo HC, Dixon DW, Genco CA. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 2006; 74:1222-32. [PMID: 16428772 PMCID: PMC1360300 DOI: 10.1128/iai.74.2.1222-1232.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified and characterized a heme/hemoglobin receptor, HmuR, in Porphyromonas gingivalis. To analyze the conserved amino acid residues of HmuR that may be involved in hemin/hemoprotein binding and utilization, we constructed a series of P. gingivalis A7436 hmuR mutants with amino acid replacements and characterized the ability of these mutants to utilize hemin and hemoproteins. Site-directed mutagenesis was employed to introduce mutations H95A, H434A, H95A-H434A, YRAP420-423YAAA, and NPDL442-445NAAA into HmuR in both P. gingivalis and Escherichia coli. Point mutations at H95 and H434 and in the NPDL motif of HmuR resulted in decreased binding to hemin, hemoglobin, and human serum albumin-hemin complex. Notably, mutations of these conserved sites and motifs led to reduced growth of P. gingivalis when human serum was used as the heme source. Analysis using a three-dimensional homology model of HmuR indicated that H95, H434, and the NPDL motif are present on apical or extracellular loops of HmuR, while the YRAP motif is present on the barrel wall. Taken together, these results support a role for H95, H434, and the NPDL motif of the P. gingivalis HmuR protein in heme binding and utilization of serum hemoproteins and the HmuR YRAP motif in serum hemoprotein utilization.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
290
|
Aduse-Opoku J, Slaney JM, Hashim A, Gallagher A, Gallagher RP, Rangarajan M, Boutaga K, Laine ML, Van Winkelhoff AJ, Curtis MA. Identification and characterization of the capsular polysaccharide (K-antigen) locus of Porphyromonas gingivalis. Infect Immun 2006; 74:449-60. [PMID: 16369001 PMCID: PMC1346596 DOI: 10.1128/iai.74.1.449-460.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Capsular polysaccharides of gram-negative bacteria play an important role in maintaining the structural integrity of the cell in hostile environments and, because of their diversity within a given species, can act as useful taxonomic aids. In order to characterize the genetic locus for capsule biosynthesis in the oral gram-negative bacterium Porphyromonas gingivalis, we analyzed the genome of P. gingivalis W83 which revealed two candidate loci at PG0106-PG0120 and PG1135-PG1142 with sufficient coding capacity and appropriate gene functions based on comparisons with capsule-coding loci in other bacteria. Insertion and deletion mutants were prepared at PG0106-PG0120 in P. gingivalis W50-a K1 serotype. Deletion of PG0109-PG0118 and PG0116-PG0120 both yielded mutants which no longer reacted with antisera to K1 serotypes. Restriction fragment length polymorphism analysis of the locus in strains representing all six K-antigen serotypes and K(-) strains demonstrated significant variation between serotypes and limited conservation within serotypes. In contrast, PG1135-PG1142 was highly conserved in this collection of strains. Sequence analysis of the capsule locus in strain 381 (K(-) strain) demonstrated synteny with the W83 locus but also significant differences including replacement of PG0109-PG0110 with three unique open reading frames, deletion of PG0112-PG0114, and an internal termination codon within PG0106, each of which could contribute to the absence of capsule expression in this strain. Analysis of the Arg-gingipains in the capsule mutants of strain W50 revealed no significant changes to the glycan modifications of these enzymes, which indicates that the glycosylation apparatus in P. gingivalis is independent of the capsule biosynthetic machinery.
