251
|
Dąbrowska-Maś E, Frączyk T, Ruman T, Radziszewska K, Wilk P, Cieśla J, Zieliński Z, Jurkiewicz A, Gołos B, Wińska P, Wałajtys-Rode E, Leś A, Nizioł J, Jarmuła A, Stefanowicz P, Szewczuk Z, Rode W. Tyrosinenitration affects thymidylate synthase properties. Org Biomol Chem 2012; 10:323-31. [DOI: 10.1039/c1ob06360j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
252
|
Wilson PM, LaBonte MJ, Lenz HJ, Mack PC, Ladner RD. Inhibition of dUTPase induces synthetic lethality with thymidylate synthase-targeted therapies in non-small cell lung cancer. Mol Cancer Ther 2011; 11:616-28. [PMID: 22172489 DOI: 10.1158/1535-7163.mct-11-0781] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.
Collapse
Affiliation(s)
- Peter M Wilson
- Department of Pathology, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
253
|
Badalucco L, Poudel I, Yamanishi M, Natarajan C, Moriyama H. Crystallization of Chlorella deoxyuridine triphosphatase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1599-602. [PMID: 22139176 PMCID: PMC3232149 DOI: 10.1107/s1744309111038097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/18/2011] [Indexed: 11/10/2022]
Abstract
Deoxyuridine triphosphatase (dUTPase) is a ubiquitous enzyme that has been widely studied owing to its function and evolutionary significance. The gene coding for the dUTPase from the Chlorella alga was codon-optimized and synthesized. The synthetic gene was expressed in Escherichia coli and recombinant core Chlorella dUTPase (chdUTPase) was purified. Crystallization of chdUTPase was performed by the repetitive hanging-drop vapor-diffusion method at 298 K with ammonium sulfate as the precipitant. In the presence of 2'-deoxyuridine-5'-[(α,β)-imido]triphosphate and magnesium, the enzyme produced die-shaped hexagonal R3 crystals with unit-cell parameters a = b = 66.9, c = 93.6 Å, γ = 120°. X-ray diffraction data for chdUTPase were collected to 1.6 Å resolution. The crystallization of chdUTPase with manganese resulted in very fragile clusters of needles.
Collapse
Affiliation(s)
- Laura Badalucco
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | | | | | | | | |
Collapse
|
254
|
Vilenchik LZ, Sheth PR, Chuang CC, Le HV. Affinity characterization-mass spectrometry methodology for quantitative analyses of small molecule protein binding in solution. Anal Biochem 2011; 418:10-8. [PMID: 21726521 DOI: 10.1016/j.ab.2011.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Affinity characterization by mass spectrometry (AC-MS) is a novel LC-MS methodology for quantitative determination of small molecule ligand binding to macromolecules. Its most distinguishing feature is the direct determination of all three concentration terms of the equilibrium binding equation, i.e., (M), (L), and (ML), which denote the macromolecule, ligand, and the corresponding complex, respectively. Although it is possible to obtain the dissociation constant from a single mixing experiment, saturation analyses are still valuable for assessing the overall binding phenomenon based on an established formalism. In addition to providing the prerequisite dissociation constant and binding stoichiometry, the technique also provides valuable information about the actual solubility of both macromolecule and ligand upon dilution and mixing in binding buffers. The dissociation constants and binding mode for interactions of DNA primase and thymidylate synthetase (TS) with high and low affinity small molecule ligands were obtained using the AC-MS method. The data were consistent with the expected affinity of TS for these ligands based on dissociation constants determined by alternative thermal-denaturation techniques: TdF or TdCD, and also consistent enzyme inhibition constants reported in the literature. The validity of AC-MS was likewise extended to a larger set of soluble protein-ligand systems. It was established as a valuable resource for counter screen and structure-activity relationship studies in drug discovery, especially when other classical techniques could only provide ambiguous results.
Collapse
Affiliation(s)
- Lev Z Vilenchik
- Protein Science, Merck Research Laboratories, Cambridge, MA 02141, USA
| | | | | | | |
Collapse
|
255
|
Fivian-Hughes AS, Houghton J, Davis EO. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. MICROBIOLOGY-SGM 2011; 158:308-318. [PMID: 22034487 PMCID: PMC3352284 DOI: 10.1099/mic.0.053983-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.
Collapse
Affiliation(s)
- Amanda S Fivian-Hughes
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Joanna Houghton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Elaine O Davis
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
256
|
Ait-Tihyaty M, Rachid Z, Mihalcioiu C, Jean-Claude BJ. Inhibition of EGFR phosphorylation in a panel of human breast cancer cells correlates with synergistic interactions between gefitinib and 5'-DFUR, the bioactive metabolite of Xeloda. Breast Cancer Res Treat 2011; 133:217-26. [PMID: 21915635 DOI: 10.1007/s10549-011-1756-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/19/2011] [Indexed: 11/28/2022]
Abstract
Capecitabine (Xeloda) is a prodrug of 5-FU used in the clinical management of advanced breast cancer. It is metabolized first in the liver by carboxylesterases to generate 5'-deoxy-5-flurocytidine ribose (5'-DFCR), which is subsequently converted to 5'-deoxy-5-fluorouridine ribose (5'-DFUR) by cytidine deaminase in tumour and normal tissues. The conversion of 5'-DFUR to the cytotoxic 5-FU, occurs primarily in the tumour and is catalyzed by thymidine phosphorylase (TP). Prior work in head and neck cancer showed that cell treatment with an inhibitor of the epidermal growth receptor (EGFR) gefitinib led to an increase in TP expression and sensitized them to 5'-DFUR. This work seeks to investigate the factors influencing the potency of gefitinib + 5'-DFUR combination. Here, we studied these factors in a panel of six human breast cancer cell lines, with varied levels of sensitivity to gefitinib. Our results first confirmed that 5'-DFUR potency linearly correlates with TP basal levels in the panel of cell lines. In contrast, the strength of the synergistic effect of the gefitinib + 5'-DFUR combination, as measured by their combination indices (CI) correlates with pEGFR percent inhibition and with the modulation of TP expression by gefitinib (as quantitated by TP fold change) rather than TP basal levels. The results, in toto, suggest that the extent of modulation of TP by gefitinib may be used as a predictor of tumour sensitivity to gefitinib + capecitabine/5'-DFUR combinations.
Collapse
Affiliation(s)
- Maria Ait-Tihyaty
- Cancer Drug Research Laboratory, Department of Medicine, McGill University Health Center/Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | | | | | | |
Collapse
|
257
|
Galvani E, Peters GJ, Giovannetti E. Thymidylate synthase inhibitors for non-small cell lung cancer. Expert Opin Investig Drugs 2011; 20:1343-56. [PMID: 21905922 DOI: 10.1517/13543784.2011.617742] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The folate-dependent enzyme thymidylate synthase (TS) plays a pivotal role in DNA replication/repair and cancer cell proliferation, and represents a valid target for the treatment of several tumor types, including NSCLC. NSCLC is the leading cause of cancer-related mortality, and several TS inhibitors have gone into preclinical and clinical testing, with pemetrexed emerging for its approval and widespread use as first-/second-line and maintenance therapy for this disease. AREAS COVERED This review summarizes the therapeutic options in NSCLC, as well as the background and rationale for targeting TS. The authors also review recent pharmacogenetic studies and data from clinical trials evaluating novel TS inhibitors, hoping that the reader will gain a comprehensive overview of the field of TS inhibition, specifically relating to drugs used or being developed for lung cancer patients. EXPERT OPINION TS is a validated target in NSCLC. However, benefits from conventional chemotherapy in NSCLC have plateaued, and more cost-effective results should be obtained with individualized treatment. Accordingly, the clinical success for TS inhibitors may depend on our ability to correctly administer these agents following biomarker-driven patient selection, including TS genotype and expression, and using the right combination therapy.
