251
|
Identification of Five Hub Genes as Key Prognostic Biomarkers in Liver Cancer via Integrated Bioinformatics Analysis. BIOLOGY 2021; 10:biology10100957. [PMID: 34681056 PMCID: PMC8533228 DOI: 10.3390/biology10100957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is one of the most common cancers and the top leading cause of cancer death globally. However, the molecular mechanisms of liver tumorigenesis and progression remain unclear. In the current study, we investigated the hub genes and the potential molecular pathways through which these genes contribute to liver cancer onset and development. The weighted gene co-expression network analysis (WCGNA) was performed on the main data attained from the GEO (Gene Expression Omnibus) database. The Cancer Genome Atlas (TCGA) dataset was used to evaluate the association between prognosis and these hub genes. The expression of genes from the black module was found to be significantly related to liver cancer. Based on the results of protein-protein interaction, gene co-expression network, and survival analyses, DNA topoisomerase II alpha (TOP2A), ribonucleotide reductase regulatory subunit M2 (RRM2), never in mitosis-related kinase 2 (NEK2), cyclin-dependent kinase 1 (CDK1), and cyclin B1 (CCNB1) were identified as the hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the differentially expressed genes (DEGs) were enriched in the immune-associated pathways. These hub genes were further screened and validated using statistical and functional analyses. Additionally, the TOP2A, RRM2, NEK2, CDK1, and CCNB1 proteins were overexpressed in tumor liver tissues as compared to normal liver tissues according to the Human Protein Atlas database and previous studies. Our results suggest the potential use of TOP2A, RRM2, NEK2, CDK1, and CCNB1 as prognostic biomarkers in liver cancer.
Collapse
|
252
|
Crouchet E, Bandiera S, Fujiwara N, Li S, El Saghire H, Fernández-Vaquero M, Riedl T, Sun X, Hirschfield H, Jühling F, Zhu S, Roehlen N, Ponsolles C, Heydmann L, Saviano A, Qian T, Venkatesh A, Lupberger J, Verrier ER, Sojoodi M, Oudot MA, Duong FHT, Masia R, Wei L, Thumann C, Durand SC, González-Motos V, Heide D, Hetzer J, Nakagawa S, Ono A, Song WM, Higashi T, Sanchez R, Kim RS, Bian CB, Kiani K, Croonenborghs T, Subramanian A, Chung RT, Straub BK, Schuppan D, Ankavay M, Cocquerel L, Schaeffer E, Goossens N, Koh AP, Mahajan M, Nair VD, Gunasekaran G, Schwartz ME, Bardeesy N, Shalek AK, Rozenblatt-Rosen O, Regev A, Felli E, Pessaux P, Tanabe KK, Heikenwälder M, Schuster C, Pochet N, Zeisel MB, Fuchs BC, Hoshida Y, Baumert TF. A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nat Commun 2021; 12:5525. [PMID: 34535664 PMCID: PMC8448834 DOI: 10.1038/s41467-021-25468-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.
Collapse
Grants
- K01 CA140861 NCI NIH HHS
- R21 CA209940 NCI NIH HHS
- R01 DK099558 NIDDK NIH HHS
- R03 AI131066 NIAID NIH HHS
- R01 CA233794 NCI NIH HHS
- ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209.
- NIH CA140861
- NIH DK099558 Irma T. Hirschl/Monique Weill-Caulier Trust
- This work was supported by ARC, Paris and Institut Hospitalo-Universitaire, Strasbourg (TheraHCC1.0 and 2.0 IHUARC IHU201301187 and IHUARC2019 to T.F.B.), the European Union (ERC-AdG-2014-671231-HEPCIR to T.F.B. and Y.H., EU H2020-667273-HEPCAR to T.F.B. and M.H., INTERREG-IV-Rhin Supérieur-FEDER-Hepato-Regio-Net 2012 to T.F.B. and M.B.Z), ANRS, Paris (2013/108 and ECTZ103701 to T.F.B), NIH (DK099558 to Y. H. and CA233794 to Y.H. and T. F. B; CA140861 to B.C.F., CA209940, R21CA209940 and R03AI131066 to N.P. and T.F.B.), Cancer Prevention and Research Institute of Texas (RR180016 to Y.H), US Department of Defense (W81XWH-16-1-0363 to T.F.B. and Y.H.), the Irma T. Hirschl/Monique Weill-Caulier Trust (Y.H.) and the Foundation of the University of Strasbourg (HEPKIN to T. F. B. and Y. H.) and the Institut Universitaire de France (IUF; T. F. B.). M.H. is supported by an ERC CoG grant (HepatoMetaboPath) and EOS grant and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –Project-ID 272983813 – TRR 179, and Project-ID 314905040 SFB TR209. This work has been published under the framework of the LABEX ANR-10-LABX-0028_HEPSYS and Inserm Plan Cancer and benefits from funding from the state managed by the French National Research Agency as part of the Investments for the future program.
Collapse
Affiliation(s)
- Emilie Crouchet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shen Li
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hussein El Saghire
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xiaochen Sun
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Jühling
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Shijia Zhu
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natascha Roehlen
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Clara Ponsolles
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Antonio Saviano
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Tongqi Qian
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anu Venkatesh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Lupberger
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Eloi R Verrier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marine A Oudot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - François H T Duong
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lan Wei
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Thumann
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sarah C Durand
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Victor González-Motos
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Shigeki Nakagawa
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| | - Roberto Sanchez
- Department of Pharmacological Sciences and Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rosa S Kim
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - C Billie Bian
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Karun Kiani
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tom Croonenborghs
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- KU Leuven Technology Campus Geel, AdvISe, Geel, Belgium
| | | | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beate K Straub
- Institute of Pathology, University Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology and Research Center for Immunotherapy (FZI), Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maliki Ankavay
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Laurence Cocquerel
- University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, Lille, France
| | - Evelyne Schaeffer
- CNRS UPR3572 Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School, Cambridge St. CPZN 4216, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering Science & Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Aviv Regev
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Emanuele Felli
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Patrick Pessaux
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Catherine Schuster
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nathalie Pochet
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirjam B Zeisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), Lyon, France
| | - Bryan C Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ferring Pharmaceuticals Inc 4245 Sorrento Valley Blvd, San Diego, CA, USA.
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Thomas F Baumert
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.
| |
Collapse
|
253
|
Huang SW, Chen YC, Lin YH, Yeh CT. Clinical Limitations of Tissue Annexin A2 Level as a Predictor of Postoperative Overall Survival in Patients with Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10184158. [PMID: 34575275 PMCID: PMC8465313 DOI: 10.3390/jcm10184158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second common cause of cancer-related death in Taiwan. Tumor recurrence is frequently observed in HCC patients receiving surgical resection, resulting in unsatisfactory overall survival (OS). Therefore, it is pivotal to identify effective prognostic makers, so that intensive surveillance or adjuvant treatments can be applied to predictively unfavorable patients. Previous studies indicated that Annexin A2 (ANXA2) was an effective prognostic marker in several cancers, including HCC. However, the prognostic value of ANXA2 in Taiwanese HCC patients remains unclear, where a great proportion of patients had chronic hepatitis B with liver cirrhosis. Here, ANXA2 was highly expressed in HCC tissues compared with para-neoplastic noncancerous tissues. Furthermore, high ANXA2 expression in HCC tissues independently predicted shorter OS. In subgroup analysis, however, ANXA2 expression could not effectively predict OS in the following subgroups: female, age > 65 years old, Child–Pugh classification B, hepatitis B virus surface antigen negative or anti-hepatitis C antibody positive, alcoholism, tumor number >1, presence of micro- or macrovascular invasion, absence of capsule, non-cirrhosis and high alpha-fetoprotein. In conclusion, ANXA2 expression in HCC tissues could predict postoperative OS. However, the predictive value was limited in patients with specific clinical conditions.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Gastroenterology and Hepatology, New Taipei Municipal Tucheng Hospital, New Taipei 236, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yen-Chin Chen
- Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| |
Collapse
|
254
|
Wu Z, He L, Yang L, Fang X, Peng L. Potential Role of NEU1 in Hepatocellular Carcinoma: A Study Based on Comprehensive Bioinformatical Analysis. Front Mol Biosci 2021; 8:651525. [PMID: 34513919 PMCID: PMC8427823 DOI: 10.3389/fmolb.2021.651525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Aberrant expression of NEU1 has been identified in many malignancies. Nevertheless, the clinical significance of NEU1 in hepatocellular carcinoma (HCC) has not been fully elucidated. Methods: In our study, multiple databases, including ONCOMINE, The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), Kaplan-Meier (KM) plotter, MethSurv, Gene Expression Profiling Interactive Analysis (GEPIA), and Metascape, etc., were utilized to investigate the expression, prognostic value, and function of NEU1 in HCC. Results: ONCOMINE, GEO, and TCGA analyses revealed that NEU1 was more highly expressed in HCC compared to normal tissues. Additionally, the mRNA and protein expression levels of NEU1 were increased in liver cancer cell lines and HCC tissues, respectively. Moreover, a trend toward increased NEU1 expression with advanced stage or grade was found. Furthermore, higher mRNA expression of NEU1 was found to be remarkably correlated with worse survival in HCC patients, and multivariate Cox analysis indicated that high mRNA expression of NEU1 was an independent prognostic factor for poor prognosis of HCC patients. Also, 21 methylated CpGs were found to be significantly related to HCC prognosis. Besides, functional enrichment analyses indicated that high NEU1 expression group had lower levels of B cells, CD8+ T cells, NK cells, and T helper cells, etc. than the low NEU1 expression group, and NEU1 may regulate a variety of tumor-related proteins and pathways, including lysosome, spliceosome, mTOR signaling pathway and so on. Conclusion: High expression level of NEU1 was positively correlated with unfavorable prognosis of HCC patients, which may be related to the regulation of cancer-associated pathways and the inhibition of immune function by NEU1. Thus, NEU1 could be used as a potential prognostic biomarker and target for HCC.
