251
|
|
252
|
Pandey R, Gupta RK, Li PZ, Xu Q, Misra A, Pandey DS. Photoassisted “Gate-Lock” Fluorescence “Turn-on” in a New Schiff Base and Coordination Ability of E–Z Isomers. Org Lett 2012; 14:592-5. [DOI: 10.1021/ol2032043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rampal Pandey
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi -221 005 (U.P.), India
| | - Rakesh Kumar Gupta
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi -221 005 (U.P.), India
| | - Pei-Zhou Li
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Qiang Xu
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Arvind Misra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi -221 005 (U.P.), India
| | - Daya Shankar Pandey
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi -221 005 (U.P.), India
| |
Collapse
|
253
|
Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin. Proc Natl Acad Sci U S A 2012; 109:E210-7. [PMID: 22232659 DOI: 10.1073/pnas.1115581109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Secondary active transporters use electrochemical gradients provided by primary ion pumps to translocate metabolites or drugs "uphill" across membranes. Here we report the ion-coupling mechanism of cystinosin, an unusual eukaryotic, proton-driven transporter distantly related to the proton pump bacteriorhodopsin. In humans, cystinosin exports the proteolysis-derived dimeric amino acid cystine from lysosomes and is impaired in cystinosis. Using voltage-dependence analysis of steady-state and transient currents elicited by cystine and neutralization-scanning mutagenesis of conserved protonatable residues, we show that cystine binding is coupled to protonation of a clinically relevant aspartate buried in the membrane. Deuterium isotope substitution experiments are consistent with an access of this aspartate from the lysosomal lumen through a deep proton channel. This aspartate lies in one of the two PQ-loop motifs shared by cystinosin with a set of eukaryotic membrane proteins of unknown function and is conserved in about half of them, thus suggesting that other PQ-loop proteins may translocate protons.
Collapse
|
254
|
Tamogami J, Kikukawa T, Ikeda Y, Demura M, Nara T, Kamo N. Photo-induced bleaching of sensory rhodopsin II (phoborhodopsin) from Halobacterium salinarum by hydroxylamine: identification of the responsible intermediates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2012; 106:87-94. [PMID: 22104601 DOI: 10.1016/j.jphotobiol.2011.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Sensory rhodopsin II from Halobacterium salinarum (HsSRII) is a retinal protein in which retinal binds to a specific lysine residue through a Schiff base. Here, we investigated the photobleaching of HsSRII in the presence of hydroxylamine. For identification of intermediate(s) attacked by hydroxylamine, we employed the flash-induced bleaching method. In order to change the concentration of intermediates, such as M- and O-intermediates, experiments were performed under varying flashlight intensities and concentrations of azide that accelerated only the M-decay. We found the proportional relationship between the bleaching rate and area under the concentration-time curve of M, indicating a preferential attack of hydroxylamine on M. Since hydroxylamine is a water-soluble reagent, we hypothesize that for M, hydrophilicity or water-accessibility increases specifically in the moiety of Schiff base. Thus, hydroxylamine bleaching rates may be an indication of conformational changes near the Schiff base. We also considered the possibility that azide may induce a small conformational change around the Schiff base. We compared the hydroxylamine susceptibility between HsSRII and NpSRII (SRII from Natronomonas pharaonis) and found that the M of HsSRII is about three times more susceptible than that of the stable NpSRII. In addition, long illumination to HsSRII easily produced M-like photoproduct, P370. We thus infer that the instability of HsSRII under illumination may be related to this increase of hydrophilicity at M and P370.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | | | | | | | | | | |
Collapse
|
255
|
Bayraktar H, Fields AP, Kralj JM, Spudich JL, Rothschild KJ, Cohen AE. Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. Photochem Photobiol 2012; 88:90-7. [PMID: 22010969 PMCID: PMC3253248 DOI: 10.1111/j.1751-1097.2011.01011.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic fluorophore is modulated by changes in the absorption spectrum of the endogenous retinal chromophore that occur as the molecule undergoes a light-activated photocycle. We studied the photocycles of blue-absorbing proteorhodopsin and sensory rhodopsin II (SRII). Clusters of 2-3 molecules of SRII clearly showed a light-induced photocycle. Single molecules of SRII showed a photocycle upon signal averaging over several illumination cycles.