Collapse
Affiliation(s)
- Elena Galvani
- VU University Medical Center, Department of Medical Oncology, Amsterdam, The Netherlands
| | | | | |
Collapse
|
258
|
Begley DW, Edwards TE, Raymond AC, Smith ER, Hartley RC, Abendroth J, Sankaran B, Lorimer DD, Myler PJ, Staker BL, Stewart LJ. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1070-7. [PMID: 21904052 PMCID: PMC3169404 DOI: 10.1107/s1744309111029009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/18/2011] [Indexed: 02/03/2023]
Abstract
Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research.
Collapse
Affiliation(s)
- Darren W Begley
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Melo SP, Barbour KW, Berger FG. Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin-independent degradation by the proteasome. J Biol Chem 2011; 286:36559-67. [PMID: 21878626 DOI: 10.1074/jbc.m111.274258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasomal complex, which is responsible for the bulk of protein degradation within the cell, recognizes its target substrates via covalently linked polyubiquitin moieties. However, a small but growing number of proteasomal substrates are degraded without a requirement for ubiquitinylation. One such substrate is the pyrimidine biosynthetic enzyme thymidylate synthase (EC 2.1.1.45), which catalyzes the synthesis of TMP and is the sole de novo source of TTP for DNA replication and repair. Previous work showed that intracellular proteolysis of human thymidylate synthase is directed by a degron at the polypeptide's N-terminal end, composed of an intrinsically disordered region (IDR) followed by a highly conserved amphipathic α-helix (hA). In the present report, we show that the hA helix does not function simply as an extension or scaffold for the IDR; rather, it provides a specific structural component that is necessary for degradation. Furthermore, its helical conformation is required for this function. We demonstrate that small domains from heterologous proteins can substitute for the IDR and the hA helix of human thymidylate synthase, indicating that the degradation-promoting function of these regions is not sequence-specific. The results, in general, indicate that cooperation between intrinsically disordered domains and α-helical segments is required for ubiquitin-independent degradation by the proteasome. There appears to be little sequence constraint on the ability of these regions to function as degron constituents. Rather, it is the overall conformation (or lack thereof) that is critical.
Collapse
Affiliation(s)
- Sandra P Melo
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
260
|
The active-inactive transition of human thymidylate synthase: Targeted molecular dynamics simulations. Proteins 2011; 79:2886-99. [DOI: 10.1002/prot.23123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/13/2011] [Accepted: 06/15/2011] [Indexed: 12/11/2022]
|
261
|
Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. J Biol Chem 2011; 286:36268-80. [PMID: 21846722 DOI: 10.1074/jbc.m111.256966] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavoprotein TrmFO methylates specifically the C5 carbon of the highly conserved uridine 54 in tRNAs. Contrary to most methyltransferases, the 1-carbon unit transferred by TrmFO derives from 5,10-methylenetetrahydrofolate and not from S-adenosyl-L-methionine. The enzyme also employs the FAD hydroquinone as a reducing agent of the C5 methylene U54-tRNA intermediate in vitro. By analogy with the catalytic mechanism of thymidylate synthase ThyA, a conserved cysteine located near the FAD isoalloxazine ring was proposed to act as a nucleophile during catalysis. Here, we mutated this residue (Cys-53 in Bacillus subtilis TrmFO) to alanine and investigated its functional role. Biophysical characterization of this variant demonstrated the major structural role of Cys-53 in maintaining both the integrity and plasticity of the flavin binding site. Unexpectedly, gel mobility shift assays showed that, like the wild-type enzyme, the inactive C53A variant was capable of forming a covalent complex with a 5-fluorouridine-containing mini-RNA. This result confirms the existence of a covalent intermediate during catalysis but rules out a nucleophilic role for Cys-53. To identify the actual nucleophile, two other strictly conserved cysteines (Cys-192 and Cys-226) that are relatively far from the active site were replaced with alanine, and a double mutant C53A/C226A was generated. Interestingly, only mutations that target Cys-226 impeded TrmFO from forming a covalent complex and methylating tRNA. Altogether, we propose a revised mechanism for the m(5)U54 modification catalyzed by TrmFO, where Cys-226 attacks the C6 atom of the uridine, and Cys-53 plays the role of the general base abstracting the C5 proton.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
262
|
Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS One 2011; 6:e23168. [PMID: 21858014 PMCID: PMC3153492 DOI: 10.1371/journal.pone.0023168] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/13/2011] [Indexed: 01/06/2023] Open
Abstract
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.
Collapse
Affiliation(s)
- Tomasz Wlodarski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Jan Kutner
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Joanna Towpik
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Lukasz Knizewski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | | | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
263
|
Wang K, Wang Q, Chen J, Chen L, Jiang H, Shen X. Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1. Protein Sci 2011; 20:1398-410. [PMID: 21633987 PMCID: PMC3189525 DOI: 10.1002/pro.668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and K(m) values of the two substrates dUMP and CH(2) H(4) folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery.
Collapse
Affiliation(s)
| | | | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | | | | | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| |
Collapse
|
264
|
Protein-protein interface-binding peptides inhibit the cancer therapy target human thymidylate synthase. Proc Natl Acad Sci U S A 2011; 108:E542-9. [PMID: 21795601 DOI: 10.1073/pnas.1104829108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The "LR" peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.
Collapse
|
265
|
Muhale FA, Wetmore BA, Thomas RS, McLeod HL. Systems pharmacology assessment of the 5-fluorouracil pathway. Pharmacogenomics 2011; 12:341-50. [PMID: 21449674 DOI: 10.2217/pgs.10.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM To assess the impact of the 5-fluorouracil (5-FU) drug-pathway genes on cytotoxicity, and determine whether loss-of-function analyses coupled with functional assays can help prioritize pharmacogenomic candidate genes. MATERIALS & METHODS Dose-response experiments were used to quantify the phenotype of sensitivity to 5-FU following the specific knockdown of genes selected from the 5-FU PharmGKB drug pathway in three human colorectal cell lines. Changes in sensitivity were considered significant if the IC(50) for shRNA-exposed cells were three standard deviations outside the mean IC(50) for control-treated cells. RESULTS Of the 24 genes analyzed, 13 produced significant changes on the phenotype of sensitivity to 5-FU (DHFR, DPYS, DTYMK, DUT, FPGS, GGH, NME1, NT5C, RRM1, TYMS, UCK2, UNG and UMPS). CONCLUSION The RNAi screening strategy enabled prioritization of the genes from the 5-FU drug pathway. Further validation of the genes credentialed in this study should include gene activity or expression and mutation analyses of clinical samples.