Collapse
Affiliation(s)
- Zhulin Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li He
- Department of Oncology and Haematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lina Yang
- Department of Oncology and Haematology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | | | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
255
|
Xu W, Lu X, Liu J, Chen Q, Huang X, Huang K, Liu H, Zhu W, Zhang X. Identification of PAFAH1B3 as Candidate Prognosis Marker and Potential Therapeutic Target for Hepatocellular Carcinoma. Front Oncol 2021; 11:700700. [PMID: 34490100 PMCID: PMC8418329 DOI: 10.3389/fonc.2021.700700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide. PAFAH1B3 plays an important role on occurrence and development in a variety tumor. However, the function of PAFAH1B3 in HCC remains unclear. Methods The TIMER, ONCOMINE, Human Protein Atlas (HPA), GEPIA, The Cancer Genome Atlas (TCGA), HCCDB, UALCAN and LinkedOmics database were used to analyze the prognostic value, co-expression genes and regulator networks of PAFAH1B3 in HCC. siRNA transfections and inhibitor of PAFAH1B3 P11 were used to verify the anti-tumor effect on HCC cell lines. Gene expression was detected by qRT-PCR. The functions of PAFAH1B3 downregulation in HCC cell lines were investigated using cell cycle analysis, apoptosis detection, CCK8 assay and transwell assay. Western blot was used to evaluate the role of PAFAH1B3 on metabolic pathways in HCC cells. Results Based on the data from databases, the expression of PAFAH1B3 was remarkably increased in HCC patients. High expression of PAFAH1B3 was associated with poorer overall survival (OS) and disease-free survival (DFS). And PAFAH1B3 was notably linked to age, sex, grade, stage, race, and TP53 mutational status. Then, the functional network analysis showed PAFAH1B3 may be involved in HCC through cell cycle, cell metabolism, spliceosome, and RNA transport. Furthermore, the mRNA expression of PAFAH1B3 was also increased in HCC cell lines. Flow cytometry analysis showed that PAFAH1B3 manipulated apoptosis and cell cycle regulation. CCK8 assay showed that PAFAH1B3 silencing or pharmacologic inhibitor of PAFAH1B3 inhibited the proliferation of HepG2, Huh7 and MHCC-97H cells. Transwell assay results showed that PAFAH1B3 silencing also significantly impaired the invasion and migratory ability of HCC cells. In addition, PAFAH1B3 silencing significantly downregulated the expression of glycolysis and lipid synthesis signaling pathways. Conclusion Our findings suggested that PAFAH1B3 plays a critical role in progression of HCC. PAFAH1B3 as a prognosis marker and potential target for HCC has prospective clinical significance.
Collapse
Affiliation(s)
- Weikang Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Liu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kuiyuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
256
|
Wang X, He S, Zheng X, Huang S, Chen H, Chen H, Luo W, Guo Z, He X, Zhao Q. Transcriptional analysis of the expression, prognostic value and immune infiltration activities of the COMMD protein family in hepatocellular carcinoma. BMC Cancer 2021; 21:1001. [PMID: 34493238 PMCID: PMC8424899 DOI: 10.1186/s12885-021-08699-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family involved in tumor development and progression in several types of human cancer, but little is known about the function of COMMD proteins in hepatocellular carcinoma (HCC). METHODS The ONCOMINE and the UALCAN databases were used to evaluate the expression of COMMD1-10 in HCC and the association of this family with individual cancer stage and tumor grade. Kaplan-Meier (K-M) Plotter and Cox analysis hint the prognostic value of COMMDs. A network comprising 50 most similar genes and COMMD1-10 was constructed with the STRING database. Gene set enrichment analysis (GSEA) was performed using LinkedOmics database. The correlations between COMMD expression and the presence of immune infiltrating cells were also analyzed by the tumor immune estimation resource (TIMER) database. GSE14520 dataset and 80 HCC patients were used to validated the expression and survival value of COMMD3. Human HCC cell lines were also used for validating the function of COMMD3. RESULTS The expression of all COMMD family members showed higher expression in HCC tissues than that in normal tissues, and is associated with clinical cancer stage and pathological tumor grade. In HCC patients, the transcriptional levels of COMMD1/4 are positively correlated with overall survival (OS), while those of COMMD2/3/7/8/9 are negatively correlated with OS. Multivariate analysis indicated that a high level of COMMD3 mRNA is an independent prognostic factor for shorter OS in HCC patients. However, the subset of patients with grade 3 HCC, K-M survival curves revealed that high COMMD3/5/7/8/9 expression and low COMMD4/10 expression were associated with shorter OS. In addition, the expression of COMMD2/3/10 was associated with tumor-induced immune response activation and immune infiltration in HCC. The expression of COMMD3 from GSE14520 dataset and 80 patients are both higher in tumor than that in normal tissue, and a higher level of COMMD3 mRNA is associated with shorter OS. Knockdown of COMMD3 inhibits human HCC cell lines proliferation in vitro. CONCLUSIONS Our study indicates that COMMD3 is an independent prognostic biomarker for the survival of HCC patients. COMMD3 supports the proliferation of HCC cells and contributes to the poor OS in HCC patients.
Collapse
Affiliation(s)
- Xiaobo Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Shujiao He
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Xin Zheng
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honghui Chen
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Huadi Chen
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Weixin Luo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China
| | - Zhiyong Guo
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| | - Qiang Zhao
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-Sen University, NO.58 Zhongshan Road, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China. .,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, 510080, China.
| |
Collapse
|
257
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
258
|
Hernández-Oliveras A, Izquierdo-Torres E, Hernández-Martínez G, Zarain-Herzberg Á, Santiago-García J. Transcriptional and epigenetic landscape of Ca 2+-signaling genes in hepatocellular carcinoma. J Cell Commun Signal 2021; 15:433-445. [PMID: 33398721 PMCID: PMC8222487 DOI: 10.1007/s12079-020-00597-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca2+) signaling has a major role in regulating a wide range of cellular mechanisms, including gene expression, proliferation, metabolism, cell death, muscle contraction, among others. Recent evidence suggests that ~ 1600 genes are related to the Ca2+ signaling. Some of these genes' expression is altered in several pathological conditions, including different cancer types, and epigenetic mechanisms are involved. However, their expression and regulation in hepatocellular carcinoma (HCC) and the liver are barely known. Here, we aimed to explore the expression of genes involved in the Ca2+-signaling in HCC, liver regeneration, and hepatocyte differentiation, and whether their expression is regulated by epigenetic mechanisms such as DNA methylation and histone posttranslational modifications (HPM). Results show that several Ca2+-signaling genes' expression is altered in HCC samples; among these, a subset of twenty-two correlate with patients' survival. DNA methylation correlates with eight of these genes' expression, and Guadecitabine, a hypomethylating agent, regulates the expression of seven down-regulated and three up-regulated genes in HepG2 cells. The down-regulated genes displayed a marked decrease of euchromatin histone marks, whereas up-regulated genes displayed gain in these marks. Additionally, the expression of these genes is modulated during liver regeneration and showed similar profiles between in vitro differentiated hepatocytes and liver-derived hepatocytes. In conclusion, some components of the Ca2+-signaling are altered in HCC and displayed a correlation with patients' survival. DNA methylation and HMP are an attractive target for future investigations to regulate their expression. Ca2+-signaling could be an important regulator of cell proliferation and differentiation in the liver.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Luis Castelazo Ayala S/N, Xalapa, Veracruz, 91190 Mexico
| | - Eduardo Izquierdo-Torres
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510 Mexico
| | - Guadalupe Hernández-Martínez
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Luis Castelazo Ayala S/N, Xalapa, Veracruz, 91190 Mexico
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510 Mexico
| | - Juan Santiago-García
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Luis Castelazo Ayala S/N, Xalapa, Veracruz, 91190 Mexico
| |
Collapse
|
259
|
Jiang J, Wang HJ, Mou XZ, Zhang H, Chen Y, Hu ZM. Low Expression of KAT6B May Affect Prognosis in Hepatocellular Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211033063. [PMID: 34464167 PMCID: PMC8411621 DOI: 10.1177/15330338211033063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: Lysine acetyltransferase 6B (KAT6B), is a histone acetyltransferase
implicated to have a role in tumor suppression. However, the relationship
between KAT6B and hepatocellular carcinoma (HCC) is unclear. The purpose of
this study was to detect the expression of KAT6B in HCC tissues and analyze
its connection with the clinicopathological features of HCC. Methods: First, we performed immunohistochemical staining on 250 HCC tissues and 222
non-tumor liver tissues to examine the expression of KAT6B.Then the relation
between KAT6B expression and clinicopathological parameters was analyzed by
chi-square test, and the overall survival analysis was conducted by
Kaplan-Meier survival method. In addition, based on the Oncomine expression
array online and the UALCAN database, we compared KAT6B expression
differences between normal liver tissues and HCC tissues more broadly. Results: Compared with normal tissues, KAT6B expression was significantly lower in HCC
tissues. Low KAT6B expression was found to be related to gender, AFP level,
and tumor size. According to the online database, KAT6B expression was found
to be decreased in HCC tissues and high in normal tissues. Conclusions: Lower expression of KAT6B is associated with poor prognosis of HCC, and KAT6B
may be a potential tumor suppressor in liver cancer.
