251
|
Cai M, Huang Z, Liao Z, Chen T, Wang P, Jiang S, Chen D, Peng T, Bian Y, Hong G, Yang H, Zeng Z, Li X, Li M. Characterization of the subcellular localization and nuclear import molecular mechanisms of herpes simplex virus 1 UL2. Biol Chem 2017; 398:509-517. [PMID: 27865090 DOI: 10.1515/hsz-2016-0268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/16/2016] [Indexed: 11/15/2022]
Abstract
As a crucial protein, the herpes simplex virus 1 (HSV-1) UL2 protein has been shown to take part in various stages of viral infection, nonetheless, its exact subcellular localization and transport molecular determinants are not well known thus far. In the present study, by using live cells fluorescent microscopy assay, UL2 tagged with enhanced yellow fluorescent protein was transiently expressed in live cells and showed a completely nuclear accumulation without the presence of other HSV-1 proteins. Moreover, the nuclear transport of UL2 was characterized to be assisted by multiple transport pathways through Ran-, importin α1-, α5-, α7-, β1- and transportin-1 cellular transport receptors. Consequently, these results will improve understanding of UL2-mediated biological functions in HSV-1 infection cycles.
Collapse
|
252
|
Koyama M, Hirano H, Shirai N, Matsuura Y. Crystal structure of the Xpo1p nuclear export complex bound to the SxFG/PxFG repeats of the nucleoporin Nup42p. Genes Cells 2017; 22:861-875. [PMID: 28791779 DOI: 10.1111/gtc.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022]
Abstract
Xpo1p (yeast CRM1) is the major nuclear export receptor that carries a plethora of proteins and ribonucleoproteins from the nucleus to cytoplasm. The passage of the Xpo1p nuclear export complex through nuclear pore complexes (NPCs) is facilitated by interactions with nucleoporins (Nups) containing extensive repeats of phenylalanine-glycine (so-called FG repeats), although the precise role of each Nup in the nuclear export reaction remains incompletely understood. Here we report structural and biochemical characterization of the interactions between the Xpo1p nuclear export complex and the FG repeats of Nup42p, a nucleoporin localized at the cytoplasmic face of yeast NPCs and has characteristic SxFG/PxFG sequence repeat motif. The crystal structure of Xpo1p-PKI-Nup42p-Gsp1p-GTP complex identified three binding sites for the SxFG/PxFG repeats on HEAT repeats 14-20 of Xpo1p. Mutational analyses of Nup42p showed that the conserved serines and prolines in the SxFG/PxFG repeats contribute to Xpo1p-Nup42p binding. Our structural and biochemical data suggest that SxFG/PxFG-Nups such as Nup42p and Nup159p at the cytoplasmic face of NPCs provide high-affinity docking sites for the Xpo1p nuclear export complex in the terminal stage of NPC passage and that subsequent disassembly of the nuclear export complex facilitates recycling of free Xpo1p back to the nucleus.
Collapse
Affiliation(s)
- Masako Koyama
- Division of Biological Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Hidemi Hirano
- Division of Biological Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Natsuki Shirai
- Division of Biological Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Nagoya University, Nagoya, 464-8602, Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
253
|
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 2017; 121:1000-1020. [DOI: 10.1161/circresaha.117.310355] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium (Ca
2+
) is a universal regulator of various cellular functions. In cardiomyocytes, Ca
2+
is the central element of excitation–contraction coupling, but also impacts diverse signaling cascades and influences the regulation of gene expression, referred to as excitation–transcription coupling. Disturbances in cellular Ca
2+
-handling and alterations in Ca
2+
-dependent gene expression patterns are pivotal characteristics of failing cardiomyocytes, with several excitation–transcription coupling pathways shown to be critically involved in structural and functional remodeling processes. Thus, targeting Ca
2+
-dependent transcriptional pathways might offer broad therapeutic potential. In this article, we (1) review cytosolic and nuclear Ca
2+
dynamics in cardiomyocytes with respect to their impact on Ca
2+
-dependent signaling, (2) give an overview on Ca
2+
-dependent transcriptional pathways in cardiomyocytes, and (3) discuss implications of excitation–transcription coupling in the diseased heart.
Collapse
Affiliation(s)
- Matthias Dewenter
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Albert von der Lieth
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Hugo A. Katus
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Johannes Backs
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| |
Collapse
|
254
|
Wang W, Subramani S. Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis. Cell Cycle 2017; 16:2037-2045. [PMID: 28933989 PMCID: PMC5731411 DOI: 10.1080/15384101.2017.1376149] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Peroxisomes are essential and dynamic organelles that allow cells to rapidly adapt and cope with changing environments and/or physiological conditions by modulation of both peroxisome biogenesis and turnover. Peroxisome biogenesis involves the assembly of peroxisome membranes and the import of peroxisomal matrix proteins. The latter depends on the receptor, PEX5, which recognizes peroxisomal matrix proteins in the cytosol directly or indirectly, and transports them to the peroxisomal lumen. In this review, we discuss the role of PEX5 ubiquitination in both peroxisome biogenesis and turnover, specifically in PEX5 receptor recycling, stability and abundance, as well as its role in pexophagy (autophagic degradation of peroxisomes).
Collapse
Affiliation(s)
- Wei Wang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
255
|
Gao FB, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J 2017; 36:2931-2950. [PMID: 28916614 DOI: 10.15252/embj.201797568] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
256
|
Pulupa J, Rachh M, Tomasini MD, Mincer JS, Simon SM. A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics. J Gen Physiol 2017; 149:951-966. [PMID: 28887410 PMCID: PMC5694938 DOI: 10.1085/jgp.201711769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/27/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
The phenylalanine-glycine–repeat nucleoporins are essential for transport through the nuclear pore complex. Pulupa et al. observe reptation of these nucleoporins on a physiological timescale in coarse-grained computational simulations. The phenylalanine-glycine–repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interior of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.