Collapse
Affiliation(s)
- Joseph Aduse-Opoku
- MRC Molecular Pathogenesis Group, Centre for Infectious Disease, Institute of Cell and Molecular Science, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Schröder NWJ, Meister D, Wolff V, Christan C, Kaner D, Haban V, Purucker P, Hermann C, Moter A, Göbel UB, Schumann RR. Chronic periodontal disease is associated with single-nucleotide polymorphisms of the human TLR-4 gene. Genes Immun 2005; 6:448-51. [PMID: 15875057 DOI: 10.1038/sj.gene.6364221] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periodontitis is an inflammatory disease affecting the connective tissue surrounding the teeth leading to tooth loss. Pathogens associated with periodontitis interact with Toll-like receptors (TLRs) to induce cytokines causing and aggravating disease. We screened 197 individuals suffering from generalized periodontitis for the presence of Asp299Gly and Thr399Ile of TLR-4 as well as Arg753Gln of TLR-2 in comparison to matched controls. Single-nucleotide polymorphisms (SNPs) of TLR-4 were elevated among patients (odd's ratio 3.650, 95% CI 1.573-8.467, P < or = 0.0001), while no difference was observed for TLR-2. TLR-4 SNPs were correlated with chronic periodontitis (odd's ratio 5.562, 95% CI 2.199-14.04, P < or = 0.0001), but not with aggressive periodontitis. This observation was confirmed employing a group of periodontally healthy probands over 60 years of age. These data demonstrate that genetic variants of TLR-4 may act as risk factors for the development of generalized chronic periodontitis in humans.
Collapse
Affiliation(s)
- N W J Schröder
- Institute for Microbiology and Hygiene, Charité University Medical Center Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Kaufman G, Berdicevsky I, Woodfolk JA, Horwitz BA. Markers for host-induced gene expression in Trichophyton dermatophytosis. Infect Immun 2005; 73:6584-90. [PMID: 16177334 PMCID: PMC1230929 DOI: 10.1128/iai.73.10.6584-6590.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dermatophytes are adapted to infect keratinized tissues by their ability to utilize keratin as a nutrient source. Although there have been numerous reports that dermatophytes like Trichophyton sp. secrete proteolytic enzymes, virtually nothing is known about the patterns of gene expression in the host or even when the organisms are cultured on protein substrates in the absence of a host. We characterized the expression of an aminopeptidase gene, the Trichophyton mentagrophytes homolog of the Trichophyton rubrum Tri r 4 gene. The T. rubrum gene was originally isolated based on the ability of the protein encoded by it to induce immediate and delayed-type hypersensitivity in skin tests. T. mentagrophytes Tri m 4 is closely related to Tri r 4 (almost 94% identity at the protein level). Tri m 4 resembles other protease-encoding genes thought to be virulence factors (for example, DPP V of Aspergillus fumigatus). The Tri m 4 protein was detected immunochemically both in fungal extracts and in the culture medium. Expression of the Tri m 4 gene was induced severalfold when T. mentagrophytes was grown on keratin and elastin. Ex vivo, strong induction was observed after culture on blood plasma, but the use of homogenized skin did not result in a significant increase in Tri m 4 transcript levels. In order to identify additional genes encoding putative virulence factors, differential cDNA screening was performed. By this method, a fungal thioredoxin and a cellulase homolog were identified, and both genes were found to be strongly induced by skin extracellular matrix proteins. Induction by superficial (keratin) and deep (elastin) skin elements suggests that the products of these genes may be important in both superficial and deep dermatophytosis, and models for their function are proposed. Upregulation of several newly identified T. mentagrophytes genes on protein substrates suggests that these genes encode proteins which are relevant to the dermatophyte-skin interaction.
Collapse
Affiliation(s)
- Gil Kaufman
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | | | | | |
Collapse
|
293
|
Braun TF, Khubbar MK, Saffarini DA, McBride MJ. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 2005; 187:6943-52. [PMID: 16199564 PMCID: PMC1251627 DOI: 10.1128/jb.187.20.6943-6952.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of Flavobacterium johnsoniae glide rapidly over surfaces. The mechanism of F. johnsoniae gliding motility is not known. Eight gld genes required for gliding motility have been described. Disruption of any of these genes results in complete loss of gliding motility, deficiency in chitin utilization, and resistance to bacteriophages that infect wild-type cells. Two modified mariner transposons, HimarEm1 and HimarEm2, were constructed to allow the identification of additional motility genes. HimarEm1 and HimarEm2 each transposed in F. johnsoniae, and nonmotile mutants were identified and analyzed. Four novel motility genes, gldK, gldL, gldM, and gldN, were identified. GldK is similar in sequence to the lipoprotein GldJ, which is required for gliding. GldL, GldM, and GldN are not similar in sequence to proteins of known function. Cells with mutations in gldK, gldL, gldM, and gldN were defective in motility and chitin utilization and were resistant to bacteriophages that infect wild-type cells. Introduction of gldA, gldB, gldD, gldFG, gldH, gldI, and gldJ and the region spanning gldK, gldL, gldM, and gldN individually into 50 spontaneous and chemically induced nonmotile mutants restored motility to each of them, suggesting that few additional F. johnsoniae gld genes remain to be identified.