Collapse
Affiliation(s)
- Junjie Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - Huanqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - YiZhen Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - Zhi-Ming Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| |
Collapse
|
260
|
Dong X, Liu Z, Zhang E, Zhang P, Wang Y, Hang J, Li Q. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma. Cell Signal 2021; 85:110068. [PMID: 34197957 DOI: 10.1016/j.cellsig.2021.110068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023]
Abstract
Deubiquitinating enzyme (DUB) can hydrolyze ubiquitin molecules from the protein bound with ubiquitin, and reversely regulate protein degradation. The ubiquitin-specific proteases (USP) family are cysteine proteases, which owns the largest members and diverse structure among the currently known DUB. The important roles of ubiquitin-specific peptidase39 (USP39) in cancer have been widely investigated. However, little is known about the putative de-ubiquitination function of USP39 in hepatocellular carcinoma (HCC) and the mechanisms of USP39 regulating tumor growth. Here, we used bioinformatics methods to reveal that USP39 expression is significantly upregulated in several cancer database. High expression of USP39 is correlated with poor prognosis of HCC patients. Then, we identify the specificity protein 1 (SP1), as a novel subtract of the USP39. We observe that USP39 stabilizes SP1 protein and prolongs its half-life by promoting its deubiquitylation pathway. In addition, our results show USP39 promotes cell proliferation by SP1-depenet manner in vivo and vitro. Knocking-down of USP39 promotes the cell apoptosis and arrest of the cell cycle, whereas SP1 forcefully reversed these effects. Taken together, our results suggest that USP39 participates the deubiquitylation of SP1 protein, providing new pathway for understand the upstream signaling for oncogene SP1.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zixin Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University (Second Military Medical University), Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Pingzhao Zhang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Yuqi Wang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
261
|
Chen D, Zhang Y, Wang W, Chen H, Ling T, Yang R, Wang Y, Duan C, Liu Y, Guo X, Fang L, Liu W, Liu X, Liu J, Otkur W, Qi H, Liu X, Xia T, Liu H, Piao H. Identification and Characterization of Robust Hepatocellular Carcinoma Prognostic Subtypes Based on an Integrative Metabolite-Protein Interaction Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100311. [PMID: 34247449 PMCID: PMC8425875 DOI: 10.1002/advs.202100311] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Indexed: 06/01/2023]
Abstract
Metabolite-protein interactions (MPIs) play key roles in cancer metabolism. However, our current knowledge about MPIs in cancers remains limited due to the complexity of cancer cells. Herein, the authors construct an integrative MPI network and propose a MPI network based hepatocellular carcinoma (HCC) subtyping and mechanism exploration workflow. Based on the expressions of hub proteins on the MPI network, two prognosis-distinctive HCC subtypes are identified. Meanwhile, multiple interdependent features of the poor prognostic subtype are observed, including hypoxia, DNA hypermethylation of metabolic pathways, fatty acid accumulation, immune pathway up-regulation, and exhausted T-cell infiltration. Notably, the immune pathway up-regulation is probably induced by accumulated unsaturated fatty acids which are predicted to interact with multiple immune regulators like SRC and TGFB1. Moreover, based on tumor microenvironment compositions, the poor prognostic subtype is further divided into two sub-populations showing remarkable differences in metabolism. The subtyping shows a strong consistency across multiple HCC cohorts including early-stage HCC. Overall, the authors redefine robust HCC prognosis subtypes and identify potential MPIs linking metabolism to immune regulations, thus promoting understanding and clinical applications about HCC metabolism heterogeneity.
Collapse
Affiliation(s)
- Di Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Yiran Zhang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ting Ling
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Renyu Yang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yawei Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Department of Thoracic SurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chao Duan
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Department of Thoracic SurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Department of Thoracic SurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Xin Guo
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Lei Fang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Wuguang Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xiumei Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jing Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Hong‐Xu Liu
- Department of Thoracic SurgeryCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
262
|
High mRNA Expression of CENPL and Its Significance in Prognosis of Hepatocellular Carcinoma Patients. DISEASE MARKERS 2021; 2021:9971799. [PMID: 34457090 PMCID: PMC8387183 DOI: 10.1155/2021/9971799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
Centromere proteins (CENPs) are the main constituent proteins of kinetochore, which are essential for cell division. In recent years, several studies have revealed that several CENPs were aberrantly expressed in hepatocellular carcinoma (HCC). However, numerous centromere proteins have not been studied in HCC. In this study, we used databases of Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan-Meier Plotter, cBioPortal, the Human Protein Atlas (HPA), and TIMER (Tumor Immune Estimation Resource) and immunohistochemical staining of clinical specimens to investigate the expression of 15 major centromere proteins in HCC to evaluate their potential prognostic value. We found that the mRNA levels of 4 out of 15 centromere proteins (CENPL, CENPQ, CENPR, and CENPU) were significantly higher in HCC than in normal tissues, and their mRNA levels were associated with the tumor stages (p values < 0.01). Patients with higher mRNA levels of CENPL had poorer overall survival, progression-free survival, relapse-free survival, and disease-specific survival (p values < 0.05). Furthermore, the higher levels of CENPL mRNA were associated with worse overall survival in males without hepatitis virus infection (p values < 0.05). The protein expression level of CENPL in human HCC tissue was higher than that in normal liver tissue. In addition, the expression of CENPL was positively correlated with the levels of the tumor-infiltrating lymphocytes. The results suggest that the high mRNA expression of CENPL may be a potential predictor of prognosis in HCC patients.