Collapse
Affiliation(s)
- Joan Pulupa
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Manas Rachh
- Courant Institute of Mathematical Sciences, New York, NY
| | - Michael D Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Joshua S Mincer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY .,Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| |
Collapse
|
257
|
Koyama M, Matsuura Y. Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochem Biophys Res Commun 2017; 491:609-613. [DOI: 10.1016/j.bbrc.2017.07.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
|
258
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
259
|
Pawar S, Ungricht R, Tiefenboeck P, Leroux JC, Kutay U. Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology. eLife 2017; 6:28202. [PMID: 28826471 PMCID: PMC5587084 DOI: 10.7554/elife.28202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/13/2017] [Indexed: 01/06/2023] Open
Abstract
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER.
Collapse
Affiliation(s)
- Sumit Pawar
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Rosemarie Ungricht
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Peter Tiefenboeck
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
260
|
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling. Curr Genet 2017; 64:103-108. [PMID: 28799069 DOI: 10.1007/s00294-017-0732-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 01/24/2023]
Abstract
In eukaryotic cells, RNA binding proteins (RBPs) play critical roles in regulating almost every aspect of gene expression, often shuttling between the nucleus and the cytoplasm. They are also key determinants in cell fate via controlling the target mRNAs under the regulation of various signaling pathways in response to environmental stresses. Therefore, understanding the mechanisms that couple the location of mRNA and RBPs is a major challenge in the field of gene expression and signal responses. In fission yeast, a KH-type RBP Rnc1 negatively regulates MAPK signaling activation via mRNA stabilization of the dual-specificity MAPK phosphatase Pmp1, which dephosphorylates MAPK Pmk1. Rnc1 also serves as a target of MAPK phosphorylation, which makes a feedback loop mediated by an RBP. We recently discovered that the nuclear export of Rnc1 requires mRNA-binding ability and the mRNA export factor Rae1. This strongly suggested the presence of an mRNA-export system, which recognizes the mRNA/RBP complex and dictates the location and post-transcriptional regulation of mRNA cargo. Here, we briefly review the known mechanisms of general nuclear transporting systems, with an emphasis on our recent findings on the spatial regulation of Rnc1 and its impact on the regulation of the MAPK signal transduction cascade.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan.
| |
Collapse
|
261
|
Stanley GJ, Fassati A, Hoogenboom BW. Biomechanics of the transport barrier in the nuclear pore complex. Semin Cell Dev Biol 2017; 68:42-51. [DOI: 10.1016/j.semcdb.2017.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
|
262
|
A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength. Anal Biochem 2017; 533:48-55. [PMID: 28669708 DOI: 10.1016/j.ab.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/08/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated transport of proteins between nucleus and cytoplasm is an important process in the eukaryotic cell. In most cases, active nucleo-cytoplasmic protein transport is mediated by nuclear localization signal (NLS) and/or nuclear export signal (NES) motifs. In this study, we developed a set of vectors expressing enhanced GFP (EGFP) concatemers ranging from 2 to 12 subunits (2xEGFP to 12xEGFP) for analysis of NLS strength. As shown by in gel GFP fluorescence analysis and αGFP Western blotting, EGFP concatemers are expressed as fluorescent full-length proteins in eukaryotic cells. As expected, nuclear localization of concatemeric EGFPs decreases with increasing molecular weight. By oligonucleotide ligation this set of EGFP concatemers can be easily fused to NLS motifs. After determination of intracellular localization of EGFP concatemers alone and fused to different NLS motifs we calculated the size of a hypothetic EGFP concatemer showing a defined distribution of EGFP fluorescence between nucleus and cytoplasm (n/c ratio = 2). Clear differences of the size of the hypothetic EGFP concatemer depending on the fused NLS motif were observed. Therefore, we propose to use the size of this hypothetic concatemer as quantitative indicator for comparing strength of different NLS motifs.
Collapse
|
263
|
Mathew C, Ghildyal R. CRM1 Inhibitors for Antiviral Therapy. Front Microbiol 2017; 8:1171. [PMID: 28702009 PMCID: PMC5487384 DOI: 10.3389/fmicb.2017.01171] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1) is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB) is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review.
Collapse
Affiliation(s)
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Health Research Institute, University of CanberraCanberra, ACT, Australia
| |
Collapse
|
264
|
Kim YH, Han ME, Oh SO. The molecular mechanism for nuclear transport and its application. Anat Cell Biol 2017; 50:77-85. [PMID: 28713609 PMCID: PMC5509903 DOI: 10.5115/acb.2017.50.2.77] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.
Collapse
Affiliation(s)
- Yun Hak Kim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,BEER, Busan Society of Evidence-Based mEdicine and Research, Busan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea.,Gene and Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan, Korea
| |
Collapse
|
265
|
Cai M, Si J, Li X, Zeng Z, Li M. Characterization of the nuclear import mechanisms of HSV-1 UL31. Biol Chem 2017; 397:555-61. [PMID: 26854290 DOI: 10.1515/hsz-2015-0299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
Abstract
As an important protein, UL31 has been demonstrated to play multiple roles in herpes simplex virus 1 (HSV-1) replication. Previous studies showed that UL31 predominantly locates in the nucleus in chemical fixed cells and live cells, however, the determining mechanisms for its nuclear translocation is not clear. In the present study, by utilizing live cells fluorescent microscopy and co-immunoprecipitation assays, the nuclear import of UL31 was characterized to be dependent on Ran-, importin α1- and transportin-1-mediated pathway. Therefore, these results will promote the understanding of UL31-mediated biological functions in HSV-1 infection cycle.