Collapse
Affiliation(s)
- Filipe A Muhale
- UNC Institute for Pharmacogenomics & Individualized Therapy, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7361, USA
| | | | | | | |
Collapse
|
266
|
Mangani S, Cancian L, Leone R, Pozzi C, Lazzari S, Luciani R, Ferrari S, Costi MP. Identification of the binding modes of N-phenylphthalimides inhibiting bacterial thymidylate synthase through X-ray crystallography screening. J Med Chem 2011; 54:5454-67. [PMID: 21696158 DOI: 10.1021/jm2005018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To identify specific bacterial thymidylate synthase (TS) inhibitors, we exploited phenolphthalein (PTH), which inhibits both bacterial and human enzymes. The X-ray crystal structure of Lactobacillus casei TS (LcTS) that binds PTH showed multiple binding modes of the inhibitor, which prevented a classical structure-based drug design approach. To overcome this issue, we synthesized two phthalimidic libraries that were tested against TS enzymes and then we performed X-ray crystallographic screening of the active compounds. Compounds 6A, 8A, and 12A showed 40-fold higher affinity for bacterial TS than human TS. The X-ray crystallographic screening characterized the binding mode of six inhibitors in complexes with LcTS. Of these, 20A, 23A, and 24A showed a common unique binding mode, whereas 8A showed a different, unique binding mode. A comparative analysis of the LcTS X-ray complexes that were obtained with the pathogenic TS enabled the selection of compounds 8A and 23A as specific compounds and starting points to be exploited for the specific inhibition of pathogen enzymes.
Collapse
Affiliation(s)
- Stefano Mangani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Lin H. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 2011; 39:161-70. [PMID: 21762947 DOI: 10.1016/j.bioorg.2011.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
S-Adenosylmethionine (SAM) is a versatile small molecule used in many biological reactions. This review focuses on the mechanistic consideration of SAM-dependent methylation and 3-amino-3-carboxypropylation reactions. Special emphasis is given to methylation and 3-amino-3-carboxypropylation of carbon atoms, for which both nucleophilic mechanisms and radical mechanisms are used, depending on the specific enzymatic reactions. What is the logic behind Nature's choice of different reaction mechanisms? Here I aim to rationalize the choice of different reaction mechanisms in SAM-dependent alkylation reaction by analyzing a few enzymatic reactions in depth. These reactions include SAM-dependent cyclopropane fatty acid synthesis, DNA cytosine methylation, RNA adenosine C2 and C8 methylation, and 3-amino-3-carboxypropylation involved in diphthamide biosynthesis and wybutosine biosynthesis.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
268
|
Di Cresce C, Figueredo R, Ferguson PJ, Vincent MD, Koropatnick J. Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed. J Pharmacol Exp Ther 2011; 338:952-63. [PMID: 21673071 DOI: 10.1124/jpet.111.183178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thymidylate synthase (TS) is the only de novo source of thymidylate (dTMP) for DNA synthesis and repair. Drugs targeting TS protein are a mainstay in cancer treatment, but off-target effects and toxicity limit their use. Cytosolic thymidine kinase (TK1) and mitochondrial thymidine kinase (TK2) contribute to an alternative dTMP-producing pathway, by salvaging thymidine from the tumor milieu, and may modulate resistance to TS-targeting drugs. Combined down-regulation of these enzymes is an attractive strategy to enhance cancer therapy. We have shown previously that antisense-targeting TS enhanced tumor cell sensitivity to TS-targeting drugs in vitro and in vivo. Because both TS and TKs contribute to increased cellular dTMP, we hypothesized that TKs mediate resistance to the capacity of TS small interfering RNA (siRNA) to sensitize tumor cells to TS-targeting anticancer drugs. We assessed the effects of targeting TK1 or TK2 with siRNA alone and in combination with siRNA targeting TS and/or TS-protein targeting drugs on tumor cell proliferation. Down-regulation of TK with siRNA enhanced the capacity of TS siRNA to sensitize tumor cells to traditional TS protein-targeting drugs [5-fluorodeoxyuridine (5FUdR) and pemetrexed]. The sensitization was greater than that observed in response to any siRNA used alone and was specific to drugs targeting TS. Up-regulation of TK1 in response to combined 5FUdR and TS siRNA suggests that TK knockdown may be therapeutically useful in combination with these agents. TKs may be useful targets for cancer therapy when combined with molecules targeting TS mRNA and TS protein.
Collapse
Affiliation(s)
- C Di Cresce
- London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
269
|
Kögler M, Vanderhoydonck B, De Jonghe S, Rozenski J, Van Belle K, Herman J, Louat T, Parchina A, Sibley C, Lescrinier E, Herdewijn P. Synthesis and evaluation of 5-substituted 2'-deoxyuridine monophosphate analogues as inhibitors of flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. J Med Chem 2011; 54:4847-62. [PMID: 21657202 DOI: 10.1021/jm2004688] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 5-substituted 2'-deoxyuridine monophosphate analogues has been synthesized and evaluated as potential inhibitors of mycobacterial ThyX, a novel flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. A systematic SAR study led to the identification of compound 5a, displaying an IC(50) value against mycobacterial ThyX of 0.91 μM. This derivative lacks activity against the classical mycobacterial thymidylate synthase ThyA (IC(50) > 50 μM) and represents the first example of a selective mycobacterial FDTS inhibitor.
Collapse
Affiliation(s)
- Martin Kögler
- Katholieke Universiteit Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Barreiro EJ, Kümmerle AE, Fraga CAM. The Methylation Effect in Medicinal Chemistry. Chem Rev 2011; 111:5215-46. [DOI: 10.1021/cr200060g] [Citation(s) in RCA: 518] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Arthur E. Kümmerle
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
271
|
Hamdane D, Guerineau V, Un S, Golinelli-Pimpaneau B. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis. Biochemistry 2011; 50:5208-19. [PMID: 21561081 DOI: 10.1021/bi1019463] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flavoprotein TrmFO catalyzes the C5 methylation of uridine 54 in the TΨC loop of tRNAs using 5,10-methylenetetrahydrofolate (CH(2)THF) as a methylene donor and FAD as a reducing agent. Here, we report biochemical and spectroscopic studies that unravel the remarkable capability of Bacillus subtilis TrmFO to stabilize, in the presence of oxygen, several flavin-reduced forms, including an FADH(•) radical, and a catalytic intermediate endowed with methylating activity. The FADH(•) radical was characterized by high-field electron paramagnetic resonance and electron nuclear double-resonance spectroscopies. Interestingly, the enzyme exhibited tRNA methylation activity in the absence of both an added carbon donor and an external reducing agent, indicating that a reaction intermediate, containing presumably CH(2)THF and FAD hydroquinone, is present in the freshly purified enzyme. Isolation by acid treatment, under anaerobic conditions, of noncovalently bound molecules, followed by mass spectrometry analysis, confirmed the presence in TrmFO of nonmodified FAD. Addition of formaldehyde to the purified enzyme protects the reduced flavins from decay by probably preventing degradation of CH(2)THF. The absence of air-stable reduced FAD species during anaerobic titration of oxidized TrmFO, performed in the absence or presence of added CH(2)THF, argues against their thermodynamic stabilization but rather implicates their kinetic trapping by the enzyme. Altogether, the unexpected isolation of a stable catalytic intermediate suggests that the flavin-binding pocket of TrmFO is a highly insulated environment, diverting the reduced FAD present in this intermediate from uncoupled reactions.