Collapse
|
263
|
Jin X, Yin J, Zhu H, Li W, Yu K, Liu M, Zhang X, Lu M, Wan Z, Huang X. SMG9 Serves as an Oncogene to Promote the Tumor Progression via EMT and Wnt/β-Catenin Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2021; 12:701454. [PMID: 34456727 PMCID: PMC8397484 DOI: 10.3389/fphar.2021.701454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023] Open
Abstract
Background/Aims: SMG9 participates in the nonsense-mediated mRNA decay process that degrades mRNA harboring nonsense mutations introduced either at the level of transcription or RNA processing. However, little is known about the role of SMG9 in hepatocellular carcinoma (HCC). The objective of this research was to clarify the effects of SMG9 expression on HCC progression. Methods: Microarray data were acquired from NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database to bioinformatically analyze the differential expression of SMG9 between HCC patients and normal controls. SMG9 mRNA level was measured in sixteen sets of fresh tumor tissues and adjacent non-cancerous liver tissues (ANLTs) via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SMG9 protein expression was analyzed in ninety-five sets of paired formalin-fixed and paraffin-embedded tissue specimens by immunohistochemistry (IHC). In addition, clinicopathological features of SMG9 in HCC were checked. For in vitro studies, small interfering RNA (siRNA) was used to silence SMG9 expression for exploring biological functions and underlying mechanisms of SMG9 in SMMC-7721 and HepG2. Results: We found that SMG9 was upregulated in HCC tissues and SMG9 levels were closely related to TNM stage, tumor number and tumor size. Cox regression and Kaplan–Meier proportional hazards analyses showed that high expression of SMG9 was associated with poor patient survival. Furthermore, proliferation, apoptosis resistance, migration and invasion of both SMMC-7721 and HepG2 cells were suppressed by SMG9 inhibition. In addition, EMT and the Wnt/β-catenin signaling pathway were involved in SMG9-mediated HCC progression. Conclusions: SMG9 may serve as a potential novel prognostic biomarker and therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Xing Jin
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Yin
- Department of Nuclear Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hongling Zhu
- Department of Gynecology, Shanghai Armed Police Corps Hospital, Shanghai, China
| | - Weikang Li
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kewei Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiujuan Zhang
- Department of Liver Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaolian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zemin Wan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhang Huang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
264
|
Lin P, Gao RZ, Wen R, He Y, Yang H. DNA Damage Repair Profiles Alteration Characterize a Hepatocellular Carcinoma Subtype With Unique Molecular and Clinicopathologic Features. Front Immunol 2021; 12:715460. [PMID: 34456923 PMCID: PMC8387599 DOI: 10.3389/fimmu.2021.715460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and displays high heterogeneity of molecular phenotypes. We investigated DNA damage repair (DDR) alterations in HCC by integrating multi-omics data. HCC patients were classified into two heterogeneous subtypes with distinct clinical and molecular features: the DDR-activated subtype and the DDR-suppressed subtype. The DDR-activated subgroup is characterized by inferior prognosis and clinicopathological features that result in aggressive clinical behavior. Tumors of the DDR-suppressed class, which have distinct clinical and molecular characteristics, tend to have superior survival. A DDR subtype signature was ultimately generated to enable HCC DDR classification, and the results were confirmed by using multi-layer date cohorts. Furthermore, immune profiles and immunotherapy responses are also different between the two DDR subtypes. Altogether, this study illustrates the DDR heterogeneity of HCCs and is helpful to the understanding of personalized clinicopathological and molecular mechanisms responsible for unique tumor DDR profiles.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
265
|
Zhao T, Guo BJ, Xiao CL, Chen JJ, Lü C, Fang FF, Li B. Aerobic exercise suppresses hepatocellular carcinoma by downregulating dynamin-related protein 1 through PI3K/AKT pathway. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:418-427. [PMID: 34454893 DOI: 10.1016/j.joim.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Exercise, as a common non-drug intervention, is one of several lifestyle choices known to reduce the risk of cancer. Mitochondrial division has been reported to play a key role in the occurrence and transformation of hepatocellular carcinoma (HCC). This study investigated whether exercise could regulate the occurrence and development of HCC through mitosis. METHODS Bioinformatics technology was used to analyze the expression level of dynamin-related protein 1 (DRP1), a key protein of mitochondrial division. The effects of DRP1 and DRP1 inhibitor (mdivi-1) on the proliferation and migration of liver cancer cells BEL-7402 were observed using cell counting kit-8, plate colony formation, transwell cell migration, and scratch experiments. Enzyme-linked immunosorbent assay, Western blot and real-time polymerase chain reaction were used to detect the expression of DRP1 and its downstream phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway. A treadmill exercise intervention was tested in a nude mouse human liver cancer subcutaneous tumor model expressing different levels of DRP1. The size and weight of subcutaneous tumors in mice were detected before and after exercise. RESULTS The expression of DRP1 in liver cancer tissues was significantly upregulated compared with normal liver tissues (P < 0.001). The proliferation rate and the migration of BEL-7402 cells in the DRP1 over-expression group were higher than that in the control group. The mdivi-1 group showed an inhibitory effect on the proliferation and migration of BEL-7402 cells at 50 μmol/L. Aerobic exercise was able to inhibit the expression of DRP1 and decrease the size and weight of subcutaneous tumors. Moreover, the expression of phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) decreased in the exercise group. However, exercise could not change p-PI3K and p-AKT levels after knocking down DRP1 or using mdivi-1 on subcutaneous tumor. CONCLUSION Aerobic exercise can suppress the development of tumors partially by regulating DRP1 through PI3K/AKT pathway.
Collapse
Affiliation(s)
- Tong Zhao
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China; Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bing-Jie Guo
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Chu-Lan Xiao
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiao-Jiao Chen
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Can Lü
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Fan-Fu Fang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Bai Li
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
266
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
267
|
Xu J, Zhang Y, Liu C, Yan P, Yang Z. Roles of the miR-139-5p/CCT5 axis in hepatocellular carcinoma: a bioinformatic analysis. Int J Med Sci 2021; 18:3556-3564. [PMID: 34522182 PMCID: PMC8436101 DOI: 10.7150/ijms.57504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: MiRNAs are pivotal regulators involved in proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in hepatocellular carcinoma (HCC). The aim of this study was to investigate the influence of miR-139-5p and its target genes on the outcomes of HCC. Methods: Survival analysis of miR-139-5p in HCC was conducted in Kaplan-Meier plotter. Target genes of miR-139-5p were identified in TargetScan, miRTarBase and starBase. Gene Expression Omnibus (GEO) series were used for the validation of miR-139-5p target genes. Cox proportional regression model was also established. Results: In Kaplan-Meier plotter, 163 HCC patients were included. MiR-139-5p downregulation was significantly associated with unfavorable overall survival (OS) and disease-free survival (DFS) in HCC patients (all P < 0.001). MiR-139-5p was significantly downregulated in HCC tumors and human hepatoma cell lines (all P < 0.05). As a target gene of miR-139-5p, CCT5 was overexpressed in HCC tumor tissues and peripheral blood mononuclear cells (all P < 0.05). A negative correlation between CCT5 and miR-139-5p was found in TCGA dataset. CCT5 overexpression was significantly associated with worse OS in HCC patients (P < 0.001), which was validated in the GSE14520 dataset (P = 0.017). CCT5 mRNA was significantly overexpressed in HCC patients with alpha-fetoprotein (AFP) > 300 ng/ml, BCLC staging B-C, TNM staging III and main tumor size > 5 cm (all P < 0.05). According to the Cox regression model of CCT5-interacting genes, HCC patients with high risk had poor OS compared to those with low risk in the TCGA dataset (P < 0.001), with the 1-year, 3-year, and 5-year ROC curves of an area under the curve (AUC) equal to 0.704, 0.662, and 0.631, respectively. Conclusions: MiR-139-5p suppresses HCC tumor aggression and conversely correlated with CCT5. The miR-139-5p/CCT5 axis might perform crucial functions in the development of HCC.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ping Yan
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
268
|
Tong M, Wong TL, Zhao H, Zheng Y, Xie YN, Li CH, Zhou L, Che N, Yun JP, Man K, Lee TKW, Cai Z, Ma S. Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Rep 2021; 36:109617. [PMID: 34433044 DOI: 10.1016/j.celrep.2021.109617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
The liver plays central roles in coordinating different metabolic processes, such as the catabolism of amino acids. In this study, we identify a loss of tyrosine catabolism and a concomitant increase in serum tyrosine levels during liver cancer development. Liver cells with disordered tyrosine catabolism, as exemplified by the suppression of a tyrosine catabolic enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), display augmented tumorigenic and proliferative potentials. Metabolomics profiling and isotope tracing reveal the metabolic reliance of HPD-silenced cells on glutamine, coupled with increased tricarboxylic acid cycle metabolites and their associated amino acid pools. Mechanistically, HPD silencing reduces ketone bodies, which regulate the proliferative and metabolic phenotypes via the AMPK/mTOR/p70S6 kinase pathway and mTOR-dependent glutaminase (GLS) activation. Collectively, our results demonstrate a metabolic link between tyrosine and glutamine metabolism, which could be exploited as a potentially promising anticancer therapy for liver cancer.