Collapse
Affiliation(s)
| | | | | | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas
| | - Kenneth J. Rothschild
- Department of Physics and Photonics Center, Boston University, Boston, Massachusetts
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology
- Department of Physics, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
256
|
Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S. Asymmetric Toggling of a Natural Photoswitch: Ultrafast Spectroscopy of Anabaena Sensory Rhodopsin. J Am Chem Soc 2011; 133:20922-32. [DOI: 10.1021/ja208371g] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rinat Rozin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, South Korea
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and Farkash Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
257
|
Ranaghan MJ, Schwall CT, Alder NN, Birge RR. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 2011; 133:18318-27. [PMID: 21951206 PMCID: PMC3218432 DOI: 10.1021/ja2070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Christine T. Schwall
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| |
Collapse
|
258
|
Barsanti L, Evangelista V, Passarelli V, Frassanito AM, Gualtieri P. Fundamental questions and concepts about photoreception and the case of Euglena gracilis. Integr Biol (Camb) 2011; 4:22-36. [PMID: 22081035 DOI: 10.1039/c1ib00115a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to sense light can be considered the most fundamental and presumably the most ancient property of visual systems. This ability is the basis of phototaxis, one of the most striking behavioral responses of motile photosynthetic microorganisms (i.e. microalgae) to light stimuli, which allows them to move toward or away directional light. In order to fully exploit the information content of light (intensity, direction, distribution) microorganisms need proper perceiving devices, termed photoreceptors, which must act as sensors, to perceive wavelength and direction of light, as transducers, to convert the light signal into chemical and/or electrical information, but also as amplifiers and eventually as transmitters. This review describes the universal structural, behavioral and physiological features necessary for the proper functioning of these devices in algae, and how these features have been investigated by means of different analytical techniques such as for example microspectroscopy, digital fluorescence microscopy, two photons FLIM. The insight of the photoreceptive response mechanism is explained using the unicellular alga Euglena gracilis, in which the different structural, behavioral and physiological features combine to achieve a concerted, efficient response to light stimuli.
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, CNR, via Moruzzi 1, 56124 Pisa, Italy
| | | | | | | | | |
Collapse
|
259
|
Grote M, O'Malley MA. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol Rev 2011; 35:1082-99. [DOI: 10.1111/j.1574-6976.2011.00281.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
260
|
Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography. J Mol Biol 2011; 414:86-95. [PMID: 22001017 DOI: 10.1016/j.jmb.2011.09.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 01/10/2023]
Abstract
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a 6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4.
Collapse
|
261
|
Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S. Crystal Structure of the Eukaryotic Light-Driven Proton-Pumping Rhodopsin, Acetabularia Rhodopsin II, from Marine Alga. J Mol Biol 2011; 411:986-98. [DOI: 10.1016/j.jmb.2011.06.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/15/2011] [Indexed: 11/29/2022]
|
262
|
Holterhues J, Bordignon E, Klose D, Rickert C, Klare JP, Martell S, Li L, Engelhard M, Steinhoff HJ. The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation. Biophys J 2011; 100:2275-82. [PMID: 21539797 DOI: 10.1016/j.bpj.2011.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/17/2011] [Accepted: 03/16/2011] [Indexed: 11/28/2022] Open
Abstract
Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.
Collapse
|
263
|
Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol 2011; 193:5658-67. [PMID: 21840984 DOI: 10.1128/jb.05376-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane protein complexes consisting of proteins and small molecules that act as cofactors have important functions in all organisms. To form functional complexes, cofactor biosynthesis must be coordinated with the production of corresponding apoproteins. To examine this coordination, we study bacteriorhodopsin (BR), a light-induced proton pump in the halophilic archaeon Halobacterium salinarum. This complex consists of a retinal cofactor and bacterioopsin (BO), the BR apoprotein. To examine possible novel regulatory mechanisms linking BO and retinal biosynthesis, we deleted bop, the gene that encodes BO. bop deletion resulted in a dramatic increase of bacterioruberins, carotenoid molecules that share biosynthetic precursors with retinal. Additional studies revealed that bacterioruberins accumulate in the absence of BO regardless of the presence of retinal or BR, suggesting that BO inhibits bacterioruberin biosynthesis to increase the availability of carotenoid precursors for retinal biosynthesis. To further examine this potential regulatory mechanism, we characterized an enzyme, encoded by the lye gene, that catalyzes bacterioruberin biosynthesis. BO-mediated inhibition of bacterioruberin synthesis appears to be specific to the H. salinarum lye-encoded enzyme, as expression of a lye homolog from Haloferax volcanii, a related archaeon that synthesizes bacterioruberins but lacks opsins, resulted in bacterioruberin synthesis that was not reduced in the presence of BO. Our results provide evidence for a novel regulatory mechanism in which biosynthesis of a cofactor is promoted by apoprotein-mediated inhibition of an alternate biochemical pathway. Specifically, BO accumulation promotes retinal production by inhibiting bacterioruberin biosynthesis.
Collapse
|
264
|
Kondoh M, Inoue K, Sasaki J, Spudich JL, Terazima M. Transient dissociation of the transducer protein from anabaena sensory rhodopsin concomitant with formation of the M state produced upon photoactivation. J Am Chem Soc 2011; 133:13406-12. [PMID: 21774544 DOI: 10.1021/ja202329u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anabaena sensory rhodopsin (ASR), a microbial rhodopsin in the cyanobacterium sp. PCC7120, has been suggested to regulate cell processes in a light-quality-dependent manner (color-discrimination) through interaction with a water-soluble transducer protein (Tr). However, light-dependent ASR-Tr interaction changes have yet to be demonstrated. We applied the transient grating (TG) method to investigate protein-protein interaction between ASR with Tr. The molecular diffusion component of the TG signal upon photostimulation of ASR(AT) (ASR with an all-trans retinylidene chromophore) revealed that Tr dissociates from ASR upon formation of the M-intermediate and rebinds to ASR during the decay of M; that is, light induces transient dissociation of ASR and Tr during the photocycle. Further correlating the dissociation of the ASR-Tr pair with the M-intermediate, no transient dissociation was observed after the photoexcitation of the blue-shifted ASR(13C) (ASR with 13-cis, 15-syn chromophore), which does not produce M. This distinction between ASR(AT) and ASR(13C), the two isomeric forms in a color-sensitive equilibrium in ASR, provides a potential mechanism for color-sensitive signaling by ASR.