Collapse
Affiliation(s)
- Djemel Hamdane
- Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
272
|
Kanaan N, Ferrer S, Martí S, Garcia-Viloca M, Kohen A, Moliner V. Temperature dependence of the kinetic isotope effects in thymidylate synthase. A theoretical study. J Am Chem Soc 2011; 133:6692-702. [PMID: 21476498 PMCID: PMC3098132 DOI: 10.1021/ja1114369] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, the temperature dependence of primary kinetic isotope effects (KIE) has been used as indicator for the physical nature of enzyme-catalyzed H-transfer reactions. An interactive study where experimental data and calculations examine the same chemical transformation is a critical means to interpret more properly temperature dependence of KIEs. Here, the rate-limiting step of the thymidylate synthase-catalyzed reaction has been studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) simulations in the theoretical framework of the ensemble-averaged variational transition-state theory with multidimensional tunneling (EA-VTST/MT) combined with Grote-Hynes theory. The KIEs were calculated across the same temperature range examined experimentally, revealing a temperature independent behavior, in agreement with experimental findings. The calculations show that the H-transfer proceeds with ∼91% by tunneling in the case of protium and ∼80% when the transferred protium is replaced by tritium. Dynamic recrossing coefficients are almost invariant with temperature and in all cases far from unity, showing significant coupling between protein motions and the reaction coordinate. In particular, the relative movement of a conserved arginine (Arg166 in Escherichia coli ) promotes the departure of a conserved cysteine (Cys146 in E. coli ) from the dUMP by polarizing the thioether bond thus facilitating this bond breaking that takes place concomitantly with the hydride transfer. These promoting vibrations of the enzyme, which represent some of the dimensions of the real reaction coordinate, would limit the search through configurational space to efficiently find those decreasing both barrier height and width, thereby enhancing the probability of H-transfer by either tunneling (through barrier) or classical (over-the-barrier) mechanisms. In other words, the thermal fluctuations that are coupled to the reaction coordinate, together with transition-state geometries and tunneling, are the same in different bath temperatures (within the limited experimental range examined). All these terms contribute to the observed temperature independent KIEs in thymidylate synthase.
Collapse
Affiliation(s)
- Natalia Kanaan
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Silvia Ferrer
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Mireia Garcia-Viloca
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
- Institute of Applied Radiation Chemistry, Technical University of Lodz, 90-924 Lodz, Poland
| |
Collapse
|
273
|
Luo B, Repalli J, Yousef AM, Johnson SR, Lebioda L, Berger SH. Human thymidylate synthase with loop 181-197 stabilized in an inactive conformation: ligand interactions, phosphorylation, and inhibition profiles. Protein Sci 2011; 20:87-94. [PMID: 21064161 DOI: 10.1002/pro.539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thymidylate synthase (TS) is a well-validated cancer target that undergoes conformational switching between active and inactive states. Two mutant human TS (hTS) proteins are predicted from crystal structures to be stabilized in an inactive conformation to differing extents, with M190K populating the inactive conformation to a greater extent than A191K. Studies of intrinsic fluorescence and circular dichroism revealed that the structures of the mutants differ from those of hTS. Inclusion of the substrate dUMP was without effect on M190K but induced structural changes in A191K that are unique, relative to hTS. The effect of strong stabilization in an inactive conformation on protein phosphorylation by casein kinase 2 (CK2) was investigated. M190K was highly phosphorylated by CK2 relative to an active-stabilized mutant, R163K hTS. dUMP had no detectable effect on phosphorylation of M190K; however, dUMP inhibited phosphorylation of hTS and R163K. Studies of temperature dependence of catalysis revealed that the E(act) and temperature optimum are higher for A191K than hTS. The potency of the active-site inhibitor, raltitrexed, was lower for A191K than hTS. The response of A191K to the allosteric inhibitor, propylene diphosphonate (PDPA) was concentration dependent. Mixed inhibition was observed at low concentrations; at higher concentrations, A191K exhibited nonhyperbolic behavior with respect to dUMP and inhibition of catalysis was reversed by substrate saturation. In summary, inactive-stabilized mutants differ from hTS in thermal stability and response to substrates and PDPA. Importantly, phosphorylation of hTS by CK2 is selective for the inactive conformation, providing the first indication of physiological relevance for conformational switching.
Collapse
Affiliation(s)
- BeiBei Luo
- Department of Pharmaceutical Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
274
|
Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. Br J Cancer 2011; 104:1594-601. [PMID: 21487406 PMCID: PMC3101907 DOI: 10.1038/bjc.2011.129] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Although a high level of thymidylate synthase (TS) expression in malignant tumours has been suggested to be related to a reduced sensitivity to the antifolate drug pemetrexed, no direct evidence for such an association has been demonstrated in non-small cell lung cancer (NSCLC). We have now investigated the effect of TS overexpression on pemetrexed sensitivity in NSCLC cells. Methods: We established NSCLC cell lines that stably overexpress TS and examined the effects of such overexpression on the cytotoxicity of pemetrexed both in vitro and in xenograft models. We further examined the relation between TS expression in tumour specimens from NSCLC patients and the tumour response to pemetrexed by immunohistochemical analysis. Results: The sensitivity of NSCLC cells overexpressing TS to the antiproliferative effect of pemetrexed was markedly reduced compared with that of control cells. The inhibition of DNA synthesis and induction of apoptosis by pemetrexed were also greatly attenuated by forced expression of TS. Furthermore, tumours formed by TS-overexpressing NSCLC cells in nude mice were resistant to the growth-inhibitory effect of pemetrexed observed with control tumours. Finally, the level of TS expression in tumours of non-responding patients was significantly higher than that in those of responders, suggestive of an inverse correlation between TS expression and tumour response to pemetrexed. Conclusion: A high level of TS expression confers a reduced sensitivity to pemetrexed. TS expression is thus a potential predictive marker for response to pemetrexed-based chemotherapy in NSCLC patients.
Collapse
|
275
|
Affiliation(s)
- Pradipsinh K Rathod
- Department of Biology, The Catholic University of America, Washington, D.C., 20064 USA
| |
Collapse
|
276
|
Gordon MA, Zhang W, Yang D, Iqbal S, El-Khouiery A, Nagashima F, Lurje G, Labonte M, Wilson P, Sherrod A, Ladner RD, Lenz HJ. Gender-specific genomic profiling in metastatic colorectal cancer patients treated with 5-fluorouracil and oxaliplatin. Pharmacogenomics 2011; 12:27-39. [PMID: 21174620 DOI: 10.2217/pgs.10.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Survival and response rates in metastatic colorectal cancer remain poor, despite advances in drug development. There is increasing evidence to suggest that gender-specific differences may contribute to poor clinical outcome. We tested the hypothesis that genomic profiling of metastatic colorectal cancer is dependent on gender. MATERIALS & METHODS A total of 152 patients with metastatic colorectal cancer who were treated with oxaliplatin and continuous infusion 5-fluorouracil were genotyped for 21 polymorphisms in 13 cancer-related genes by PCR. Classification and regression tree analysis tested for gender-related association of polymorphisms with overall survival, progression-free survival and tumor response. RESULTS Classification and regression tree analysis of all polymorphisms, age and race resulted in gender-specific predictors of overall survival, progression-free survival and tumor response. Polymorphisms in the following genes were associated with gender-specific clinical outcome: estrogen receptor β, EGF receptor, xeroderma pigmentosum group D, voltage-gated sodium channel and phospholipase A2. CONCLUSION Genetic profiling to predict the clinical outcome of patients with metastatic colorectal cancer may depend on gender.