Collapse
Affiliation(s)
- Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yu-Nong Xie
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Hin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Noélia Che
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kwan Man
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
269
|
Liu G, Wu D, Wen Y, Cang S. Immune-associated molecular occurrence and prognosis predictor of hepatocellular carcinoma: an integrated analysis of GEO datasets. Bioengineered 2021; 12:5253-5265. [PMID: 34424809 PMCID: PMC8806587 DOI: 10.1080/21655979.2021.1962147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second most common cause of cancer-related deaths worldwide. As immune response failure is the main factor in the occurrence and poor prognosis of HCC, our study aimed to develop an immune-associated molecular occurrence and prognosis predictor (IMOPP) of HCC. To that end, we discovered a 4-gene immune-associated gene signature: C-C motif chemokine ligand 14 (CCL14), kallikrein B1 (KLKB1), vasoactive intestinal peptide receptor 1 (VIPR1), and cluster of differentiation 4 (CD4). When tested on three cohorts as an immune-associated molecular occurrence predictor (IMOP), it had high sensitivity, specificity, and area under the receiver operating characteristics curve. When tested as an immune-associated molecular prognosis predictor (IMPP), it stratified the HCC prognosis for overall survival (Kaplan-Meier analysis, log rank P = 0.0016; Cox regression, HR = 1.832, 95% CI = 1.173-2.859, P = 0.008) and disease-free survival (Kaplan-Meier analysis, log rank P = 0.0227). IMPP also significantly correlated with the clinicopathological characteristics of HCC; integrating it with clinicopathological characteristics improved the accuracy of a nomogram for overall survival prediction (C-index: 0.7097 vs. 0.6631). In HCC tumor microenviroments, the proportion of CD8+ T cells significantly differed between IMOP-stratified groups. We conclude that IMOPP can potentially predict the occurrence of HCC in high-risk populations and improve prognostic accuracy by providing new biomarkers for risk stratification. In addition, we believe that the IMOP mechanism may be related to its effect on the proportion of CD8+ T cells in tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Guanjun Liu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Henan University, Zhengzhou, Henan, P.R. China
| | - Dongmei Wu
- Department of Radiotherapy, Xinxiang Center Hospital, Xinxiang, Henan, P.R. China
| | - Yiyang Wen
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Henan University, Zhengzhou, Henan, P.R. China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.,Department of Oncology, People's Hospital of Henan University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
270
|
Zhang Y, Wei H, Fan L, Fang M, He X, Lu B, Pang Z. CLEC4s as Potential Therapeutic Targets in Hepatocellular Carcinoma Microenvironment. Front Cell Dev Biol 2021; 9:681372. [PMID: 34409028 PMCID: PMC8367378 DOI: 10.3389/fcell.2021.681372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive tumor microenvironment in hepatocellular carcinoma (HCC) is critical in tumor development. C-type (Ca2+ -dependent) lectin (CLEC) receptors, essential in innate pattern recognition, have potential regulatory effects on immune cell trafficking and modulatory effects on cancer cell activity. However, information on the expression and prognostic value of CLECs in HCC is scanty. Herein, we explored the potential role of CLECs in HCC based on TCGA, ONCOMINE, GEPIA, UALCAN, cBioPortal, Metascape, TRRUST, and TIMER databases. Results demonstrated a significantly higher mRNA level of CLEC4A and CLEC4L in HCC tissues than normal liver tissues. Contrarily, we found significantly low CLEC4G/H1/H2/M expression in HCC tissues. The IHC analysis revealed the following: Absence of CLEC4A/J/K/M in normal and liver cancer tissues; high CLEC4C expression in HCC tissues; low expression and zero detection of CLEC4D/E/H1/H2/L in HCC tissues and normal tissues, respectively. And the HepG2 and LX-2 were used to verify the expression level of CLEC4s via qRT-PCR in vitro. Furthermore, the expression of CLEC4H1 (ASGR1) and CLEC4H2 (ASGR2) exhibited a significant relation to clinical stages. However, the expression of CLEC4A, CLEC4D, CLEC4E, CLEC4J (FCER2), CLEC4K (CD207), CLEC4G, CLEC4H1, CLEC4M, and CLEC4H2 decreased with tumor progression. Patients expressing higher CLEC4H1/H2 levels had longer overall survival than patients exhibiting lower expression. Moreover, CLEC4A/D/E/J/K/G/H1/M/H2 had significant down-regulated levels of promoter methylation. The expression level of CLEC4s was correlated with the infiltration of B cells, CD8 + T cells, CD4 + T cells, macrophage cells, neutrophil cells, and dendritic cells. Functional analysis revealed the potential role of CLECL4s in virus infection, including COVID-19. Also, hsa-miR-4278 and hsa-miR-324-5p, two potential miRNA targets of CLEC4s, were uncovered. This article demonstrates that CLEC4 is crucial for the development of HCC and is associated with infiltration of various immune cells, providing evidence for new immunotherapy targets in HCC.
Collapse
Affiliation(s)
- Yinjiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China.,Morning Star Academic Cooperation, Shanghai, China
| | - Hongyun Wei
- Morning Star Academic Cooperation, Shanghai, China.,Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Fan
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Mingyan Fang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China.,Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, China
| |
Collapse
|
271
|
Chen Y, Guo Z, Zeng Y, Su H, Zhong F, Jiang K, Yuan G. A novel recurrence associated immune gene signature and its clinical significance in liver cancer. Am J Transl Res 2021; 13:8766-8776. [PMID: 34539993 PMCID: PMC8430065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies across nations. Although the outcome of HCC has been improved significantly with the advances in comprehensive treatment, patients remain suffered from recurrence as well as metastasis. Therefore, it is urgent to identify reliable biomarkers for predicting the recurrence of HCC, by which the treating strategy can be made to restrain tumor progress. Increasing evidence has shown the association between immune signature and prognosis of HCC. Thus, we aimed to discover an immune-related gene signature that can estimate the recurrence rates of HCC. We collected gene expression profiles and clinical information of patients from GEO and TCGA dataset. Furthermore, we conducted a lasso regression analysis and established a recurrence-related model consisting of 36 immune-related gene pairs (IRGPs) with 54 genes. We validated the IRGPs in the validation cohort and observed that the immune-related signature robustly stratified patients with HCC into high- and low-risk groups in terms of recurrence (P < 0.001). Multivariant Cox regression analysis showed the relationship between the model and recurrence outcomes (Hazard Ratio: 3.81 95% Confidence Interval: 2.90-5.00). Gene Ontology and KEGG enrichment analyses revealed that those genes were enriched in important signaling pathways. In summary, we developed a robust model based on the signature of immune-related genes for forecasting the recurrence outcome of patients with HCC, which holds the potential to assist clinical practice.
Collapse
Affiliation(s)
- Yubing Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Zhenya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Yonglian Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Huizhao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Fudi Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Keqing Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Guandou Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| |
Collapse
|
272
|
Chen D, Zhao Z, Chen L, Li Q, Zou J, Liu S. PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis 2021; 12:722. [PMID: 34290239 PMCID: PMC8295330 DOI: 10.1038/s41419-021-04013-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated that alternative splicing has a vital role in regulating protein function, but how alternative splicing factors can be regulated remains unclear. We showed that the PPM1G, a protein phosphatase, regulated the phosphorylation of SRSF3 in hepatocellular carcinoma (HCC) and contributed to the proliferation, invasion, and metastasis of HCC. PPM1G was highly expressed in HCC tissues compared to adjacent normal tissues, and higher levels of PPM1G were observed in adverse staged HCCs. The higher levels of PPM1G were highly correlated with poor prognosis, which was further validated in the TCGA cohort. The knockdown of PPM1G inhibited the cell growth and invasion of HCC cell lines. Further studies showed that the knockdown of PPM1G inhibited tumor growth in vivo. The mechanistic analysis showed that the PPM1G interacted with proteins related to alternative splicing, including SRSF3. Overexpression of PPM1G promoted the dephosphorylation of SRSF3 and changed the alternative splicing patterns of genes related to the cell cycle, the transcriptional regulation in HCC cells. In addition, we also demonstrated that the promoter of PPM1G was activated by multiple transcription factors and co-activators, including MYC/MAX and EP300, MED1, and ELF1. Our study highlighted the essential role of PPM1G in HCC and shed new light on unveiling the regulation of alternative splicing in malignant transformation.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Zhenguo Zhao
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Lu Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Qinghua Li
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China
| | - Jixue Zou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Shuanghai Liu
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital, School of Medicine, Southeast University, No. 163, Shoushan Road, Jiangyin, 214400, Jiangsu Province, China.