Collapse
Affiliation(s)
- Masato Kondoh
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
265
|
Abstract
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
Collapse
Affiliation(s)
- Gero Miesenböck
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
266
|
Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011; 333:345-8. [PMID: 21764748 DOI: 10.1126/science.1204763] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria have many voltage- and ligand-gated ion channels, and population-level measurements indicate that membrane potential is important for bacterial survival. However, it has not been possible to probe voltage dynamics in an intact bacterium. Here we developed a method to reveal electrical spiking in Escherichia coli. To probe bacterial membrane potential, we engineered a voltage-sensitive fluorescent protein based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated.
Collapse
Affiliation(s)
- Joel M Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
267
|
Fan Y, Solomon P, Oliver RP, Brown LS. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1457-66. [PMID: 21791197 DOI: 10.1016/j.bbabio.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/09/2023]
Abstract
Eukaryotic microbial rhodopsins are widespread bacteriorhodopsin-like proteins found in many lower eukaryotic groups including fungi. Many fungi contain multiple rhodopsins, some significantly diverged from the original bacteriorhodopsin template. Although few fungal rhodopsins have been studied biophysically, both fast-cycling light-driven proton pumps and slow-cycling photosensors have been found. The purpose of this study was to characterize photochemically a new subgroup of fungal rhodopsins, the so-called auxiliary group. The study used the two known rhodopsin genes from the fungal wheat pathogen, Phaeosphaeria nodorum. One of the genes is a member of the auxiliary group while the other is highly similar to previously characterized proton-pumping Leptosphaeria rhodopsin. Auxiliary rhodopsin genes from a range of species form a distinct group with a unique primary structure and are located in carotenoid biosynthesis gene cluster. Amino acid conservation pattern suggests that auxiliary rhodopsins retain the transmembrane core of bacteriorhodopsins, including all residues important for proton transport, but have unique polar intramembrane residues. Spectroscopic characterization of the two yeast-expressed Phaeosphaeria rhodopsins showed many similarities: absorption spectra, conformation of the retinal chromophore, fast photocycling, and carboxylic acid protonation changes. It is likely that both Phaeosphaeria rhodopsins are proton-pumping, at least in vitro. We suggest that auxiliary rhodopsins have separated from their ancestors fairly recently and have acquired the ability to interact with as yet unidentified transducers, performing a photosensory function without changing their spectral properties and basic photochemistry.
Collapse
Affiliation(s)
- Ying Fan
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
268
|
Nannenga BL, Baneyx F. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci 2011; 20:1411-20. [PMID: 21633988 DOI: 10.1002/pro.669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/22/2011] [Indexed: 11/10/2022]
Abstract
Because membrane proteins are difficult to express, our understanding of their structure and function is lagging. In Escherichia coli, α-helical membrane protein biogenesis usually involves binding of a nascent transmembrane segment (TMS) by the signal recognition particle (SRP), delivery of the SRP-ribosome nascent chain complexes (RNC) to FtsY, a protein that serves as SRP receptor and docks to the SecYEG translocon, cotranslational insertion of the growing chain into the translocon, and lateral transfer, packing and folding of TMS in the lipid bilayer in a process that may involve chaperone YidC. Here, we explored the feasibility of reprogramming this pathway to improve the production of recombinant membrane proteins in exponentially growing E. coli with a focus on: (i) eliminating competition between SRP and chaperone trigger factor (TF) at the ribosome through gene deletion; (ii) improving RNC delivery to the inner membrane via SRP overexpression; and (iii) promoting substrate insertion and folding in the lipid bilayer by increasing YidC levels. Using a bitopic histidine kinase and two heptahelical rhodopsins as model systems, we show that the use of TF-deficient cells improves the yields of membrane-integrated material threefold to sevenfold relative to the wild type, and that whereas YidC coexpression is beneficial to the production of polytopic proteins, higher levels of SRP have the opposite effect. The implications of our results on the interplay of TF, SRP, YidC, and SecYEG in membrane protein biogenesis are discussed.
Collapse
Affiliation(s)
- Brent L Nannenga
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
269
|
Groma GI, Colonna A, Martin JL, Vos MH. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy. Biophys J 2011; 100:1578-86. [PMID: 21402041 DOI: 10.1016/j.bpj.2011.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process.