Collapse
|
266
|
Raimer AC, Gray KM, Matera AG. SMN - A chaperone for nuclear RNP social occasions? RNA Biol 2017; 14:701-711. [PMID: 27648855 PMCID: PMC5519234 DOI: 10.1080/15476286.2016.1236168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body.
Collapse
Affiliation(s)
- Amanda C. Raimer
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelsey M. Gray
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
267
|
Chen KW, Liao KL, Shih CW. The kinetics in mathematical models on segmentation clock genes in zebrafish. J Math Biol 2017; 76:97-150. [PMID: 28547212 DOI: 10.1007/s00285-017-1138-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Somitogenesis is the process for the development of somites in vertebrate embryos. This process is timely regulated by synchronous oscillatory expression of the segmentation clock genes. Mathematical models expressed by delay equations or ODEs have been proposed to depict the kinetics of these genes in interacting cells. Through mathematical analysis, we investigate the parameter regimes for synchronous oscillations and oscillation-arrested in an ODE model and a model with transcriptional and translational delays, both with Michaelis-Menten type degradations. Comparisons between these regimes for the two models are made. The delay model has larger capacity to accommodate synchronous oscillations. Based on the analysis and numerical computations extended from the analysis, we explore how the periods and amplitudes of the oscillations vary with the degradation rates, synthesis rates, and coupling strength. For typical parameter values, the period and amplitude increase as some synthesis rate or the coupling strength increases in the ODE model. Such variational properties of oscillations depend also on the magnitudes of time delays in delay model. We also illustrate the difference between the dynamics in systems modeled with linear degradation and the ones in systems with Michaelis-Menten type reactions for the degradation. The chief concerns are the connections between the dynamics in these models and the mechanism for the segmentation clocks, and the pertinence of mathematical modeling on somitogenesis in zebrafish.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Kang-Ling Liao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chih-Wen Shih
- Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
268
|
Vijayaraghavan B, Jafferali MH, Figueroa RA, Hallberg E. Samp1, a RanGTP binding transmembrane protein in the inner nuclear membrane. Nucleus 2017; 7:415-23. [PMID: 27541860 PMCID: PMC5039005 DOI: 10.1080/19491034.2016.1220465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Samp1 is a transmembrane protein of the inner nuclear membrane (INM), which interacts with the nuclear lamina and the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in interphase and during mitosis, it localizes to the mitotic spindle. Samp1 was recently found to coprecipitate a protein complex containing Ran, a GTPase with fundamental regulatory functions both in interphase and in mitosis. To investigate the interaction between Samp1 and Ran in further detail, we have designed and expressed recombinant fusion proteins of the Chaetomium thermophilum homolog of Samp1 (Ct.Samp1) and human Ran. Pulldown experiments show that Samp1 binds directly to Ran and that Samp1 binds better to RanGTP compared to RanGDP. Samp1 also preferred RanGTP over RanGDP in living tsBN2 cells. We also show that the Ran binding domain is located between amino acids 75–135 in the nucleoplasmically exposed N-terminal tail of Samp1. This domain is unique for Samp1, without homology in any other proteins in fungi or metazoa. Samp1 is the first known transmembrane protein that binds to Ran and could provide a unique local binding site for RanGTP in the INM. Samp1 overexpression resulted in increased Ran concentrations in the nuclear periphery supporting this idea.
Collapse
Affiliation(s)
| | | | | | - Einar Hallberg
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden
| |
Collapse
|
269
|
Functional implication of the common evolutionary origin of nuclear pore complex and endomembrane management systems. Semin Cell Dev Biol 2017; 68:10-17. [PMID: 28473267 DOI: 10.1016/j.semcdb.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
Abstract
Nuclear pore complexes (NPCs) are the sole gateway between the cytoplasm and the nucleus serving both as stringent permeability barrier and active transporters between the two compartments of eukaryotic cells. Complete mechanistic understanding of how these two functions are implemented within one and the same transport machine has not been attained to date. Based on several lines of structural evidence, a hypothesis was proposed postulating that NPCs shares common evolutionary origin with other intracellular systems responsible for active management of endomembranes. In this review we attempt to summarize the evidence supporting this hypothesis. The structural data obtained so far is evaluated and supplemented with the analysis of the functional evidence. Based on this analysis, a model is proposed which integrates the knowledge from the field of NPC function with that obtained from other endomembrane management systems in an attempt to shed new light on the mechanism of the NPC active transport.