Collapse
Affiliation(s)
- Michael A Gordon
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Motorin Y, Helm M. RNA nucleotide methylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:611-31. [PMID: 21823225 DOI: 10.1002/wrna.79] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methylation of RNA occurs at a variety of atoms, nucleotides, sequences and tertiary structures. Strongly related to other posttranscriptional modifications, methylation of different RNA species includes tRNA, rRNA, mRNA, tmRNA, snRNA, snoRNA, miRNA, and viral RNA. Different catalytic strategies are employed for RNA methylation by a variety of RNA-methyltransferases which fall into four superfamilies. This review outlines the different functions of methyl groups in RNA, including biophysical, biochemical and metabolic stabilization of RNA, quality control, resistance to antibiotics, mRNA reading frame maintenance, deciphering of normal and altered genetic code, selenocysteine incorporation, tRNA aminoacylation, ribotoxins, splicing, intracellular trafficking, immune response, and others. Connections to other fields including gene regulation, DNA repair, stress response, and possibly histone acetylation and exocytosis are pointed out. WIREs RNA 2011 2 611-631 DOI: 10.1002/wrna.79 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), Université Henri Poincaré, Vandoeuvre-les-Nancy, France
| | | |
Collapse
|
278
|
Yan F, Fujimori DG. RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc Natl Acad Sci U S A 2011; 108:3930-4. [PMID: 21368151 PMCID: PMC3054002 DOI: 10.1073/pnas.1017781108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RlmN and Cfr are Radical SAM enzymes that modify a single adenosine nucleotide--A2503--in 23S ribosomal RNA. This nucleotide is positioned within the peptidyl transferase center of the ribosome, which is a target of numerous antibiotics. An unusual feature of these enzymes is their ability to carry out methylation of amidine carbons of the adenosine substrate. To gain insight into the mechanism of methylation catalyzed by RlmN and Cfr, deuterium labeling experiments were carried out. These experiments demonstrate that the newly introduced methyl group is assembled from an S-adenosyl-L-methionine (SAM)-derived methylene fragment and a hydrogen atom that had migrated from the substrate amidine carbon. Rather than activating the adenosine nucleotide of the substrate by hydrogen atom abstraction from an amidine carbon, the 5'-deoxyadenosyl radical abstracts hydrogen from the second equivalent of SAM to form the SAM-derived radical cation. This species, or its corresponding sulfur ylide, subsequently adds into the substrate, initiating hydride shift and S-adenosylhomocysteine elimination to complete the formation of the methyl group. These findings indicate that rather than acting as methyltransferases, RlmN and Cfr are methyl synthases. Together with the previously described 5'-deoxyadenosyl and 3-amino-3-carboxypropyl radicals, these findings demonstrate that all three carbon atoms attached to the sulfonium center in SAM can serve as precursors to carbon-derived radicals in enzymatic reactions.
Collapse
Affiliation(s)
- Feng Yan
- Department of Cellular and Molecular Pharmacology and Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94158
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology and Department of Pharmaceutical Chemistry, University of California, 600 16th Street, San Francisco, CA 94158
| |
Collapse
|
279
|
Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean. J Virol 2011; 85:4520-9. [PMID: 21289127 DOI: 10.1128/jvi.02131-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.
Collapse
|
280
|
Schmitz JC, Chu E. Effect of small interfering RNA 3'-end overhangs on chemosensitivity to thymidylate synthase inhibitors. SILENCE 2011; 2:1. [PMID: 21247442 PMCID: PMC3035029 DOI: 10.1186/1758-907x-2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/19/2011] [Indexed: 11/26/2022]
Abstract
Background Small interfering RNAs (siRNAs) are double-stranded RNAs that effectively inhibit expression of its complimentary target mRNA. Standard siRNAs contain two nucleotide overhangs on their 3' end. While these overhangs are usually comprised of deoxythymidines (dT), it has been shown that any nucleotide can be used on the 3' end without affecting RNAi silencing. Results It was recently shown that extension of the 3' end to five or eight dT molecules allows siRNAs to be effectively complexed with linear polyethylenimine (PEI), leading to enhanced cellular uptake and intracellular release. Here, we provide further evidence that only extended or 'sticky' siRNAs complexed with PEI result in significant target knockdown. However, when investigating the potential effects of these extended siRNAs on growth of human colon cancer RKO cells, we observed a dose-dependent reversal of cytotoxicity of a thymidylate synthase-targeted siRNA. In contrast, siRNAs with uridine overhangs maintained their growth inhibitory effects. We further demonstrated that dT-containing siRNAs prevented the cytotoxic effects of thymidylate synthase (TS) inhibitor compounds, such as ZD1694 and 5'-fluoro-deoxyuridine, while having no deleterious effect on cisplatin toxicity. We show that this rescue effect results from the rapid degradation of the siRNA. Conclusions Given that TS is an important enzyme for cell growth and proliferation and that its expression is controlled by multiple pathways, the rescue of its growth inhibitory effects may have unintended consequences. As siRNAs are being developed as therapeutic molecules, it will be important to avoid such off-target effects due to dT release. Hence, siRNAs should contain only uridine residues in their 3'-end overhangs.
Collapse
Affiliation(s)
- John C Schmitz
- VACT Healthcare System, VACT Cancer Center, West Haven, CT, USA.
| | | |
Collapse
|
281
|
Gnimpieba EZ, Eveillard D, Guéant JL, Chango A. Using logic programming for modeling the one-carbon metabolism network to study the impact of folate deficiency on methylation processes. MOLECULAR BIOSYSTEMS 2011; 7:2508-21. [DOI: 10.1039/c1mb05102d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
282
|
Zhai H, Ju J. Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet 2011; 2. [PMID: 22114584 PMCID: PMC3221387 DOI: 10.3389/fgene.2011.00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs with critical regulatory functions as post-transcriptional regulators. Due to the fundamental importance and broad impact of miRNAs on multiple genes and pathways, dysregulated miRNAs have been associated with human diseases, including cancer. Colorectal cancer (CRC) is among the most deadly diseases, and miRNAs offer a new frontier for target discovery and novel biomarkers for both diagnosis and prognosis. In this review, we summarize the recent advancement of miRNA research in CRC, in particular, the roles of miRNAs in CRC stem cells, epithelial-to-mesenchymal transition, chemoresistance, therapeutics, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Haiyan Zhai
- Translational Research Laboratory, Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | | |
Collapse
|
283
|
Gibson LM, Celeste LR, Lovelace LL, Lebioda L. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:60-6. [PMID: 21206062 PMCID: PMC3016017 DOI: 10.1107/s0907444910044732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022]
Abstract
Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.