| |
Collapse
|
273
|
Wang L, Feng Y, Zhang C, Chen X, Huang H, Li W, Zhang J, Liu Y. Upregulation of OGT by Caveolin-1 promotes hepatocellular carcinoma cell migration and invasion. Cell Biol Int 2021; 45:2251-2263. [PMID: 34288245 DOI: 10.1002/cbin.11673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 11/08/2022]
Abstract
Caveolin-1 (CAV1), a major structural protein of caveolae, is reported to exert a positive regulatory effect on tumor growth and to play a crucial role in hepatocellular carcinoma (HCC) cell metastasis by regulating glycosyltransferase expression and cellular glycosylation. However, the role of CAV1 in modulating protein glycosylation and tumor metastasis remains to be further elucidated. In the present study, we showed that CAV1 promoted the expression of O-GlcNAc transferase (OGT), which catalyzed the addition of O-GlcNAc residues to a variety of nuclear and cytoplasmic proteins. In human HCC cell lines with different metastatic potentials, high levels of OGT and cellular O-GlcNAcylation were associated with CAV1 expression and cell metastasis. Overexpression of CAV1 increased the levels of OGT and O-GlcNAcylation, and cell migration was also increased. Furthermore, CAV1 was found to reduce the expression of Runt-related transcription factor 2 (RUNX2) in HCC cells. Subsequently, this effect resulted in the attenuation of the RUNX2-induced transcription of microRNA24 (miR24), a microRNA previously shown to suppress OGT mRNA expression by targeting its 3' untranslated regions (UTR). Finally, we demonstrated that CAV1 induced cellular O-GlcNAcylation and HCC cell invasion. This study provides evidence of CAV1-mediated increases in OGT expression and O-GlcNAcylation. These data provide insight into a novel mechanism underlying HCC metastasis and suggest a novel strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yuan Feng
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Cheng Zhang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xixi Chen
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Huang Huang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenli Li
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jianing Zhang
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- Department of Biochemistry, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
274
|
Zhan K, Bai Y, Liao S, Chen H, Kuang L, Luo Q, Lv L, Qiu L, Mei Z. Identification and validation of EPHX2 as a prognostic biomarker in hepatocellular carcinoma. Mol Med Rep 2021; 24:650. [PMID: 34278494 PMCID: PMC8299194 DOI: 10.3892/mmr.2021.12289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer, which is associated with a poor prognosis. It is necessary to identify novel prognostic biomarkers and therapeutic targets to improve the survival of patients with HCC. In the present study, a seven-gene signature associated with HCC progression was identified using weighted gene co-expression network analysis and least absolute shrinkage and selection operator, and its prognostic prediction value was confirmed in The Cancer Genome Atlas-liver HCC and International Cancer Genome Consortium liver cancer-RIKEN, Japan cohorts. Subsequently, a rarely reported gene, epoxide hydrolase 2 (EPHX2), was selected for further validation. Downregulation of EPHX2 in HCC was revealed using multiple expression datasets. Furthermore, reduced expression of EPHX2 was confirmed in HCC tissue samples and cell lines using reverse transcription-quantitative polymerase chain reaction and western blotting. Additionally, Kaplan-Meier survival curves indicated that patients with higher EPHX2 expression exhibited better prognosis, and clinicopathological analysis also revealed elevated EPHX2 levels in patients with early-stage HCC. Notably, EPHX2 was identified as an independent prognostic biomarker for overall survival of patients with HCC. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and gene set enrichment analysis were performed to elucidate the functions of EPHX2. The results suggested that EPHX2 expression was closely associated with metabolic reprogramming. Finally, the prognostic value of EPHX2 was evaluated using HCC tissue microarrays. In conclusion, downregulation of EPHX2 was significantly associated with the development of HCC; therefore, EPHX2 may be considered a putative therapeutic candidate for the targeted treatment of HCC.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hongyu Chen
- Department of Gastroenterology, University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Lili Kuang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qingqing Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liewang Qiu
- Department of Gastroenterology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
275
|
Liu D, Wang X, Shi E, Wang L, Nie M, Li L, Jiang Q, Kong P, Shi S, Wang C, Yan S, Qin Z, Zhao S. Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors. Front Genet 2021; 12:699910. [PMID: 34335697 PMCID: PMC8322783 DOI: 10.3389/fgene.2021.699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Background The SET and MYND domain-containing (SMYD) gene family comprises a set of genes encoding lysine methyltransferases. This study aimed to clarify the relationship between the expression levels of SMYD family members and the prognosis and immune infiltration of malignant tumors of the digestive system. Methods The Oncomine, Ualcan, Kaplan–Meier Plotter, cBioPortal, Metascape, and TIMER databases and tools were used to analyze the correlation of SMYD family mRNA expression, clinical stage, TP53 mutation status, prognostic value, gene mutation, and immune infiltration in patients with esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD). Results In ESCA, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/3 with the clinical stage, that of SMYD2/3/4/5 with TP53 mutation status, that of SMYD2/4/5 with overall survival (OS), and that of SMYD1/2/3/4 with relapse-free survival (RFS). In LIHC, the mRNA expression of SMYD1/2/3/4/5 was significantly correlated with the incidence rate, that of SMYD2/4/5 with the clinical stage, that of SMYD3/5 with TP53 mutation status, that of SMYD2/3/4/5 with OS, and that of SMYD3/5 with RFS. In STAD, the mRNA expression of SMYD2/3/4/5 was significantly correlated with the incidence rate, that of SMYD1/4 with the clinical stage, that of SMYD1/2/3/5 with TP53 mutation status, that of SMYD1/3/4 with OS, and that of SMYD1/3 with RFS. Furthermore, the function of SMYD family mutation-related genes in ESCA, LIHC, and STAD patients was mainly related to pathways, such as mitochondrial gene expression, mitochondrial matrix, and mitochondrial translation. The expression of SMYD family genes was significantly correlated with the infiltration of six immune cell types and eight types of immune check sites. Conclusion SMYD family genes are differentially expressed and frequently mutated in malignant tumors of the digestive system (ESCA, LIHC, and gastric cancer). They are potential markers for prognostic prediction and have important significance in immunity and targeted therapy.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, Harbin, China
| | - Enhong Shi
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Liru Wang
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Minghao Nie
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Long Li
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Jiang
- Department of General Surgery, Harbin 242 Hospital of AVIC, Harbin, China
| | - Pengyu Kong
- Department of Orthopedics, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sen Yan
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Qin
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhao
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
276
|
Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY, Pei ZJ. NPM1 Is a Prognostic Biomarker Involved in Immune Infiltration of Lung Adenocarcinoma and Associated With m6A Modification and Glycolysis. Front Immunol 2021; 12:724741. [PMID: 34335635 PMCID: PMC8324208 DOI: 10.3389/fimmu.2021.724741] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Overexpression of NPM1 can promote the growth and proliferation of various tumor cells. However, there are few studies on the comprehensive analysis of NPM1 in lung adenocarcinoma (LUAD). Methods TCGA and GEO data sets were used to analyze the expression of NPM1 in LUAD and clinicopathological analysis. The GO/KEGG enrichment analysis of NPM1 co-expression and gene set enrichment analysis (GSEA) were performed using R software package. The relationship between NPM1 expression and LUAD immune infiltration was analyzed using TIMER, GEPIA database and TCGA data sets, and the relationship between NPM1 expression level and LUAD m6A modification and glycolysis was analyzed using TCGA and GEO data sets. Results NPM1 was overexpressed in a variety of tumors including LUAD, and the ROC curve showed that NPM1 had a certain accuracy in predicting the outcome of tumors and normal samples. The expression level of NPM1 in LUAD is significantly related to tumor stage and prognosis. The GO/KEGG enrichment analysis indicated that NPM1 was closely related to translational initiation, ribosome, structural constituent of ribosome, ribosome, Parkinson disease, and RNA transport. GSEA showed that the main enrichment pathway of NPM1-related differential genes was mainly related to mTORC1 mediated signaling, p53 hypoxia pathway, signaling by EGFR in cancer, antigen activates B cell receptor BCR leading to generation of second messengers, aerobic glycolysis and methylation pathways. The analysis of TIMER, GEPIA database and TCGA data sets showed that the expression level of NPM1 was negatively correlated with B cells and NK cells. The TCGA and GEO data sets analysis indicated that the NPM1 expression was significantly correlated with one m6A modifier related gene (HNRNPC) and five glycolysis related genes (ENO1, HK2, LDHA, LDHB and SLC2A1). Conclusion NPM1 is a prognostic biomarker involved in immune infiltration of LUAD and associated with m6A modification and glycolysis. NPM1 can be used as an effective target for diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
| | - Lu-Meng Zhou
- Department of Nuclear Medicine, Huanggang Central Hospital, Huanggang, China
| | - Ling-Ling Yuan
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
| |
Collapse
|
277
|
Gao Y, Chang X, Xia J, Sun S, Mu Z, Liu X. Identification of HCC-Related Genes Based on Differential Partial Correlation Network. Front Genet 2021; 12:672117. [PMID: 34335688 PMCID: PMC8320536 DOI: 10.3389/fgene.2021.672117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death, but its pathogenesis is still unclear. As the disease is involved in multiple biological processes, systematic identification of disease genes and module biomarkers can provide a better understanding of disease mechanisms. In this study, we provided a network-based approach to integrate multi-omics data and discover disease-related genes. We applied our method to HCC data from The Cancer Genome Atlas (TCGA) database and obtained a functional module with 15 disease-related genes as network biomarkers. The results of classification and hierarchical clustering demonstrate that the identified functional module can effectively distinguish between the disease and the control group in both supervised and unsupervised methods. In brief, this computational method to identify potential functional disease modules could be useful to disease diagnosis and further mechanism study of complex diseases.