Collapse
|
270
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
271
|
Satoh R, Matsumura Y, Tanaka A, Takada M, Ito Y, Hagihara K, Inari M, Kita A, Fukao A, Fujiwara T, Hirai S, Tani T, Sugiura R. Spatial regulation of the KH domain RNA-binding protein Rnc1 mediated by a Crm1-independent nuclear export system in Schizosaccharomyces pombe. Mol Microbiol 2017; 104:428-448. [PMID: 28142187 DOI: 10.1111/mmi.13636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional regulation of gene expression, including mRNA stability, transport and translation. Fission yeast rnc1+ encodes a K Homology (KH)-type RBP, which binds and stabilizes the Pmp1 MAPK phosphatase mRNA thereby suppressing the Cl- hypersensitivity of calcineurin deletion and MAPK signaling mutants. Here, we analyzed the spatial regulation of Rnc1 and discovered a putative nuclear export signal (NES)Rnc1 , which dictates the cytoplasmic localization of Rnc1 in a Crm1-independent manner. Notably, mutations in the NESRnc1 altered nucleocytoplasmic distribution of Rnc1 and abolished its function to suppress calcineurin deletion, although the Rnc1 NES mutant maintains the ability to bind Pmp1 mRNA. Intriguingly, the Rnc1 NES mutant destabilized Pmp1 mRNA, suggesting the functional importance of the Rnc1 cytoplasmic localization. Mutation in Rae1, but not Mex67 deletion or overproduction, induced Rnc1 accumulation in the nucleus, suggesting that Rnc1 is exported from the nucleus to the cytoplasm via the mRNA export pathway involving Rae1. Importantly, mutations in the Rnc1 KH-domains abolished the mRNA-binding ability and induced nuclear localization, suggesting that Rnc1 may be exported from the nucleus together with its target mRNAs. Collectively, the functional Rae1-dependent mRNA export system may influence the cytoplasmic localization and function of Rnc1.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yasuhiro Matsumura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akitomo Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Makoto Takada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Yuna Ito
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Masahiro Inari
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| | - Shinya Hirai
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Tokio Tani
- Department of Biological Sciences Graduate School of Science and Technology, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Kindai University, Higashiosaka City, Osaka, 577-8502, Japan
| |
Collapse
|
272
|
Competitive regulation of IPO4 transcription by ELK1 and GABP. Gene 2017; 613:30-38. [DOI: 10.1016/j.gene.2017.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022]
|
273
|
Cardarelli F. Time-resolved biophysical approaches to nucleocytoplasmic transport. Comput Struct Biotechnol J 2017; 15:299-306. [PMID: 28435614 PMCID: PMC5388937 DOI: 10.1016/j.csbj.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 12/26/2022] Open
Abstract
Molecules are continuously shuttling across the nuclear envelope barrier that separates the nucleus from the cytoplasm. Instead of being just a barrier to diffusion, the nuclear envelope is rather a complex filter that provides eukaryotes with an elaborate spatiotemporal regulation of fundamental molecular processes, such as gene expression and protein translation. Given the highly dynamic nature of nucleocytoplasmic transport, during the past few decades large efforts were devoted to the development and application of time resolved, fluorescence-based, biophysical methods to capture the details of molecular motion across the nuclear envelope. These methods are here divided into three major classes, according to the differences in the way they report on the molecular process of nucleocytoplasmic transport. In detail, the first class encompasses those methods based on the perturbation of the fluorescence signal, also known as ensemble-averaging methods, which average the behavior of many molecules (across many pores). The second class comprises those methods based on the localization of single fluorescently-labelled molecules and tracking of their position in space and time, potentially across single pores. Finally, the third class encompasses methods based on the statistical analysis of spontaneous fluorescence fluctuations out of the equilibrium or stationary state of the system. In this case, the behavior of single molecules is probed in presence of many similarly-labelled molecules, without dwelling on any of them. Here these three classes, with their respective pros and cons as well as their main applications to nucleocytoplasmic shuttling will be briefly reviewed and discussed.
Collapse
|
274
|
Nakada R, Matsuura Y. Crystal structure of importin-α bound to the nuclear localization signal of Epstein-Barr virus EBNA-LP protein. Protein Sci 2017; 26:1231-1235. [PMID: 28383161 DOI: 10.1002/pro.3173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus EBNA-LP protein is a transcriptional coactivator of EBNA2. Efficient nuclear localization of EBNA-LP is essential for cooperation with EBNA2. Here, we report the crystal structure of the nuclear import adaptor importin-α1 bound to the nuclear localization signal (NLS) of EBNA-LP that shows EBNA-LP residues 44-RRVRRR-49 binding to the major NLS-binding site at the P0-P5 positions. In contrast to previously characterized classical NLSs that invariably have a basic residue [either lysine (in the vast majority of cases) or arginine] at the P2 position, the EBNA-LP NLS is unique in that it has valine at the P2 position. The loss of the critical P2 lysine (or arginine) is compensated by arginine at the P0 position in the EBNA-LP NLS.
Collapse
Affiliation(s)
- Ryohei Nakada
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan.,Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan
| |
Collapse
|
275
|
Wang CH, Mehta P, Elbaum M. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells. PHYSICAL REVIEW LETTERS 2017; 118:158101. [PMID: 28452496 PMCID: PMC5519409 DOI: 10.1103/physrevlett.118.158101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 06/01/2023]
Abstract
Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.