Collapse
Affiliation(s)
- Lydia M. Gibson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lesa R. Celeste
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Leslie L. Lovelace
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lukasz Lebioda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
284
|
CoFactor: Folate Requirement for Optimization of 5-Fluouracil Activity in Anticancer Chemotherapy. JOURNAL OF ONCOLOGY 2010; 2010:934359. [PMID: 21209714 PMCID: PMC3010680 DOI: 10.1155/2010/934359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Intracellular reduced folate exists as a "pool" of more than 6 interconvertable forms. One of these forms, 5,10 methylenetetrahydrofolic acid (CH(2)THF), is the key one-carbon donor and reduced folate substrate for thymidylate synthase (TS). This pathway has been an important target for chemotherapy as it provides one of the necessary nucleotide substrates for DNA synthesis. The fluoropyrimidine 5-fluorouracil (5-FU) exerts its main cytotoxic activity through TS inhibition. Leucovorin (5-formyltetrahydrofolate; LV) has been used to increase the intracellular reduced folate pools and enhance TS inhibition. However, it must be metabolized within the cell through multiple intracellular enzymatic steps to form CH2THF. CoFactor (USAN fotrexorin calcium, (dl)-5,10,-methylenepteroyl-monoglutamate calcium salt) is a reduced folate that potentiates 5-FU cytotoxicity. According to early clinical trials, when 5-FU is modulated by CoFactor instead of LV, there is greater anti-tumor activity and less toxicity. This review presents the emerging role of CoFactor in colorectal and nongastrointestinal malignancies.
Collapse
|
285
|
Ching YH, Munroe RJ, Moran JL, Barker AK, Mauceli E, Fennell T, Dipalma F, Lindblad-Toh K, Abcunas LM, Gilmour JF, Harris TP, Kloet SL, Luo Y, McElwee JL, Mu W, Park HK, Rogal DL, Schimenti KJ, Shen L, Shindo M, Shou JY, Stenson EK, Stover PJ, Schimenti JC. High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5. BMC Genet 2010; 11:106. [PMID: 21118569 PMCID: PMC3009607 DOI: 10.1186/1471-2156-11-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/30/2010] [Indexed: 01/02/2023] Open
Abstract
Background Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals. Results We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (Tbc1d14, Nol14, Tyms, Cad, Fbxl5, Haus3), and mutations in genes we or others previously reported (Tapt1, Rest, Ugdh, Paxip1, Hmx1, Otoe, Nsun7). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in Tbc1d14 provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis. Conclusion This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.
Collapse
Affiliation(s)
- Yung-Hao Ching
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Wang Z, Kohen A. Thymidylate synthase catalyzed H-transfers: two chapters in one tale. J Am Chem Soc 2010; 132:9820-5. [PMID: 20575541 DOI: 10.1021/ja103010b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Examination of the nature of different bond activations along the same catalytic path is of general interest in chemistry and biology. In this report, we compare the physical nature of two sequential H-transfers in the same enzymatic reaction. Thymidylate synthase (TSase) catalyzes a complex reaction that involves many chemical transformations including two different C-H bond cleavages, a rate-limiting C-H-C hydride transfer and a non-rate-limiting C-H-O proton transfer. Although the large kinetic complexity imposes difficulties in studying the proton transfer catalyzed by TSase, we are able to experimentally extract the intrinsic kinetic isotope effects (KIEs) on both steps. In contrast with the hydride transfer, the intrinsic KIEs of the proton transfer are temperature dependent. The results are interpreted within the framework of the Marcus-like model. This interpretation suggests that TSase optimizes the donor-acceptor geometries for the slower and overall rate-limiting hydride transfer but not for the faster proton transfer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
287
|
Park M, Cho S, Lee H, Sibley CH, Rhie H. Alternative thymidylate synthase, ThyX, involved in Corynebacterium glutamicum ATCC 13032 survival during stationary growth phase. FEMS Microbiol Lett 2010; 307:128-34. [PMID: 20636973 DOI: 10.1111/j.1574-6968.2010.01971.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A BLASTP search has shown the presence of a gene homologous to an alternative thymidylate synthase (TS), thyX, in Corynebacterium glutamicum ATCC 13032. To determine if thyX is functionally analogous to thyA, thyX was cloned in a plasmid and the resulting construct was transferred by transformation into a thyA mutant of Escherichia coli. The ThyX from C. glutamicum compensated for the defect in TS-deficient E. coli. A functional knockout of the thyX gene was constructed by allelic replacement using a sucrose counter-selectable suicide plasmid and confirmed by PCR and reverse transcriptase-PCR analyses. This mutant was viable without thymidine supplementation, suggesting that thyX is not an essential gene in C. glutamicum. Growth of the thyX mutant was dependent upon coupling activity of dihydrofolate reductase (DHFR) with ThyA for the synthesis of thymidine, and thus showed sensitivity to the inhibition of DHFR by the experimental inhibitor, WR99210. This indicates that thymidine synthesis was at least partially dependent on thyX expression. As it approached stationary phase, the thyX mutant lost viability much more rapidly than the parental wild type and the mutant complemented the thyX gene, suggesting that the activity of the ThyX enzyme is important in that phase of the growth cycle.
Collapse
Affiliation(s)
- Mijeong Park
- Department of Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
288
|
Fusaro M, Jurkiewicz A, Jarmuła A, Leś A, Rode W. Hypothesis of a proton switch in QM/MM modelling of interaction of dUMP analogues with thymidylate synthase. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.502938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
289
|
Abstract
Human thymidylate synthase (hTS; EC 2.1.1.45) is one of a small group of proteasomal substrates whose intracellular degradation occurs in a ubiquitin-independent manner. Previous studies have shown that proteolytic breakdown of the hTS polypeptide is directed by an intrinsically disordered 27-residue domain at the N-terminal end of the molecule. This domain, in co-operation with an α-helix spanning amino acids 31–45, functions as a degron, in that it has the ability to destabilize a heterologous polypeptide to which it is attached. In the present study, we provide evidence indicating that it is the 26S isoform of the proteasome that is responsible for intracellular degradation of the hTS polypeptide. In addition, we have used targeted in vitro mutagenesis to show that an Arg–Arg motif at residues 10–11 is required for proteolysis, an observation that was confirmed by functional analysis of the TS N-terminus from other mammalian species. The effects of stabilizing mutations on hTS degradation are maintained when the enzyme is provided with an alternative means of proteasome association; thus such mutations perturb one or more post-docking steps in the degradation pathway. Surprisingly, deletion mutants missing large segments of the disordered domain still function as proteasomal substrates; however, degradation of such mutants occurs by a mechanism that is distinct from that for the wild-type protein. Taken together, our results provide information on the roles of specific subregions within the intrinsically disordered N-terminal domain of hTS in regulation of degradation, leading to a deeper understanding of mechanisms underlying the ubiquitin-independent proteasomal degradation pathway.