Collapse
Affiliation(s)
- Géza I Groma
- Laboratory for Optical Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | |
Collapse
|
270
|
Abstract
Light control of motility behavior (phototaxis and photophobic responses) in green flagellate algae is mediated by sensory rhodopsins homologous to phototaxis receptors and light-driven ion transporters in prokaryotic organisms. In the phototaxis process, excitation of the algal sensory rhodopsins leads to generation of transmembrane photoreceptor currents. When expressed in animal cells, the algal phototaxis receptors function as light-gated cation channels, which has earned them the name "channelrhodopsins." Channelrhodopsins have become useful molecular tools for light control of cellular activity. Only four channelrhodopsins, identified in Chlamydomonas reinhardtii and Volvox carteri, have been reported so far. By screening light-induced currents among algal species, we identified that the phylogenetically distant flagellate Mesostigma viride showed photoelectrical responses in vivo with properties suggesting a channelrhodopsin especially promising for optogenetic use. We cloned an M. viride channelrhodopsin, MChR1, and studied its channel activity upon heterologous expression. Action spectra in HEK293 cells match those of the photocurrents observed in M. viride cells. Comparison of the more divergent MChR1 sequence to the previously studied phylogenetically clustered homologs and study of several MChR1 mutants refine our understanding of the sequence determinants of channelrhodopsin function. We found that MChR1 has the most red-shifted and pH-independent spectral sensitivity so far reported, matches or surpasses known channelrhodopsins' channel kinetics features, and undergoes minimal inactivation upon sustained illumination. This combination of properties makes MChR1 a promising candidate for optogenetic applications.
Collapse
|
271
|
Sun H. Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:99-112. [PMID: 21704730 DOI: 10.1016/j.bbalip.2011.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 06/10/2011] [Indexed: 12/12/2022]
Abstract
The eye is the human organ most sensitive to vitamin A deficiency because of vision's absolute and heavy dependence on vitamin A for light perception. Studies of the molecular basis of vision have provided important insights into the intricate mechanistic details of the function, transport and recycling of vitamin A and its derivatives (retinoid). This review focuses on retinoid-related membrane receptors and transporters. Three kinds of mammalian membrane receptors and transporters are discussed: opsins, best known as vitamin A-based light sensors in vision; ABCA4, an ATP-dependent transporter specializes in the transport of vitamin A derivative; and STRA6, a recently identified membrane receptor that mediates cellular uptake of vitamin A. The evolutionary driving forces for their existence and the wide spectrum of human diseases associated with these proteins are discussed. Lessons learned from the study of the visual system might be useful for understanding retinoid biology and retinoid-related diseases in other organ systems as well. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Hui Sun
- Department of Physiology, Jules Stein Eye Institute, Brian Research Institute, and Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
272
|
Irieda H, Reissig L, Kawanabe A, Homma M, Kandori H, Sudo Y. Structural Characteristics around the β-Ionone Ring of the Retinal Chromophore in Salinibacter Sensory Rhodopsin I. Biochemistry 2011; 50:4912-22. [DOI: 10.1021/bi200284s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Louisa Reissig
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Kawanabe
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
273
|
Ben-Ami R, Varga V, Lewis RE, May GS, Nierman WC, Kontoyiannis DP. Characterization of a 5-azacytidine-induced developmental Aspergillus fumigatus variant. Virulence 2011; 1:164-73. [PMID: 21178435 DOI: 10.4161/viru.1.3.11750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The hypomethylating agent 5-azacytidine (5AC) is widely used in patients at risk of invasive mycoses. We sought to determine whether 5AC affects the developmental competence and virulence of Aspergillus fumigatus. Incubation of A. fumigatus strain 293 with 5AC induced high-frequency conversion to a fluffy-variant (Af293 (FL) ). The conidiation defect was bypassed by exposing Af293 (FL) to light during the initial 18 hours of growth on solid media. Transcriptional profiling revealed differential expression of multiple genes involved in G-protein signaling, including a putative G-protein coupled photoreceptor (opsin), suggesting that impaired signaling through a light-responsive pathway upstream of brlA is responsible for this phenotype. Af293 (FL) was fully virulent in fruit fly and murine models of invasive aspergillosis. Moreover, Af293 (FL) overexpressed aspergillopepsin F, had increased elastase activity and was more angioinvasive than the parental wild-type strain. The 5AC-induced A. fumigatus fluffy variant illustrates the potential effects of chemotherapeutic agents on the developmental and pathobiologic characteristics of opportunistic fungi.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
274
|
Sasaki J, Tsai AL, Spudich JL. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J Biol Chem 2011; 286:18868-77. [PMID: 21454480 DOI: 10.1074/jbc.m110.200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
275
|
Mizuno M, Sudo Y, Homma M, Mizutani Y. Direct Observation of the Structural Change of Tyr174 in the Primary Reaction of Sensory Rhodopsin II. Biochemistry 2011; 50:3170-80. [DOI: 10.1021/bi101817y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
276
|
Ranaghan MJ, Shima S, Ramos L, Poulin DS, Whited G, Rajasekaran S, Stuart JA, Albert AD, Birge RR. Photochemical and thermal stability of green and blue proteorhodopsins: implications for protein-based bioelectronic devices. J Phys Chem B 2011; 114:14064-70. [PMID: 20964279 DOI: 10.1021/jp106633w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photochemical and thermal stability of the detergent-solubilized blue- and green-absorbing proteorhodpsins, BPR and GPR, respectively, are investigated to determine the viability of these proteins for photonic device applications. Photochemical stability is studied by using pulsed laser excitation and differential UV-vis spectroscopy to assign the photocyclicity. GPR, with a cyclicity of 7 × 10(4) photocycles protein(-1), is 4-5 times more stable than BPR (9 × 10(3) photocycles protein(-1)), but is less stable than native bacteriorhodopsin (9 × 10(5) photocycles protein(-1)) or the 4-keto-bacteriorhodopsin analogue (1 × 10(5) photocycles protein(-1)). The thermal stabilities are assigned by using differential scanning calorimetry and thermal bleaching experiments. Both proteorhodopsins display excellent thermal stability, with melting temperatures above 85 °C, and remain photochemically stable up to 75 °C. The biological relevance of our results is also discussed. The lower cyclicity of BPR is found to be adequate for the long-term biological function of the host organism at ocean depths of 50 m or more.