Collapse
Affiliation(s)
- Ching-Hao Wang
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7600001 Israel
| |
Collapse
|
276
|
Yang Y, Wang W, Chu Z, Zhu JK, Zhang H. Roles of Nuclear Pores and Nucleo-cytoplasmic Trafficking in Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:574. [PMID: 28446921 PMCID: PMC5388774 DOI: 10.3389/fpls.2017.00574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 05/29/2023]
Abstract
The nuclear pore complex (NPC) is a large protein complex that controls the exchange of components between the nucleus and the cytoplasm. In plants, the NPC family components play critical roles not only in essential growth and developmental processes, but also in plant responses to various environmental stress conditions. The involvement of NPC components in plant stress responses is mainly attributed to different mechanisms including control of mRNA/protein nucleo-cytoplasmic trafficking and transcriptional gene regulation. This mini review summarizes current knowledge of the NPC-mediated plant stress responses and provides an overview of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yu Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
277
|
Zhu F, Hwang B, Miyamoto S, Rui L. Nuclear Import of JAK1 Is Mediated by a Classical NLS and Is Required for Survival of Diffuse Large B-cell Lymphoma. Mol Cancer Res 2017; 15:348-357. [PMID: 28031410 PMCID: PMC5473959 DOI: 10.1158/1541-7786.mcr-16-0344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
JAKs are non-receptor tyrosine kinases that are generally found in association with cytokine receptors. In the canonical pathway, roles of JAKs have well been established in activating STATs in response to cytokine stimulation to modulate gene transcription. In contrast, a noncanonical role of JAK2 has recently been discovered, in which JAK2 in the nucleus imparts the epigenetic regulation of gene transcription through phosphorylation of tyrosine 41 on the histone protein H3. Recent work further demonstrated that this noncanonical mechanism is conserved with JAK1, which is activated by the autocrine cytokines IL6 and IL10 in activated B-cell-like diffuse large B-cell lymphoma (ABC DLBCL), a cancer type that is particularly difficult to treat and has poor prognosis. However, how JAK1 gains access to the nucleus to enable epigenetic regulation remains undefined. Here, we investigated this question and revealed that JAK1 has a classical nuclear localization signal toward the N-terminal region, which can be recognized by multiple importin α isoforms. Moreover, the nuclear import of JAK1 is independent of its kinase activity but is required for the optimal expansion of ABC DLBCL cells in vitroImplications: This study demonstrates that the nuclear import of JAK1 is essential for the optimal fitness of ABC DLBCL cells, and targeting JAK1 nuclear localization is a potential therapeutic strategy for ABC DLBCL. Mol Cancer Res; 15(3); 348-57. ©2016 AACR.
Collapse
Affiliation(s)
- Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Byounghoon Hwang
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shigeki Miyamoto
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
278
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
279
|
Bhosle VK, Rivera JC, Chemtob S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2017; 10:254-263. [PMID: 28125336 DOI: 10.1080/21541248.2017.1282402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to trigger various intracellular signaling cascades, and termination of signaling by internalization of the receptor. It is now accepted that many GPCRs continue to signal after internalization in the endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s, several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs, many of whom contain putative nuclear localization signals, remain poorly understood to date. Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we highlight several recent studies which suggest novel roles of small GTPases, importins and sorting nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken together with increasing evidence for in vivo functionality of the nuclear GPCRs, better understanding of their trafficking will provide valuable clues in cell biology.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,e Cell Biology Program , Peter Gilgan Centre for Research and Learning , Toronto , Ontario , Canada
| | - José Carlos Rivera
- b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada
| | - Sylvain Chemtob
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,d Departments of Pediatrics, Ophthalmology and Pharmacology , University of Montréal , Montréal , Québec , Canada
| |
Collapse
|
280
|
Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 2017; 6:e21184. [PMID: 28117667 PMCID: PMC5305215 DOI: 10.7554/elife.21184] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes.
Collapse
Affiliation(s)
| | | | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN, Wako, Japan
| | - Paul Horton
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
281
|
Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 2017; 91:JVI.02107-16. [PMID: 27852860 DOI: 10.1128/jvi.02107-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place.
Collapse
|
282
|
Nakada R, Hirano H, Matsuura Y. Structural basis for the regulation of nuclear import of Epstein-Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal. Biochem Biophys Res Commun 2017; 484:113-117. [PMID: 28104399 DOI: 10.1016/j.bbrc.2017.01.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is expressed in every EBV-positive tumor and is essential for the maintenance, replication, and transcription of the EBV genome in the nucleus of host cells. EBNA1 is a serine phosphoprotein, and it has been shown that phosphorylation of S385 in the nuclear localization signal (NLS) of EBNA1 increases the binding affinity to the nuclear import adaptor importin-α1 as well as importin-α5, and stimulates nuclear import of EBNA1. To gain insights into how phosphorylation of the EBNA1 NLS regulates nuclear import, we have determined the crystal structures of two peptide complexes of importin-α1: one with S385-phosphorylated EBNA1 NLS peptide, determined at 2.0 Å resolution, and one with non-phosphorylated EBNA1 NLS peptide, determined at 2.2 Å resolution. The structures show that EBNA1 NLS binds to the major and minor NLS-binding sites of importin-α1, and indicate that the binding affinity of the EBNA1 NLS to the minor NLS-binding site could be enhanced by phosphorylation of S385 through electrostatic interaction between the phosphate group of phospho-S385 and K392 of importin-α1 (corresponding to R395 of importin-α5) on armadillo repeat 8.
Collapse
Affiliation(s)
- Ryohei Nakada
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Hidemi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan.
| |
Collapse
|
283
|
Abstract
The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Daniel R Caffrey
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
284
|
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2016; 18:73-89. [PMID: 27999437 DOI: 10.1038/nrm.2016.147] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, Heidelberg D-69120, Germany
| |
Collapse
|
285
|
VRK3-mediated nuclear localization of HSP70 prevents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity. Sci Rep 2016; 6:38452. [PMID: 27941812 PMCID: PMC5150261 DOI: 10.1038/srep38452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Most of neurodegenerative disorders are associated with protein aggregation. Glutamate-induced excitotoxicity and persistent extracellular signal-regulated kinase (ERK) activation are also implicated in neurodegenerative diseases. Here, we found that vaccinia-related kinase 3 (VRK3) facilitates nuclear localization of glutamate-induced heat shock protein 70 (HSP70). Nuclear HSP70 leads to enhancement of vaccinia H1-related phosphatase (VHR) activity via protein-protein interaction rather than its molecular chaperone activity, thereby suppressing excessive ERK activation. Moreover, glutamate-induced ERK activation stimulates the expression of HSP70 and VRK3 at the transcriptional level. Downregulation of either VRK3 or HSP70 rendered cells vulnerable to glutamate-induced apoptosis. Overexpression of HSP70 fused to a nuclear localization signal attenuated apoptosis more than HSP70 alone. The importance of nuclear localization of HSP70 in the negative regulation of glutamate-induced ERK activation was further confirmed in VRK3-deficient neurons. Importantly, we showed a positive correlation between levels of VRK3 and HSP70 in the progression of Alzheimer's and Parkinson's diseases in humans, and neurons with HSP70 nuclear localization exhibited less Aβ accumulation in brains from patients with Alzheimer's disease. Therefore, HSP70 and VRK3 could potentially serve as diagnostic and therapeutic targets in neurodegenerative diseases.