Collapse
|
290
|
Xiong L, Zhang J, Yuan B, Dong X, Jiang X, Wang Y. Global proteome quantification for discovering imatinib-induced perturbation of multiple biological pathways in K562 human chronic myeloid leukemia cells. J Proteome Res 2010; 9:6007-15. [PMID: 20949922 DOI: 10.1021/pr100814y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imatinib mesylate, currently marketed by Novartis as Gleevec in the U.S., has emerged as the leading compound to treat the chronic phase of chronic myeloid leukemia (CML), through its inhibition of Bcr-Abl tyrosine kinases, and other cancers. However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular pathways affected by imatinib treatment, we applied mass spectrometry together with stable isotope labeling by amino acids in cell culture (SILAC) for the comparative study of protein expression in K562 cells that were untreated or treated with a clinically relevant concentration of imatinib. Our results revealed that, among the 1344 quantified proteins, 73 had significantly altered levels of expression induced by imatinib and could be quantified in both forward and reverse SILAC labeling experiments. These included the down-regulation of thymidylate synthase, S-adenosylmethionine synthetase, and glycerol-3-phosphate dehydrogenase as well as the up-regulation of poly(ADP-ribose) polymerase 1, hemoglobins, and enzymes involved in heme biosynthesis. We also found, by assessing alteration in the acetylation level in histone H4 upon imatinib treatment, that the imatinib-induced hemoglobinization and erythroid differentiation in K562 cells are associated with global histone H4 hyperacetylation. Overall, these results provided potential biomarkers for monitoring the therapeutic intervention of CML using imatinib and offered important new knowledge for gaining insight into the molecular mechanisms of action of imatinib.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | | | | | |
Collapse
|
291
|
Kanaan N, Martí S, Moliner V, Kohen A. QM/MM study of thymidylate synthase: enzymatic motions and the temperature dependence of the rate limiting step. J Phys Chem A 2010; 113:2176-82. [PMID: 19182971 DOI: 10.1021/jp810548d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TS) is an enzyme that catalyzes a complex cascade of reactions. A theoretical study of the reduction of an exocyclic methylene intermediate by hydride transfer from the 6S position of 5,6,7,8-tetrahydrofolate (H(4)folate), to form 2'-deoxyuridine 5'-monophosphate (dTMP) and 7,8-dihydrofolate (H(2)folate), has been carried out using hybrid quantum mechanics/molecular mechanics methods. This step is of special interest because it is the rate-limiting step of the reaction catalyzed by TS. The acceptor of this hydride is an intermediate that is covalently bound to the enzyme via a thioether bond to an overall conserved active site cysteine residue (Cys146 in Escherichia coli). Heretofore, whether the hydride transfer precedes the thiol abstraction that releases the product from the enzyme or whether these two processes are concerted has been an open question. We have examined this step in terms of free energy surfaces obtained at the same temperatures we previously used in experimental studies of this mechanistic step (273-313 K). Analysis of the results reveals that substantial features of the reaction and the nature of the H-transfer seem to be temperature independent, in agreement with our experimental data. The findings also indicate that the hydride transfer and the scission of Cys146 take place in a concerted but asynchronous fashion. This 1,3-S(N)2 substitution is assisted by arginine 166 and several other arginine residues in the active site that polarize the carbon-sulfur bond and stabilize the charge transferred from cofactor to substrate. Finally, the simulation elucidates the molecular details of the enzyme's motion that brings the system to its transition state and, in accordance with the experimental data, indicates that this "tunneling ready" conformation is temperature independent.
Collapse
Affiliation(s)
- Natalia Kanaan
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | | | | | | |
Collapse
|
292
|
Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl Environ Microbiol 2010; 76:7343-7. [PMID: 20817795 DOI: 10.1128/aem.01257-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyoxins consist of 14 structurally variable components which differentiate at three branch sites of the carbon skeleton. Open reading frame (ORF) SAV_4805 of Streptomyces avermitilis, showing similarity to thymine-7-hydroxylase, was proved to enhance the diversity of polyoxins at the C-5 site of the 1-(5'-amino-5'-deoxy-β-d-allofuranuronosyl) pyrimidine moiety.
Collapse
|
293
|
Takezawa K, Okamoto I, Tsukioka S, Uchida J, Kiniwa M, Fukuoka M, Nakagawa K. Identification of thymidylate synthase as a potential therapeutic target for lung cancer. Br J Cancer 2010; 103:354-61. [PMID: 20628382 PMCID: PMC2920030 DOI: 10.1038/sj.bjc.6605793] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Thymidylate synthase (TS), a key enzyme in the de novo synthesis of thymidine, is an important chemotherapeutic target for malignant tumours including lung cancer. Although inhibition of TS has an antiproliferative effect in cancer cells, the precise mechanism of this effect has remained unclear. Methods: We examined the effects of TS inhibition with an RNA interference-based approach. The effect of TS depletion on the growth of lung cancer cells was examined using colorimetric assay and flow cytometry. Results: Measurement of the enzymatic activity of TS in 30 human lung cancer cell lines revealed that such activity differs among tumour histotypes. Almost complete elimination of TS activity by RNA interference resulted in inhibition of cell proliferation in all tested cell lines, suggestive of a pivotal role for TS in cell proliferation independent of the original level of enzyme activity. The antiproliferative effect of TS depletion was accompanied by arrest of cells in S phase of the cell cycle and the induction of caspase-dependent apoptosis as well as by changes in the expression levels of cyclin E and c-Myc. Moreover, TS depletion induced downregulation of the antiapoptotic protein X-linked inhibitor of apoptosis (XIAP), and it seemed to activate the mitochondrial pathway of apoptosis. Conclusion: Our data provide insight into the biological relevance of TS as well as a basis for clinical development of TS-targeted therapy for lung cancer.
Collapse
Affiliation(s)
- K Takezawa
- Department of Medical Oncology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
294
|
Begley DW, Zheng S, Varani G. Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping. Chem Biol Drug Des 2010; 76:218-33. [PMID: 20626411 DOI: 10.1111/j.1747-0285.2010.01010.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solution-state nuclear magnetic resonance (NMR) is a versatile tool for the study of binding interactions between small molecules and macromolecular targets. We applied ligand-based NMR techniques to the study of human thymidylate synthase (hTS) using known nanomolar inhibitors and a library of small molecule fragments. Screening by NMR led to the rapid identification of ligand pairs that bind in proximal sites within the cofactor-binding pocket of hTS. Screening hits were used as search criteria within commercially available sources, and a subset of catalog analogs were tested for potency by in vitro assay and binding affinity by quantitative saturation transfer difference (STD)-NMR titration. Two compounds identified by this approach possess low micromolar affinity and potency, as well as excellent binding efficiency against hTS. Relative binding orientations for both leads were modeled using AutoDock, and the most likely bound conformations were validated using experimentally derived STD-NMR binding epitope data. These ligands represent novel starting points for fragment-based drug design of non-canonical TS inhibitors, and their binding epitopes highlight important and previously unexploited interactions with conserved residues in the cofactor-binding site.