Collapse
Affiliation(s)
- Matthew J Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat Commun 2011; 2:183. [DOI: 10.1038/ncomms1188] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/11/2011] [Indexed: 01/12/2023] Open
|
278
|
Sudo Y, Yuasa Y, Shibata J, Suzuki D, Homma M. Spectral tuning in sensory rhodopsin I from Salinibacter ruber. J Biol Chem 2011; 286:11328-36. [PMID: 21288897 DOI: 10.1074/jbc.m110.187948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Organisms utilize light as energy sources and as signals. Rhodopsins, which have seven transmembrane α-helices with retinal covalently linked to a conserved Lys residue, are found in various organisms as distant in evolution as bacteria, archaea, and eukarya. One of the most notable properties of rhodopsin molecules is the large variation in their absorption spectrum. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) function as photosensors and have similar properties (retinal composition, photocycle, structure, and function) except for their λ(max) (SRI, ∼560 nm; SRII, ∼500 nm). An expression system utilizing Escherichia coli and the high protein stability of a newly found SRI-like protein, SrSRI, enables studies of mutant proteins. To determine the residue contributing to the spectral shift from SRI to SRII, we constructed various SRI mutants, in which individual residues were substituted with the corresponding residues of SRII. Three such mutants of SrSRI showed a large spectral blue-shift (>14 nm) without a large alteration of their retinal composition. Two of them, A136Y and A200T, are newly discovered color tuning residues. In the triple mutant, the λ(max) was 525 nm. The inverse mutation of SRII (F134H/Y139A/T204A) generated a spectral-shifted SRII toward longer wavelengths, although the effect is smaller than in the case of SRI, which is probably due to the lack of anion binding in the SRII mutant. Thus, half of the spectral shift from SRI to SRII could be explained by only those three residues taking into account the effect of Cl(-) binding.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
279
|
Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 2010; 286:5967-76. [PMID: 21135094 DOI: 10.1074/jbc.m110.190058] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rhodopsins possess retinal chromophore surrounded by seven transmembrane α-helices, are widespread in prokaryotes and in eukaryotes, and can be utilized as optogenetic tools. Although rhodopsins work as distinctly different photoreceptors in various organisms, they can be roughly divided according to their two basic functions, light-energy conversion and light-signal transduction. In microbes, light-driven proton transporters functioning as light-energy converters have been modified by evolution to produce sensory receptors that relay signals to transducer proteins to control motility. In this study, we cloned and characterized two newly identified microbial rhodopsins from Haloquadratum walsbyi. One of them has photochemical properties and a proton pumping activity similar to the well known proton pump bacteriorhodopsin (BR). The other, named middle rhodopsin (MR), is evolutionarily transitional between BR and the phototactic sensory rhodopsin II (SRII), having an SRII-like absorption maximum, a BR-like photocycle, and a unique retinal composition. The wild-type MR does not have a light-induced proton pumping activity. On the other hand, a mutant MR with two key hydrogen-bonding residues located at the interaction surface with the transducer protein HtrII shows robust phototaxis responses similar to SRII, indicating that MR is potentially capable of the signaling. These results demonstrate that color tuning and insertion of the critical threonine residue occurred early in the evolution of sensory rhodopsins. MR may be a missing link in the evolution from type 1 rhodopsins (microorganisms) to type 2 rhodopsins (animals), because it is the first microbial rhodopsin known to have 11-cis-retinal similar to type 2 rhodopsins.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
|
281
|
Abstract
The implementation of multiconfigurational quantum chemistry methods into a quantum-mechanics/molecular-mechanics protocol has allowed the construction of a realistic computer model for the sensory rhodopsin of the cyanobacterium Anabaena PCC 7120. The model, which reproduces the absorption spectra of both the all-trans and 13-cis forms of the protein and their associated K and L intermediates, is employed to investigate the light-driven steps of the photochromic cycle exhibited by the protein. It is found that the photoisomerizations of the all-trans and 13-cis retinal chromophores occur through unidirectional, counterclockwise 180° rotations of the =C14-C15= moiety with respect to the Lys210-linked end of the chromophore axis. Thus, the sequential interconversions of the all-trans and 13-cis forms during a single photochromic cycle yield a complete (360°) unidirectional rotation of the =C14-C15= moiety. This finding implies that Anabaena sensory rhodopsin is a biological realization of a light-driven molecular rotor.