Collapse
|
286
|
Peña C, Schütz S, Fischer U, Chang Y, Panse VG. Prefabrication of a ribosomal protein subcomplex essential for eukaryotic ribosome formation. eLife 2016; 5. [PMID: 27929371 PMCID: PMC5148605 DOI: 10.7554/elife.21755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
Spatial clustering of ribosomal proteins (r-proteins) through tertiary interactions is a striking structural feature of the eukaryotic ribosome. However, the functional importance of these intricate inter-connections, and how they are established is currently unclear. Here, we reveal that a conserved ATPase, Fap7, organizes interactions between neighboring r-proteins uS11 and eS26 prior to their delivery to the earliest ribosome precursor, the 90S. In vitro, uS11 only when bound to Fap7 becomes competent to recruit eS26 through tertiary contacts found between these r-proteins on the mature ribosome. Subsequently, Fap7 ATPase activity unloads the uS11:eS26 subcomplex onto its rRNA binding site, and therefore ensures stoichiometric integration of these r-proteins into the 90S. Fap7-depletion in vivo renders uS11 susceptible to proteolysis, and precludes eS26 incorporation into the 90S. Thus, prefabrication of a native-like r-protein subcomplex drives efficient and accurate construction of the eukaryotic ribosome. DOI:http://dx.doi.org/10.7554/eLife.21755.001
Collapse
Affiliation(s)
- Cohue Peña
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ute Fischer
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Vikram G Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
287
|
Hirano H, Kobayashi J, Matsuura Y. Structures of the Karyopherins Kap121p and Kap60p Bound to the Nuclear Pore-Targeting Domain of the SUMO Protease Ulp1p. J Mol Biol 2016; 429:249-260. [PMID: 27939291 DOI: 10.1016/j.jmb.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
The budding yeast small ubiquitin-like modifier (SUMO) protease Ulp1p catalyzes both the processing of newly synthesized SUMO to its mature form and the deconjugation of SUMO from target proteins, thereby regulating a wide range of cellular processes including cell division, DNA repair, DNA replication, transcription, and mRNA quality control. Ulp1p is localized primarily at the nuclear pore complex (NPC) through interactions involving the karyopherins Kap121p and Kap95p-Kap60p heterodimer and a subset of nuclear pore-associated proteins. The sequestration of Ulp1p at the nuclear periphery is crucial for the proper control of protein desumoylation. To gain insights into the role of the karyopherins in regulating the localization of Ulp1p, we have determined the crystal structures of Kap121p and Kap60p bound to the N-terminal non-catalytic domain of Ulp1p that is necessary and sufficient for NPC targeting. Contrary to a previous proposal that Ulp1p is tethered to the transport channel of the NPC through unconventional interactions with the karyopherins, our structures reveal that Ulp1p has canonical nuclear localization signals (NLSs): (1) an isoleucine-lysine-NLS (residues 51-55) that binds to the NLS-binding site of Kap121p, and (2) a classical bipartite NLS (residues 154-172) that binds to the major and minor NLS-binding sites of Kap60p. Ulp1p also binds Kap95p directly, and the Ulp1p-Kap95p binding is enhanced by the importin-β-binding domain of Kap60p. GTP-bound Gsp1p (the yeast Ran ortholog) and the exportin Cse1p cooperate to release Ulp1p from the karyopherins, indicating that the stable sequestration of Ulp1p to the NPC would require a karyopherin-independent mechanism to anchor Ulp1p at the NPC.
Collapse
Affiliation(s)
- Hidemi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, 464-8602, Japan
| | - Junya Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, 464-8602, Japan.
| |
Collapse
|
288
|
Borgmann J, Tüttelmann F, Dworniczak B, Röpke A, Song HW, Kliesch S, Wilkinson MF, Laurentino S, Gromoll J. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men. Hum Mol Genet 2016; 25:4898-4910. [PMID: 28171660 PMCID: PMC6281360 DOI: 10.1093/hmg/ddw313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022] Open
Abstract
The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.