Collapse
Affiliation(s)
- Yuyao Gao
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, China
| | - Jie Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaoyan Sun
- School of Mathematics and Statistics, Ludong University, Yantai, China
| | - Zengchao Mu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Xiaoping Liu
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou, China
- School of Mathematics and Statistics, Shandong University, Weihai, China
| |
Collapse
|
278
|
Ding R, Chen T, Zhang Y, Chen X, Zhuang L, Yang Z. HMGCS2 in metabolic pathways was associated with overall survival in hepatocellular carcinoma: A LASSO-derived study. Sci Prog 2021; 104:368504211031749. [PMID: 34260294 PMCID: PMC10358623 DOI: 10.1177/00368504211031749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This integrated bioinformatic study aimed to investigate potential prognostic candidates in hepatocellular carcinoma (HCC). In the GSE14520, GSE101685, and The Cancer Genome Atlas (TCGA) datasets, differentially expressed genes (DEGs) were identified and functional pathways of common DEGs were enriched. The least absolute shrinkage and selection operator (LASSO) model was used to screen the potential parameters associated with overall survival (OS) in HCC patients. Metabolic pathways were the most significantly enriched functional pathways of common DEGs in these three datasets. After LASSO model analysis, HMGCS2, UGP2, BCLC staging and TNM staging were screened as potential prognostic candidates for OS in HCC patients in GSE14520. HMGCS2 in the metabolic pathway was significantly downregulated in tumor tissues and peripheral blood mononuclear cells in HCC patients (all p < 0.05). Cox regression model indicated that HMGCS2 might be associate with OS in HCC patients in GSE14520 and in the TCGA (p = 0.029 and p = 0.05, respectively). Kaplan-Meier analysis demonstrated that HMGCS2 downregulation in tumors contributed to an unfavorable OS in HCC patients, both in GSE14520 and in the TCGA (p = 0.0001 and p = 0.0002, respectively). Additionally, HMGCS2 was significantly downregulated in HCC patients with high alpha-fetoprotein (AFP), main tumor size >5 cm, multinodular, advanced tumor staging including BCLC, TNM and CLIP (all p < 0.05). HMGCS2 was involved in metabolic pathways, and downregulated HMGCS2 in tumors was associated with unfavorable OS in HCC patients.
Collapse
Affiliation(s)
- Rongrong Ding
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tianyou Chen
- Department of Interventional Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
279
|
Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán G P, Lam HM, Garcia J, Roudier MP, Sisk AE, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao MK, Zheng S, Johnson-Pais TL, Leach RJ, Elizalde PV, Dray E, Xu K. Regulation of telomere homeostasis and genomic stability in cancer by N 6-adenosine methylation (m 6A). SCIENCE ADVANCES 2021; 7:7/31/eabg7073. [PMID: 34321211 PMCID: PMC8318370 DOI: 10.1126/sciadv.abg7073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
The role of RNA methylation on N 6-adenosine (m6A) in cancer has been acknowledged, but the underlying mechanisms remain obscure. Here, we identified homeobox containing 1 (HMBOX1) as an authentic target mRNA of m6A machinery, which is highly methylated in malignant cells compared to the normal counterparts and subject to expedited degradation upon the modification. m6A-mediated down-regulation of HMBOX1 causes telomere dysfunction and inactivation of p53 signaling, which leads to chromosome abnormalities and aggressive phenotypes. CRISPR-based, m6A-editing tools further prove that the methyl groups on HMBOX1 per se contribute to the generation of altered cancer genome. In multiple types of human cancers, expression of the RNA methyltransferase METTL3 is negatively correlated with the telomere length but favorably with fractions of altered cancer genome, whereas HMBOX1 mRNA levels show the opposite patterns. Our work suggests that the cancer-driving genomic alterations may potentially be fixed by rectifying particular epitranscriptomic program.
Collapse
Affiliation(s)
- Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Agustina Roldán Deamicis
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Pablo Guzmán G
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco Casilla 54-D, Chile
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Jose Garcia
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Martine P Roudier
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Anthony E Sisk
- Department of Pathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Richard De La Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kevin Vu
- Department of Medical Education, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, TX 78229, USA
| | - Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Douglas Pechacek
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pooja Yadav
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Manjeet K Rao
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Teresa L Johnson-Pais
- Department of Urology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Robin J Leach
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires C1428ADN, Argentina
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
280
|
Wang J, Liu W, Li JC, Li M, Li B, Zhu R. Hepcidin Downregulation Correlates With Disease Aggressiveness And Immune Infiltration in Liver Cancers. Front Oncol 2021; 11:714756. [PMID: 34277457 PMCID: PMC8278784 DOI: 10.3389/fonc.2021.714756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepcidin is a polypeptide hormone mainly produced by hepatocytes to modulate systemic iron balance. A drastic downregulation of the hepcidin gene was found in liver cancers. However, there is a paucity of information about the clinical significance of hepcidin gene downregulation in liver cancers. Methods Hepcidin expression profiles were assessed using multiple public datasets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify patients for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. Tumor immune infiltration was analyzed using the single sample gene set enrichment analysis (ssGSEA) approach on the Cancer Genome Atlas (TCGA) dataset. Hepcidin antagonist Fursultiamine was used to treat liver cancer HepG2 and Huh7 cells together with Sorafenib. Results Hepcidin gene was predominantly expressed in benign liver tissues but drastically decreased in liver cancer tissues. Hepcidin reduction in liver cancers correlated with risk factors like non-alcoholic fatty liver disease (NAFLD) and liver fibrosis, as well as cancer grade and tumor stage. Hepcidin downregulation was associated with a rapid cancer progression and worse disease-specific survival, especially in patients of the White race without alcohol consumption history. Hepcidin expression in liver cancer tissues positively correlated with the bone morphogenetic protein-6 (BPM6)/interleukin-6 (IL6) cytokines and cytotoxic immune infiltration. Blocking hepcidin action with its antagonist Fursultiamine moderately reduced Sorafenib-induced apoptotic cell death in HepG2 and Huh7 cells. Conclusion Hepcidin downregulation in liver cancers correlated with liver cancer risk factors, cancer aggressiveness, cytotoxic immune cell infiltration, and patient survival outcomes. BMP6/IL6 pathway insufficiency is a potential cause of hepcidin downregulation in liver cancers.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Mingyi Li
- Department of General Surgery, The Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Runzhi Zhu
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Pediatric Oncology Program, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
281
|
Lei X, Zhang M, Guan B, Chen Q, Dong Z, Wang C. Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021; 15:39. [PMID: 34187556 PMCID: PMC8243535 DOI: 10.1186/s40246-021-00341-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. METHODS GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. RESULTS In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. CONCLUSIONS The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
Collapse
Affiliation(s)
- Xinyi Lei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China
| | - Miao Zhang
- Department of Respiratory, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Bingsheng Guan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China
| | - Qiang Chen
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.
| |
Collapse
|
282
|
Fu X, Zhao W, Li K, Zhou J, Chen X. Cryptotanshinone Inhibits the Growth of HCT116 Colorectal Cancer Cells Through Endoplasmic Reticulum Stress-Mediated Autophagy. Front Pharmacol 2021; 12:653232. [PMID: 34220498 PMCID: PMC8248532 DOI: 10.3389/fphar.2021.653232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Among cancers, colorectal cancer (CRC) has one of the highest annual incidence and death rates. Considering severe adverse reactions associated with classical chemotherapy medications, traditional Chinese medicines have become potential drug candidates. In the current study, the effects of cryptotanshinone (CPT), a major component of Salvia miltiorrhiza Bunge (Danshen) on CRC and underlying mechanism were explored. First of all, data from in vitro experiments and in vivo zebrafish models indicated that CPT selectively inhibited the growth and proliferation of HCT116 and SW620 cells while had little effect on SW480 cells. Secondly, both ER stress and autophagy were associated with CRC viability regulation. Interestingly, ER stress inhibitor and autophagy inhibitor merely alleviated cytotoxic effects on HCT116 cells in response to CPT stimulation, while have little effect on SW620 cells. The significance of apoptosis, autophagy and ER stress were verified by clinical data from CRC patients. In summary, the current study has revealed the anti-cancer effects of CPT in CRC by activating autophagy signaling mediated by ER stress. CPT is a promising drug candidate for CRC treatment.
Collapse
Affiliation(s)
- Xiaojing Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
283
|
Xing GQ, Yun T, Zhao GG. Relationship of TACC3 gene expression with prognosis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:577-584. [DOI: 10.11569/wcjd.v29.i11.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transforming acidic coiled coil protein 3 (TACC3) is an important member of the TACC family. Studies have shown that TACC3 gene is highly expressed in breast cancer, non-small cell lung cancer, and gastric cancer, and is associated with poor prognosis. However, its expression in liver cancer and its relationship with prognosis are rarely reported.
AIM To explore the clinical significance of TACC3 gene expression in liver cancer.
METHODS The expression of TACC3 gene in normal human tissues, liver cancer tissues, and liver cancer cell lines was mined by searching databases including BioGPS, Oncomine, and Cancer Cell Line Encyclopedia (CCLE), respectively. Kaplan-Meier plotter and GEPIA were used to analyze the effect of TACC3 gene expression on the prognosis of liver cancer patients.