Collapse
|
282
|
Tamogami J, Kikukawa T, Ikeda Y, Takemura A, Demura M, Kamo N. The photochemical reaction cycle and photoinduced proton transfer of sensory rhodopsin II (Phoborhodopsin) from Halobacterium salinarum. Biophys J 2010; 98:1353-63. [PMID: 20371336 DOI: 10.1016/j.bpj.2009.12.4288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022] Open
Abstract
Sensory rhodopsin II (HsSRII, also called phoborhodopsin) is a negative phototaxis receptor of Halobacterium salinarum, a bacterium that avoids blue-green light. In this study, we expressed the protein in Escherichia coli cells, and reconstituted the purified protein with phosphatidylcholine. The reconstituted HsSRII was stable. We examined the photocycle by flash-photolysis spectroscopy in the time range of milliseconds to seconds, and measured proton uptake/release using a transparent indium-tin oxide electrode. The pKa of the counterion of the Schiff base, Asp(73), was 3.0. Below pH 3, the depleted band was observed on flash illumination, but the positive band in the difference spectra was not found. Above pH 3, the basic photocycle was HsSRII (490) --> M (350) --> O (520) --> Y (490) --> HsSRII, where the numbers in parentheses are the maximum wavelengths. The decay rate of O-intermediate and Y-intermediate were pH-independent, whereas the M-intermediate decay was pH-dependent. For 3 < pH < 4.5, the M-decay was one phase, and the rate decreased with an increase in pH. For 4.5 < pH < 6.5, the decay was one phase with pH-independent rates, and azide markedly accelerated the M-decay. These findings suggest the existence of a protonated amino acid residue (X-H) that may serve as a proton relay to reprotonate the Schiff base. Above pH 6.5, the M-decay showed two phases. The fast M-decay was pH-independent and originated from the molecule having a protonated X-H, and the slow M-decay originated from the molecule having a deprotonated X, in which the proton came directly from the outside. The analysis yielded a value of 7.5 for the pKa of X-H. The proton uptake and release occurred during M-decay and O-decay, respectively.
Collapse
Affiliation(s)
- Jun Tamogami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
283
|
Scherzinger D, Scheffer E, Bär C, Ernst H, Al-Babili S. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 2010; 277:4662-73. [PMID: 20929460 DOI: 10.1111/j.1742-4658.2010.07873.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.
Collapse
Affiliation(s)
- Daniel Scherzinger
- Institute of Biology II, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
284
|
Petrovskaya LE, Lukashev EP, Chupin VV, Sychev SV, Lyukmanova EN, Kryukova EA, Ziganshin RH, Spirina EV, Rivkina EM, Khatypov RA, Erokhina LG, Gilichinsky DA, Shuvalov VA, Kirpichnikov MP. Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Lett 2010; 584:4193-6. [PMID: 20831870 DOI: 10.1016/j.febslet.2010.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.
Collapse
Affiliation(s)
- L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Abstract
Microbial rhodopsins, a diverse group of photoactive proteins found in Archaea, Bacteria, and Eukarya, function in photosensing and photoenergy harvesting and may have been present in the resource-limited early global environment. Four different physiological functions have been identified and characterized for nearly 5,000 retinal-binding photoreceptors, these being ion transporters that transport proton or chloride and sensory rhodopsins that mediate light-attractant and/or -repellent responses. The greatest number of rhodopsins previously observed in a single archaeon had been four. Here, we report a newly discovered six-rhodopsin system in a single archaeon, Haloarcula marismortui, which shows a more diverse absorbance spectral distribution than any previously known rhodopsin system, and, for the first time, two light-driven proton transporters that respond to the same wavelength. All six rhodopsins, the greatest number ever identified in a single archaeon, were first shown to be expressed in H. marismortui, and these were then overexpressed in Escherichia coli. The proteins were purified for absorption spectra and photocycle determination, followed by measurement of ion transportation and phototaxis. The results clearly indicate the existence of a proton transporter system with two isochromatic rhodopsins and a new type of sensory rhodopsin-like transducer in H. marismortui.
Collapse
|
286
|
Abstract
Advances in optics, genetics, and chemistry have enabled the investigation of brain function at all levels, from intracellular signals to single synapses, whole cells, circuits, and behavior. Until recent years, these research tools have been utilized in an observational capacity: imaging neural activity with fluorescent reporters, for example, or correlating aberrant neural activity with loss-of-function and gain-of-function pharmacological or genetic manipulations. However, optics, genetics, and chemistry have now combined to yield a new strategy: using light to drive and halt neuronal activity with molecular specificity and millisecond precision. Photostimulation of neurons is noninvasive, has unmatched spatial and temporal resolution, and can be targeted to specific classes of neurons. The optical methods developed to date encompass a broad array of strategies, including photorelease of caged neurotransmitters, engineered light-gated receptors and channels, and naturally light-sensitive ion channels and pumps. In this review, we describe photostimulation methods, their applications, and opportunities for further advancement.