Collapse
Affiliation(s)
- Jennifer Borgmann
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | | | | | | | - Hye-Won Song
- Department of Reproductive Medicine, University of California San Diego, La Jolla, USA
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
289
|
Kuwabara T, Kasai H, Kondo M. Acetylation Modulates IL-2 Receptor Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:4334-4343. [PMID: 27799311 DOI: 10.4049/jimmunol.1601174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Ligand binding to the cognate cytokine receptors activates intracellular signaling by recruiting protein tyrosine kinases and other protein modification enzymes. However, the roles of protein modifications other than phosphorylation remain unclear. In this study, we examine a novel regulatory mechanism of Stat5, based on its acetylation. As for phosphorylation, IL-2 induces the acetylation of signaling molecules, including Stat5, in the murine T cell line CTLL-2. Stat5 is acetylated in the cytoplasm by CREB-binding protein (CBP). Acetylated Lys696 and Lys700 on Stat5 are critical indicators for limited proteolysis, which leads to the generation of a truncated form of Stat5. In turn, the truncated form of Stat5 prevents transcription of the full-length form of Stat5. We also demonstrate that CBP physically associates with the IL-2 receptor β-chain. CBP, found in the nucleus in resting CTLL-2 cells, relocates to the cytoplasm after IL-2 stimulation in an MEK/ERK pathway-dependent manner. Thus, IL-2-mediated acetylation plays an important role in the modulation of cytokine signaling and T cell fate.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan; and
| | - Hirotake Kasai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan; and
| |
Collapse
|
290
|
Bovine Lhx8, a Germ Cell-Specific Nuclear Factor, Interacts with Figla. PLoS One 2016; 11:e0164671. [PMID: 27716808 PMCID: PMC5055334 DOI: 10.1371/journal.pone.0164671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
LIM homeobox 8 (Lhx8) is a germ cell-specific transcription factor essential for the development of oocytes during early oogenesis. In mice, Lhx8 deficiency causes postnatal oocyte loss and affects the expression of many oocyte-specific genes. The aims of this study were to characterize the bovine Lhx8 gene, determine its mRNA expression during oocyte development and early embryogenesis, and evaluate its interactions with other oocyte-specific transcription factors. The bovine Lhx8 gene encodes a protein of 377 amino acids. A splice variant of Lhx8 (Lhx8_v1) was also identified. The predicted bovine Lhx8 protein contains two LIM domains and one homeobox domain. However, one of the LIM domains in Lhx8_v1 is incomplete due to deletion of 83 amino acids near the N terminus. Both Lhx8 and Lhx8_v1 transcripts were only detected in the gonads but none of the somatic tissues examined. The expression of Lhx8 and Lhx8_v1 appears to be restricted to oocytes as none of the transcripts was detectable in granulosa or theca cells. The maternal Lhx8 transcript is abundant in GV and MII stage oocytes as well as in early embryos but disappear by morula stage. A nuclear localization signal that is required for the import of Lhx8 into nucleus was identified, and Lhx8 is predominantly localized in the nucleus when ectopically expressed in mammalian cells. Finally, a novel interaction between Lhx8 and Figla, another transcription factor essential for oogenesis, was detected. The results provide new information for studying the mechanisms of action for Lhx8 in oocyte development and early embryogenesis.
Collapse
|
291
|
Yedidi RS, Fatehi AK, Enenkel C. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 2016; 51:497-512. [PMID: 27677933 DOI: 10.1080/10409238.2016.1230087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].
Collapse
Affiliation(s)
| | | | - Cordula Enenkel
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
292
|
Abstract
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs). NTRs are capable of interacting with FG-Nups and guide the cargos to cross the barrier by facilitated diffusion. The native conformation of the FG-Nups permeability barrier and the competition among multiple NTRs interacting with this barrier in the native NPCs are the 2 core questions still being highly debated in the field. Recently, we applied high-speed super-resolution fluorescence microscopy to map out the natural structure of the FG-Nups barrier and determined the competition among multiple NTRs as they interact with the barrier in the native NPCs. In this extra-view article, we will review the current understanding in the configuration and function of FG-Nups barrier and highlight the new evidence obtained recently to answer the core questions in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Christina Li
- a Department of Biology , Temple University , Philadelphia , PA , USA
| | | | - Weidong Yang
- a Department of Biology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
293
|
Huang XY, Chao DY, Koprivova A, Danku J, Wirtz M, Müller S, Sandoval FJ, Bauwe H, Roje S, Dilkes B, Hell R, Kopriva S, Salt DE. Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006298. [PMID: 27622452 PMCID: PMC5021336 DOI: 10.1371/journal.pgen.1006298] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation. Sulphur is an essential element for all living organisms including plants. Plants take up sulphur from the soil mainly in the form of inorganic sulphate. The uptake of sulphate and assimilation of sulphur have been well studied. However, the regulation of sulphur accumulation in plants remains largely unknown. In this study, we characterize the high leaf sulphur mutant more sulphur accumulation1 (msa1-1) and demonstrate the function of MSA1 in controlling sulphur accumulation in Arabidopsis thaliana. The MSA1 protein is localized to the nucleus and is required for the biosynthesis of S-adenosylmethionine (SAM) which is a universal methyl donor for many methylation reactions, including DNA methylation. Loss of function of MSA1 reduces the SAM level in roots and affects genome-wide DNA methylation, including the methylation of sulphate transporter genes. We show that the high sulphur phenotype of msa1-1 requires elevated expression of the sulphate transporter genes which are differentially methylated in msa1-1. Our results suggest a connection between sulphur homeostasis and DNA methylation that is mediated by MSA1.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Dai-Yin Chao
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Müller
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J. Sandoval
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
294
|
Soniat M, Chook YM. Karyopherin-β2 Recognition of a PY-NLS Variant that Lacks the Proline-Tyrosine Motif. Structure 2016; 24:1802-1809. [PMID: 27618664 DOI: 10.1016/j.str.2016.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Karyopherin-β2 or Transportin-1 binds proline-tyrosine nuclear localization signals (PY-NLSs) in its cargos. PY-NLSs are described by structural disorder, overall positive charge, and binding epitopes composed of an N-terminal hydrophobic or basic motif and a C-terminal R-X2-5P-Y motif. The N-terminal tail of histone H3 binds Kapβ2 with high affinity but does not contain a recognizable PY-NLS. The crystal structure of the Kapβ2-H3 tail shows residues 11-27 of H3 binding to the PY-NLS site of Kapβ2. H3 residues 11TGGKAPRK18 bind the site for PY-NLS Epitope 1 (N-terminal hydrophobic/basic motif), which is most important for Kapβ2-binding. H3 residue Arg26 occupies the PY-NLS Epitope 2 position (usually arginine of R-X2-5P-Y) but PY-NLS Epitope 3 (proline-tyrosine motif) is missing in the H3 tail. Histone H3 thus provides an example of a PY-NLS variant with no proline-tyrosine or homologous proline-hydrophobic motif. The H3 tail uses a very strong Epitope 1 to compensate for loss of the often-conserved proline-tyrosine epitope.