Collapse
Affiliation(s)
- Timothy F Braun
- Department of Biological Sciences, University of Wisconsin--Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | |
Collapse
|
294
|
Rodrigues PH, Progulske-Fox A. Gene expression profile analysis of Porphyromonas gingivalis during invasion of human coronary artery endothelial cells. Infect Immun 2005; 73:6169-73. [PMID: 16113342 PMCID: PMC1231123 DOI: 10.1128/iai.73.9.6169-6173.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microarrays were used to identify genes of Porphyromonas gingivalis W83 differentially expressed during invasion of primary human coronary artery endothelial cells. Analyses of microarray images indicated that 62 genes were differentially regulated. Of these, 11 genes were up-regulated and 51 were down-regulated. The differential expression of 16 selected genes was confirmed by real-time PCR.
Collapse
Affiliation(s)
- Paulo H Rodrigues
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | |
Collapse
|
295
|
Abstract
The virulence of a microbe represents a combination of complex factors including the agent's transmissibility and the severity of the disease associated with infection and is also significantly influenced by the susceptibility of the colonized host. Virulence factors may be defined as those products of the organism which are required to complete the various stages of the life cycle leading to pathology in the host. In this review, we examine some of the approaches which have been adopted in other fields of infectious disease in order to categorically identify virulence factors using a classical genetics approach with relevant models or human subjects. The absence of an accurate experimental model for periodontal disease means that our understanding of the microbial virulence determinants and pathways in this disease remains hypothetical and based largely on observations in vitro. However, factors which enable the organism to persist in spite of the elevated immune and inflammatory pressure at sites of disease are liable to be critical. Periodontal bacterial genomics is liable to make a significant impact on the field through an increased appreciation of the role of gene acquisition and gene loss in the evolution of periodontal bacteria and of the consequences of strain variation in gene content on virulence potential.
Collapse
Affiliation(s)
- M A Curtis
- MRC Molecular Pathogenesis Group, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London Queen Mary's School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
296
|
Imai M, Murakami Y, Nagano K, Nakamura H, Yoshimura F. Major outer membrane proteins from Porphyromonas gingivalis: strain variation, distribution, and clinical significance in periradicular lesions. Eur J Oral Sci 2005; 113:391-9. [PMID: 16202026 DOI: 10.1111/j.1600-0722.2005.00235.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyromonas gingivalis has been implicated in both marginal periodontitis and periapical infection. This study examined the major outer membrane proteins, from P. gingivalis, which related to periradicular lesions. Outer membrane protein profiles of P. gingivalis ATCC 33277 and W83 were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and N-terminal amino acid analysis. Most outer membrane proteins, such as RagA, gingipains, and OmpA-like proteins, were found in both strains in a similar distribution pattern; however, the migration positions of Lys-gingipain and RagB were inverted in SDS-PAGE. Western blot analysis showed that RagA, RagB, and OmpA-like proteins were found in all of the P. gingivalis strains tested. The antiserum of W83 against RagB reacted poorly to some strains, such as ATCC 33277. When strains phylogenetically related to P. gingivalis were examined, RagA and OmpA homologs were immunologically detected in several strains. However, none of the RagB homologs were detected in any strain analyzed, suggesting that RagB is unique to P. gingivalis. To examine immunoreactive antigens in P. gingivalis, sera from patients with periradicular lesions were used. More than half of the sera showed strong reactions to P. gingivalis cell components, especially RagB. Our results indicate that a major outer membrane protein, RagB, is a possible virulence factor in periradicular lesions.