Collapse
Affiliation(s)
- Stephanie Szobota
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
287
|
Abstract
Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic sea ice supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in ice-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic sea ice from a series of sites in the Ross Sea using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in sea ice, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from sea ice samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within sea ice. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the sea ice profile in this study. Questions still remain regarding the protein's ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the sea ice ecosystem.
Collapse
|
288
|
Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One 2010; 5:e11257. [PMID: 20582313 PMCID: PMC2889829 DOI: 10.1371/journal.pone.0011257] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/28/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. CONCLUSIONS/SIGNIFICANCE Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a "bramble" model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic "root". Structural diversification may be constrained ("trimmed") where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.
Collapse
|
289
|
Sharaabi Y, Brumfeld V, Sheves M. Binding of Anions to Proteorhodopsin Affects the Asp97 pKa. Biochemistry 2010; 49:4457-65. [DOI: 10.1021/bi901746b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
290
|
Idnurm A, Verma S, Corrochano LM. A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 2010; 47:881-92. [PMID: 20451644 DOI: 10.1016/j.fgb.2010.04.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 12/21/2022]
Abstract
Virtually all organisms exposed to light are capable of sensing this environmental signal. In recent years the photoreceptors that mediate the ability of fungi to "see" have been identified in diverse species, and increasingly characterized. The small sizes of fungal genomes and ease in genetic and molecular biology manipulations make this kingdom ideal amongst the eukaryotes for understanding photosensing. The most widespread and conserved photosensory protein in the fungi is White collar 1 (WC-1), a flavin-binding photoreceptor that functions with WC-2 as a transcription factor complex. Other photosensory proteins in fungi include opsins, phytochromes and cryptochromes whose roles in fungal photobiology are not fully resolved and their distribution in the fungi requires further taxon sampling. Additional unknown photoreceptors await discovery. This review discusses the effects of light on fungi and the evolutionary processes that may have shaped the ability of species to sense and respond to this signal.
Collapse
Affiliation(s)
- Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | | | |
Collapse
|
291
|
Rivera AS, Pankey MS, Plachetzki DC, Villacorta C, Syme AE, Serb JM, Omilian AR, Oakley TH. Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. BMC Evol Biol 2010; 10:123. [PMID: 20433736 PMCID: PMC2888819 DOI: 10.1186/1471-2148-10-123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 04/30/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes. RESULTS Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance. CONCLUSIONS Overall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types.
Collapse
|
292
|
Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 2010; 8:e1000358. [PMID: 20436956 PMCID: PMC2860489 DOI: 10.1371/journal.pbio.1000358] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 03/18/2010] [Indexed: 12/21/2022] Open
Abstract
Proteorhodopsins are globally abundant photoproteins found in bacteria in the photic zone of the ocean. Although their function as proton pumps with energy-yielding potential has been demonstrated, the ecological role of proteorhodopsins remains largely unexplored. Here, we report the presence and function of proteorhodopsin in a member of the widespread genus Vibrio, uncovered through whole-genome analysis. Phylogenetic analysis suggests that the Vibrio strain AND4 obtained proteorhodopsin through lateral gene transfer, which could have modified the ecology of this marine bacterium. We demonstrate an increased long-term survival of AND4 when starved in seawater exposed to light rather than held in darkness. Furthermore, mutational analysis provides the first direct evidence, to our knowledge, linking the proteorhodopsin gene and its biological function in marine bacteria. Thus, proteorhodopsin phototrophy confers a fitness advantage to marine bacteria, representing a novel mechanism for bacterioplankton to endure frequent periods of resource deprivation at the ocean's surface.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Marine Microbiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Neelam Akram
- Marine Microbiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Anders Pedersen
- Department of Chemistry, Biochemistry and Biophysics, Göteborg Gothenburg University, Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry, Biochemistry and Biophysics, Göteborg Gothenburg University, Göteborg, Sweden
| | - Debra L. Milton
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - José M. González
- Department of Microbiology and Cell Biology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Jarone Pinhassi
- Marine Microbiology, School of Natural Sciences, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
293
|
Abstract
Recently, it has been discovered that many microorganisms previously thought to be light-independent actually make use of sunlight for growth and survival. Newly reported work suggests some of the specific mechanisms involved.
Collapse
Affiliation(s)
- Edward F. DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (EFD); (OB)
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
- * E-mail: (EFD); (OB)
| |
Collapse
|
294
|
Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. SENSORS 2010; 10:4010-39. [PMID: 22319339 PMCID: PMC3274258 DOI: 10.3390/s100404010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/29/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
Abstract
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan; E-Mail: (I.K.)