Collapse
Affiliation(s)
- Darren W Begley
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
| | | | | |
Collapse
|
295
|
Formation of catalytically active cross-species heterodimers of thymidylate synthase from Plasmodium falciparum and Plasmodium vivax. Mol Biol Rep 2010; 38:1029-37. [PMID: 20577818 DOI: 10.1007/s11033-010-0199-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Thymidylate synthase (TS) of Plasmodium dihydrofolate reductase-thymidylate synthase (DHFR-TS) functions as a homodimeric enzyme with two active sites located near the subunit interface. The dimerization is essential for catalysis, since the active site of each subunit contains amino acid residues contributed from the other TS domain. In P. falciparum DHFR-TS, it has been shown that the active sites require Cys-490 from one domain and Arg-470 donated from the other domain. Mutants of these two series can complement one another giving rise to active enzyme. Here, the potential to form cross-species heterodimers between P. falciparum and P. vivax TS has been explored. Formation of cross-species heterodimer was tested by co-transformation of TS-inactive Cys-490 mutants of P. falciparum or P. vivax with corresponding TS-inactive Arg-486 mutants of P. vivax or P. falciparum into thymidine-requiring Escherichia coli. Active heterodimers were detected by subunit complementation and 6-[(3)H]-FdUMP binding assays. All combinations of the mutants tested, except for (Pf)R470A+(Pv)C506Y, were able to form catalytically active cross-species heterodimers. The single active site formed by (Pf)R470D+(Pv)C506Y and (Pv)R486D+(Pf)C490A pairs of cross-species heterodimers has k(cat) and K(m) values similar to those of intra-species heterodimers of P. falciparum and P. vivax. This is the first report to demonstrate that the TS subunit interface between Plasmodium species is sufficiently conserved to allow formation of fully active cross-species heterodimer.
Collapse
|
296
|
Biochemical characterization of two thymidylate synthases in Corynebacterium glutamicum NCHU 87078. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1751-9. [PMID: 20595007 DOI: 10.1016/j.bbapap.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 05/06/2010] [Accepted: 05/17/2010] [Indexed: 11/23/2022]
Abstract
The genome of Corynebacterium glutamicum NCHU 87078 contains two putative thymidylate synthase genes, designated CgthyA and CgthyX. These two genes were expressed in Escherichia coli NovaBlue and the expressed His(6)-tagged enzymes were purified by nickel-chelate chromatography. The purified CgThyA had a specific activity of 414 mU mg(-)(1) protein, whereas thymidylate synthase activity for CgThyX could not be detected in a functional complementation assay using a 10-day incubation period. Gel filtration chromatography and chemical cross-linking experiments showed that CgThyX may exist as a dimer in solution, unlike a typical ThyX protein with homotetrameric structure for catalytic activity. Spectroscopic analysis indicated that purified CgThyX lacked the cofactor FAD. The 2.3A resolution crystal structure of CgThyX-FAD demonstrated a loose tetramer, in which FAD is chelated between the subunits via a manner distinct from that of other flavin-dependent thymidylate synthases. Structure-based mutational studies have identified a non-conserved segment (residues 70-73) of CgThyX protein with crucial role in binding to FAD. Taken together, our biochemical and structural analyses highlight unique features of the C. glutamicum ThyX that distinguish this enzyme from ThyX proteins from other organisms. Our results also suggest that thymidylate synthesis in C. glutamicum requires ThyA but not ThyX.
Collapse
|
297
|
Jarmuła A, Fraczyk T, Cieplak P, Rode W. Mechanism of influence of phosphorylation on serine 124 on a decrease of catalytic activity of human thymidylate synthase. Bioorg Med Chem 2010; 18:3361-70. [PMID: 20430630 PMCID: PMC4127429 DOI: 10.1016/j.bmc.2010.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Regulation by phosphorylation is a well-established mechanism for controlling biological activity of proteins. Recently, phosphorylation of serine 124 in human thymidylate synthase (hTS) has been shown to lower the catalytic activity of the enzyme. To clarify a possible mechanism of the observed influence, molecular dynamics (MD), essential dynamics (ED) and MM-GBSA studies were undertaken. Structures derived from the MD trajectories reveal incorrect binding alignment between the pyrimidine ring of the substrate, dUMP, and the pterine ring of the cofactor analogue, THF, in the active site of the phosphorylated enzyme. The ED analysis indicates changes in the behavior of collective motions in the phosphorylated enzyme, suggesting that the formation of the closed ternary complex is hindered. Computed free energies, in agreement with structural analysis, predict that the binding of dUMP and THF to hTS is favored in the native compared to phosphorylated state of the enzyme. The paper describes at the structural level how phosphorylation at the distant site influences the ligand binding. We propose that the 'phosphorylation effect' is transmitted from the outside loop of Ser 124 into the active site via a subtle mechanism initiated by the long-range electrostatic repulsion between the phosphate groups of dUMP and Ser124. The mechanism can be described in terms of the interplay between the two groups of amino acids: the link (residues 125-134) and the patch (residues 189-192), resulting in the change of orientation of the pyrimidine ring of dUMP, which, in turn, prevents the correct alignment between the latter ring and the pterin ring of THF.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warszawa, Poland.
| | | | | | | |
Collapse
|
298
|
Zhang X, Zhang J, Mao X, Zou Q, Hu Y, Wang DC. Crystallization and preliminary crystallographic studies of a flavin-dependent thymidylate synthase from Helicobacter pylori. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:513-5. [PMID: 20445247 PMCID: PMC2864680 DOI: 10.1107/s174430911000864x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/06/2010] [Indexed: 05/29/2023]
Abstract
The ThyX enzymes that have recently been identified in various bacteria, including some important human pathogens such as Helicobacter pylori and Mycobacterium tuberculosis, are flavin-dependent thymidylate synthases that function in the place of classic thymidylate synthase enzymes in the biosynthesis of dTMP, which is one of the building blocks of DNA. They are promising targets for the development of novel antibiotics because they utilize catalytic mechanisms that are distinct from those of the classic thymidylate synthases found in most organisms, including humans. In this study, H. pylori ThyX was purified and crystallized in complex with flavin adenine dinucleotide (FAD) and a diffraction data set was collected to 2.5 A resolution. The crystals belonged to space group C2, with unit-cell parameters a = 221.92, b = 49.43, c = 143.02 A, beta = 98.84 degrees .
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Jinyong Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Quanming Zou
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| |
Collapse
|
299
|
Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010; 9:96. [PMID: 20433742 PMCID: PMC2881118 DOI: 10.1186/1476-4598-9-96] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/30/2010] [Indexed: 02/06/2023] Open
Abstract
Background Translational control mediated by non-coding microRNAs (miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX). Results The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that over-expression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/CD44+ colon cancer cells. Conclusions Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance and it may have a unique potential as a novel biomarker candidate.
Collapse
Affiliation(s)
- Bo Song
- Translational Research Laboratory, Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
300
|
Huang X, Gibson LM, Bell BJ, Lovelace LL, Peña MMO, Berger FG, Berger SH, Lebioda L. Replacement of Val3 in human thymidylate synthase affects its kinetic properties and intracellular stability . Biochemistry 2010; 49:2475-82. [PMID: 20151707 DOI: 10.1021/bi901457e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of approximately 27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K(m,app) values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F.FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K(m,app) value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K(m,app) values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|