Collapse
Affiliation(s)
- Masashi Imai
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
297
|
Nesbø CL, Boucher Y, Dlutek M, Doolittle WF. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ Microbiol 2005; 7:2011-26. [PMID: 16309397 DOI: 10.1111/j.1462-2920.2005.00918.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metagenomic data, especially sequence data from large insert clones, are most useful when reasonable inferences about phylogenetic origins of inserts can be made. Often, clones that bear phylotypic markers (usually ribosomal RNA genes) are sought, but sometimes phylogenetic assignments have been based on the preponderance of blast hits obtained with predicted protein coding sequences (CDSs). Here we use a cloning method which greatly enriches for ribosomal RNA-bearing fosmid clones to ask two questions: (i) how reliably can we judge the phylogenetic origin of a clone (that is, its RNA phylotype) from the sequences of its CDSs? and (ii) how much lateral gene transfer (LGT) do we see, as assessed by CDSs of different phylogenetic origins on the same fosmid? We sequenced 12 rRNA containing fosmid clones, obtained from libraries constructed using DNA isolated from Baltimore harbour sediments. Three of the clones are from bacterial candidate divisions for which no cultured representatives are available, and thus represent the first protein coding sequences from these major bacterial lineages. The amount of LGT was assessed by making phylogenetic trees of all the CDSs in the fosmid clones and comparing the phylogenetic position of the CDS to the rRNA phylotype. We find that the majority of CDSs in each fosmid, 57-96%, agree with their respective rRNA genes. However, we also find that a significant fraction of the CDSs in each fosmid, 7-44%, has been acquired by LGT. In several cases, we can infer co-transfer of functionally related genes, and generate hypotheses about mechanism and ecological significance of transfer.
Collapse
Affiliation(s)
- Camilla L Nesbø
- Department of Biochemistry and Molecular Biology, Dalhousie University and Genome Atlantic, 5850 College Street, Halifax, Nova Scotia, Canada, B3H1X5.
| | | | | | | |
Collapse
|
298
|
Paramonov N, Rangarajan M, Hashim A, Gallagher A, Aduse-Opoku J, Slaney JM, Hounsell E, Curtis MA. Structural analysis of a novel anionic polysaccharide fromPorphyromonas gingivalisstrain W50 related to Arg-gingipain glycans. Mol Microbiol 2005; 58:847-63. [PMID: 16238632 DOI: 10.1111/j.1365-2958.2005.04871.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Arg-gingipains (RgpsA and B) of Porphyromonas gingivalis are a family of extracellular cysteine proteases and are important virulence determinants of this periodontal bacterium. A monoclonal antibody, MAb1B5, which recognizes an epitope on glycosylated monomeric RgpAs also cross-reacts with a cell-surface polysaccharide of P. gingivalis W50 suggesting that the maturation pathway of the Arg-gingipains may be linked to the biosynthesis of a surface carbohydrate. We report the purification and structural characterization of the cross-reacting anionic polysaccharide (APS), which is distinct from both the lipopolysaccharide and serotype capsule polysaccharide of P. gingivalis W50. The structure of APS was determined by 1D and 2D NMR spectroscopy and methylation analysis, which showed it to be a phosphorylated branched mannan. The backbone is built up of alpha-1,6-linked mannose residues and the side-chains contain alpha-1,2-linked mannose oligosaccharides of different lengths (one to two sugar residues) attached to the backbone via 1,2-linkage. One of the side-chains in the repeating unit contains Manalpha1-2Manalpha1-phosphate linked via phosphorus to a backbone mannose at position 2. De-O-phosphorylation of APS abolished cross-reactivity suggesting that Manalpha1-2Manalpha1-phosphate fragment forms part of the epitope recognized by MAb1B5. This phosphorylated branched mannan represents a novel polysaccharide that is immunologically related to the post-translational additions of Arg-gingipains.