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-52-789-2993; Fax: +81-52-789-3001
| |
Collapse
|
295
|
Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol 2010; 76:3187-97. [PMID: 20305030 DOI: 10.1128/aem.02971-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteorhodopsin (PR), a photoactive proton pump containing retinal, is present in approximately half of all bacteria in the ocean, but its physiological role is still unclear, since very few strains carrying the PR gene have been cultured. The aim of this work was to characterize PR diversity in a North Sea water sample, cultivate a strain representative of North Sea PR clusters, and study the effects of light and carbon concentration on the expression of the PR gene. A total of 117 PR sequences, of which 101 were unique, were obtained from a clone library of PCR-amplified PR gene fragments. Of the North Sea PRs, 97% were green light absorbing, as inferred from the amino acid at position 105; 67% of the PR protein fragments showed closest similarity to PRs from Alphaproteobacteria, 4% showed closest similarity to PRs from Gammaproteobacteria, and 29% showed closest similarity to PRs from "Bacteroidetes"/Flavobacteria. The dominant PR cluster (comprising 18% of all PRs) showed a high degree of similarity to the PR from the cultivated Roseobacter strain HTCC2255. The relative abundances of the North Sea PR clusters were confirmed by quantitative PCR. They were detected in metagenomic fragments from coastal oceans worldwide with various degrees of abundance. Several hundred bacterial strains from the North Sea water sample were cultivated on oligocarbophilic media. By screening with degenerate primers, two strains carrying the PR gene were identified. Their 16S rRNA gene sequences were identical and affiliated with a Bacteroidetes subcluster from the North Sea. The PR sequence of isolate PRO95 was completed by chromosomal walking. It was 76% identical to that of Dokdonia donghaensis MED134 and was functional, as indicated by the signature amino acids. PRO95 expressed its PR gene in liquid media containing between 9.7 and 121 mM carbon, both in the light and in the dark. Growth was not enhanced by light. Thus, the detection of the physiological role of PR may require more sensitive methods.
Collapse
|
296
|
Plachetzki DC, Fong CR, Oakley TH. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc Biol Sci 2010; 277:1963-9. [PMID: 20219739 DOI: 10.1098/rspb.2009.1797] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision.
Collapse
Affiliation(s)
- David C Plachetzki
- Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
297
|
Rajput J, Rahbek D, Andersen L, Hirshfeld A, Sheves M, Altoè P, Orlandi G, Garavelli M. Probing and Modeling the Absorption of Retinal Protein Chromophores in Vacuo. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
298
|
Rajput J, Rahbek D, Andersen L, Hirshfeld A, Sheves M, Altoè P, Orlandi G, Garavelli M. Probing and Modeling the Absorption of Retinal Protein Chromophores in Vacuo. Angew Chem Int Ed Engl 2010; 49:1790-3. [DOI: 10.1002/anie.200905061] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
299
|
Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P. A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 2010; 67:965-71. [PMID: 20016996 PMCID: PMC11115890 DOI: 10.1007/s00018-009-0225-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Here, we report the DNA sequence of the rhodopsin gene in the alga Cyanophora paradoxa (Glaucophyta). The primers were designed according to the conserved regions of prokaryotic and eukaryotic rhodopsin-like proteins deposited in the GenBank. The sequence consists of 1,272 bp comprised of 5 introns. The correspondent protein, named Cyanophopsin, showed high identity to rhodopsin-like proteins of Archea, Bacteria, Fungi, and Algae. At the N-terminal, the protein is characterized by a region with no transmembrane alpha-helices (80 aa), followed by a region with 7alpha-helices (219 aa) and a shorter 35-aa C-terminal region. The DNA sequence of the N-terminal region was expressed in E. coli and the recombinant purified peptide was used as antigen in hens to obtain polyclonal antibodies. Indirect immunofluorescence in C. paradoxa cells showed a marked labeling of the muroplast (aka cyanelle) membrane.
Collapse
Affiliation(s)
| | - Laura Barsanti
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | | | | | - Paolo Gualtieri
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
300
|
Kirilovsky D. The photoactive orange carotenoid protein and photoprotection in cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:139-59. [PMID: 20532740 DOI: 10.1007/978-1-4419-1528-3_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoprotective mechanisms have been evolved by photosynthetic organisms to cope with fluctuating high light conditions. One of these mechanisms downregulates photosynthesis by increasing thermal dissipation of the energy absorbed by the photosystem II antenna. While this process has been well studied in plants, the equivalent process in cyanobacteria was only recently discovered. In this chapter we describe the results leading to its discovery and the more recent advances in the elucidation of this mechanism. The light activation of a soluble carotenoid protein, the orange carotenoid protein (OCP), binding hydroxyechinenone, is the key inducer of this photoprotective mechanism. Light causes structural changes within both the carotenoid and the protein, leading to the conversion of an orange inactive form into a red active form. The activated red form induces an increase of energy dissipation leading to a decrease in the fluorescence of the phycobilisomes, the cyanobacterial antenna, and thus of the energy arriving to the reaction centers. The OCP, which senses light and triggers photoprotection, is a unique example of a photoactive protein containing a carotenoid as the photoresponsive chromophore.
Collapse
Affiliation(s)
- Diana Kirilovsky
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTecS) and Centre National de la Recherche Scientifique (CNRS), 91191, Gif sur Yvette, France.
| |
Collapse
|