Collapse
Affiliation(s)
- Michael Soniat
- Department of Pharmacology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern, Dallas, TX 75390, USA.
| |
Collapse
|
295
|
Liu Z, Zhang D, Sun C, Tao R, Xu X, Xu L, Cheng H, Xiao M, Wang Y. KPNA2 Contributes to the Inflammatory Processes in Synovial Tissue of Patients with Rheumatoid Arthritis and SW982 Cells. Inflammation 2016; 38:2224-34. [PMID: 26135850 DOI: 10.1007/s10753-015-0205-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Karyopherin-α2 (KPNA2) functions as an adaptor that transports several proteins to the nucleus. We investigated the function and possible mechanisms of KPNA2 involved in rheumatoid arthritis (RA). Western blotting and immunohistochemistry showed the protein expression of KPNA2 increased in synovial tissue of RA patients compared with the healthy controls. Double immunofluorescent staining indicated that KPNA2 co-localized with T cells, macrophage-like synoviocytes, fibroblast-like synoviocytes, and neutrophils in synovial tissue of RA patients. Moreover, the expression of KPNA2 in SW982 cells was increased in a time-dependent manner in response to TNFα stimulation. Both Western blotting and immunofluorescent staining assay revealed the co-localization of KPNA2 and P65 and their translocation from cytoplasma in TNFα-treated SW982 cells. Furthermore, knocking down the expression of KPNA2 by siRNA inhibited TNFα-induced expression of IL-6, MMP-1, and MMP-13 and, more importantly, decreased the P65 phosphorylation in SW982 cells. We therefore suggested that KPNA2 may play a key role in the inflammation process of RA via NF-κB P65 signal transduction pathway.
Collapse
Affiliation(s)
- Zhongbing Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Dongmei Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, China
| | - Chi Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ran Tao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xinbao Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Libin Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hongbing Cheng
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Nantong City, Nantong, 226001, China
| | - Min Xiao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
296
|
Kosyna FK, Nagel M, Kluxen L, Kraushaar K, Depping R. The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biol Chem 2016; 396:1357-67. [PMID: 26351913 DOI: 10.1515/hsz-2015-0171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
Abstract
Hypoxia-inducible transcription factors (HIFs) regulate hundreds of genes involved in cellular adaptation to reduced oxygen availability. HIFs consist of an O2-labile α-subunit (primarily HIF-1α and HIF-2α) and a constitutive HIF-1β subunit. In normoxia the HIF-α subunit is hydroxylated by members of a family of prolyl-4-hydroxylase domain (PHD) proteins, PHD1-3, resulting in recognition by von Hippel-Lindau protein, ubiquitination and proteasomal degradation. In contrast, reduced oxygen availability inhibits PHD activity resulting in HIF-1α stabilisation and nuclear accumulation. Nuclear import of HIF-1α mainly depends on classical nuclear localisation signals (NLS) and involves importin α/β heterodimers. Recently, a specific inhibitor of nuclear import has been identified that inhibits importin α/β-dependent import with no effects on a range of other nuclear transport pathways involving members of the importin protein family. In this study we evaluated the physiological activity of this importin α/β-inhibitor (Ivermectin) in the hypoxia response pathway. Treatment with Ivermectin decreases binding activity of HIF-1α to the importin α/β-heterodimer. Moreover, HIF-1α nuclear localisation, nuclear HIF-1α protein levels, HIF-target gene expression, as well as HIF-transcriptional activity are reduced upon Ivermectin treatment. For the first time, we demonstrate the effect of specific importin α/β-inhibition on the hypoxic response on the molecular level.
Collapse
|
297
|
Soniat M, Cağatay T, Chook YM. Recognition Elements in the Histone H3 and H4 Tails for Seven Different Importins. J Biol Chem 2016; 291:21171-21183. [PMID: 27528606 DOI: 10.1074/jbc.m116.730218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impβ, Kapβ2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.
Collapse
Affiliation(s)
- Michael Soniat
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Tolga Cağatay
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yuh Min Chook
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
298
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
299
|
A computational approach for nuclear export signals identification using spiking neural P systems. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2489-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
300
|
Zhen Z, Luthringer B, Yang L, Xi T, Zheng Y, Feyerabend F, Willumeit R, Lai C, Ge Z. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:522-31. [PMID: 27612743 DOI: 10.1016/j.msec.2016.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 11/24/2022]
Abstract
Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants.
Collapse
Affiliation(s)
- Zhen Zhen
- Shenzhen Institute, Peking University, Shenzhen 518057, China; College of Engineering, Peking University, Beijing 100871, China
| | - Bérengère Luthringer
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany.
| | - Li Yang
- College of Engineering, Peking University, Beijing 100871, China
| | - Tingfei Xi
- Shenzhen Institute, Peking University, Shenzhen 518057, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Yufeng Zheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China; College of Engineering, Peking University, Beijing 100871, China
| | - Frank Feyerabend
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany
| | - Regine Willumeit
- Institute of Material Research, Helmholtz-Zentrum Geesthacht, Hamburg 21502, Germany
| | - Chen Lai
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Zigang Ge
- College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|