Collapse
Affiliation(s)
- Nikolay Paramonov
- MRC Molecular Pathogenesis Group, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Beikler T, Peters U, Prior K, Ehmke B, Flemmig TF. Sequence variations in rgpA and rgpB of Porphyromonas gingivalis in periodontitis. J Periodontal Res 2005; 40:193-8. [PMID: 15853963 DOI: 10.1111/j.1600-0765.2005.00783.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of the present study was to determine sequence variations in the active centre of the Arg-X-specific protease encoding genes rgpA and rgpB of clinical Porphyromonas gingivalis isolates and to analyse their prevalence in periodontitis patients before and 3 months after mechanical periodontal therapy. BACKGROUND Genetic diversity at nucleotides 281, 283, 286 and 331 has been shown to result in amino acid substitutions in the catalytic domain of RgpA and RgpB that affect the substrate specificity and thus may influence the efficacy of Arg-X-protease specific inhibitors. METHODS Sequence analysis of rgpA and rgpB genes in clinical P. gingivalis strains isolated from subgingival plaque samples of 82 periodontitis patients before and 3 months after mechanical supra- and subgingival debridement was performed. RESULTS No specific variation within the rgpA sequence was observed. However, the rgpB sequence in the region of the active centre showed five different rgpB genotypes, which were named NYPN, NSSN, NSSK, NYPK and DYPN according to the derived amino acid substitution. Porphyromonas gingivalis genotype NYPN was detected in 27 patients (32.9%) before and in 8 patients (9.8%) after therapy, NSSN in 26 (31.7%) and 10 (12.2%), NSSK in 22 (26.8%) and 2 (2.4%), NYPK in 5 (6.2%) and 1 (1.2%), and DYPN in 1 patient (1.2%) and 0 patients (0%), respectively. Only one patient (1.2%) harboured two P. gingivalis rgpB genotypes (NSSK/NYPN) before treatment; these were no longer detected after therapy. CONCLUSION The results indicate that five rgpB genotypes are maintained in natural populations of P. gingivalis. These data may be of importance with regard to the development of specific rgpB inhibitors.
Collapse
Affiliation(s)
- T Beikler
- Department of Periodontology, University of Münster, Germany.
| | | | | | | | | |
Collapse
|
300
|
Ueda O, Wexler HM, Hirai K, Shibata Y, Yoshimura F, Fujimura S. Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 2005; 49:2807-15. [PMID: 15980353 PMCID: PMC1168660 DOI: 10.1128/aac.49.7.2807-2815.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sixteen homologs of multidrug resistance efflux pump operons of the resistance-nodulation-cell division (RND) family were found in the Bacteroides fragilis genome sequence by homology searches. Disruption mutants were made to the mexB homologs of the four genes most similar to Pseudomonas aeruginosa mexB. Reverse transcription-PCR was conducted and indicated that the genes were transcribed in a polycistronic fashion and that the promoter was upstream of bmeA (the mexA homolog). One of these disruption mutants (in bmeB, the mexB homolog) was more susceptible than the parental strain to certain cephems, polypeptide antibiotics, fusidic acid, novobiocin, and puromycin. The gene for this homolog and the adjacent upstream gene, bmeA, were cloned in a hypersensitive Escherichia coli host. The resultant transformants carrying B. fragilis bmeAB were more resistant to certain agents; these agents also had lower MICs for the B. fragilis bmeB disruption mutants than for the parental strain. The putative efflux pump operon is composed of bmeA, bmeB, and bmeC (a putative outer membrane channel protein homologous with OprM). Addition of the efflux pump inhibitors, carbonyl cyanide m-chlorophenylhydrazone (a proton conductor that eliminates the energy source) and Phe-Arg beta-naphthylamide (MC-207,110) (the first specific inhibitor described for RND pumps in P. aeruginosa), resulted in lowered MICs in the parental strain but not in the bmeB disruption mutant, indicating that the bmeB pump is affected by these inhibitors. This is the first description of RND type pumps in the genus Bacteroides.
Collapse
Affiliation(s)
- Ohmi Ueda
- Department of Oral Microbiology, Matsumoto Dental University, 1780 Gobara Hirooka Shiojiri, Nagano 399-0781, Japan.
| | | | | | | | | | | |
Collapse
|