RESULTS BioGPS database analysis showed that TACC3 gene was expressed in all normal tissues and TACC3 gene expression in the liver was slightly higher than that in other normal tissues (median expression value, 8.95 vs 7.1). A total of 290 studies on TACC3 gene were retrieved from Oncomine database, showing four studies with high expression and one with low expression of TACC3 gene in liver cancer tissues. Meta-analysis showed that TACC3 gene was highly expressed in liver cancer tissues compared with normal liver tissues (Median rank = 442.5, P < 0.05). CCLE database analysis showed that TACC3 mRNA was highly expressed in liver cancer cell lines. The survival analysis results by Kaplan-Meier plotter based on the GEPIA database showed that the overall survival time (OS) and progression-free survival time (PFS) of liver cancer patients in the TACC3 high expression group were worse than those of the low expression group (P < 0.05).
CONCLUSION TACC3 gene is highly expressed in liver cancer tissues. And the high expression of TACC3 gene is associated with poor survival prognosis in liver cancer patients.
Collapse
Affiliation(s)
- Guo-Qiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Tao Yun
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Guo-Gang Zhao
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| |
Collapse
|
284
|
Pomyen Y, Budhu A, Chaisaingmongkol J, Forgues M, Dang H, Ruchirawat M, Mahidol C, Wang XW. Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma. Sci Rep 2021; 11:12097. [PMID: 34103600 PMCID: PMC8187378 DOI: 10.1038/s41598-021-91560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment effectiveness in hepatocellular carcinoma (HCC) depends on early detection and precision-medicine-based patient stratification for targeted therapies. However, the lack of robust biomarkers, particularly a non-invasive diagnostic tool, precludes significant improvement of clinical outcomes for HCC patients. Serum metabolites are one of the best non-invasive means for determining patient prognosis, as they are stable end-products of biochemical processes in human body. In this study, we aimed to identify prognostic serum metabolites in HCC. To determine serum metabolites that were relevant and representative of the tissue status, we performed a two-step correlation analysis to first determine associations between metabolic genes and tissue metabolites, and second, between tissue metabolites and serum metabolites among 49 HCC patients, which were then validated in 408 additional Asian HCC patients with mixed etiologies. We found that certain metabolic genes, tissue metabolites and serum metabolites can independently stratify HCC patients into prognostic subgroups, which are consistent across these different data types and our previous findings. The metabolic subtypes are associated with β-oxidation process in fatty acid metabolism, where patients with worse survival outcome have dysregulated fatty acid metabolism. These serum metabolites may be used as non-invasive biomarkers to define prognostic tumor molecular subtypes for HCC.
Collapse
Affiliation(s)
- Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jittiporn Chaisaingmongkol
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Division of Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA. .,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
285
|
Mao JX, Zhao YY, Dong JY, Liu C, Xue Q, Ding GS, Teng F, Guo WY. UBE2T And CYP3A4: hub genes regulating the transformation of cirrhosis into hepatocellular carcinoma. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1933208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Jia-Yong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Cong Liu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
286
|
Loong JH, Wong TL, Tong M, Sharma R, Zhou L, Ng KY, Yu HJ, Li CH, Man K, Lo CM, Guan XY, Lee TK, Yun JP, Ma SK. Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. J Clin Invest 2021; 131:143377. [PMID: 33878034 PMCID: PMC8159685 DOI: 10.1172/jci143377] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Rapidly growing tumors often experience hypoxia and nutrient (e.g., glucose) deficiency because of poor vascularization. Tumor cells respond to the cytotoxic effects of such stresses by inducing molecular adaptations that promote clonal selection of a more malignant tumor-initiating cell phenotype, especially in the innermost tumor regions. Here, we report a regulatory mechanism involving fucosylation by which glucose restriction promotes cancer stemness to drive drug resistance and tumor recurrence. Using hepatocellular carcinoma (HCC) as a model, we showed that restricted glucose availability enhanced the PERK/eIF2α/ATF4 signaling axis to drive fucosyltransferase 1 (FUT1) transcription via direct binding of ATF4 to the FUT1 promoter. FUT1 overexpression is a poor prognostic indicator for HCC. FUT1 inhibition could mitigate tumor initiation, self-renewal, and drug resistance. Mechanistically, we demonstrated that CD147, ICAM-1, EGFR, and EPHA2 are glycoprotein targets of FUT1, in which such fucosylation would consequently converge on deregulated AKT/mTOR/4EBP1 signaling to drive cancer stemness. Treatment with an α-(1,2)-fucosylation inhibitor sensitized HCC tumors to sorafenib, a first-line molecularly targeted drug used for advanced HCC patients, and reduced the tumor-initiating subset. FUT1 overexpression and/or CD147, ICAM-1, EGFR, and EPHA2 fucosylation may be good prognostic markers and therapeutic targets for cancer patients.
Collapse
Affiliation(s)
- Jane H.C. Loong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
- State Key Laboratory of Liver Research
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, and
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Hua-Jian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Chi-Han Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
| | - Kwan Man
- State Key Laboratory of Liver Research
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Chung-Mau Lo
- State Key Laboratory of Liver Research
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- State Key Laboratory of Liver Research
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Terence K. Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Stephanie K.Y. Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine
- State Key Laboratory of Liver Research
- The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
287
|
Ji Z, Li J, Wang J. Up-regulated RFC2 predicts unfavorable progression in hepatocellular carcinoma. Hereditas 2021; 158:17. [PMID: 34022962 PMCID: PMC8141224 DOI: 10.1186/s41065-021-00179-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Replication factor C (RFC) is closely related to tumor progression and metastasis. However, the functional significance of RFC2 in hepatocellular carcinoma remains unclear. MATERIALS AND METHODS In order to solve this problem, the expression of RFC2 in liver cancer patients was analyzed through ONCOMINE, UALCAN, Human Protein Atlas. Survival analysis was conducted using Kaplan-Meier plotter and GEPIA. GO and KEGG enrichment analyses were carried out. The protein-protein interaction (PPI) network was performed through Metascape. Western blotting, cell counting kit-8 and transwell assay were used to detect the effect of RFC2 on cell proliferation and migration. RESULTS The transcription and protein level of RFC2 in HCC were overexpressed, which was significantly related to the clinical individual cancer stage and pathological tumor grade of HCC patients. In addition, in patients with liver cancer, higher RFC2 expression was found to be significantly correlated with shorter OS and DFS. Furthermore, the function of RFC2 in liver cancer was DNA replication, and its main mechanism was the phase transition of the cell cycle. Biological experiments demonstrated that knockdown of RFC2 reduced the proliferation and migration of HCC cells. CONCLUSION RFC2 might promote the development of liver cancer, which might be achieved by regulating cell cycle and DNA replication. It could be used as a novel biomarker for the prognosis of liver cancer.
Collapse
Affiliation(s)
- Zaixiong Ji
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jiaqi Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
288
|
Zhong GC, Zhao ZB, Cheng Y, Wang YB, Qiu C, Mao LH, Hu JJ, Cai D, Liu Y, Gong JP, Li SW. Epigenetic silencing of GCH1promotes hepatocellular carcinoma growth by activating superoxide anion-mediated ASK1/p38 signaling via inhibiting tetrahydrobiopterin de novo biosynthesis. Free Radic Biol Med 2021; 168:81-94. [PMID: 33781891 DOI: 10.1016/j.freeradbiomed.2021.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer, including hepatocellular carcinoma (HCC). However, its role in HCC remains to be elucidated. Herein, we identified GTP cyclohydrolase 1 (GCH1), the first rate-limiting enzyme in tetrahydrobiopterin (BH4) de novo biosynthesis, as a novel metabolic regulator of HCC. GCH1 was frequently down-regulated in HCC tissues and cell lines by promoter methylation. Low GCH1 expression was associated with larger tumor size, increased tumor number, and worse prognosis in two independent cohorts of HCC patients. Functionally, GCH1 silencing promoted HCC growth in vitro and in vivo, while GCH1 overexpression exerted an opposite effect. The metabolite BH4 inhibited HCC growth in vitro and in vivo. GCH1 silencing exerted its growth-promoting effect through directly inhibiting BH4 de novo biosynthesis. Mechanistically, GCH1 silencing activated ASK1/p38 signaling; pharmacological or genetic inhibition of ASK1 or p38 abolished GCH1 silencing-induced growth-promoting effect. Further mechanistic studies found that GCH1 silencing-induced BH4 reduction resulted in an increase of intracellular superoxide anion levels in a dose-dependent manner, which mediated the activation of ASK1/p38 signaling. Collectively, our study reveals that epigenetic silencing of GCH1 promotes HCC growth by activating superoxide anion-mediated ASK1/p38 signaling via inhibiting BH4 de novo biosynthesis, suggesting that targeting GCH1/BH4 pathway may be a promising therapeutic strategy to combat HCC.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Bo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Bing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie-Jun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng-Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
289
|
Zhu R, Tu Y, Chang J, Xu H, Li JC, Liu W, Do AD, Zhang Y, Wang J, Li B. The Orphan Nuclear Receptor Gene NR0B2 Is a Favorite Prognosis Factor Modulated by Multiple Cellular Signal Pathways in Human Liver Cancers. Front Oncol 2021; 11:691199. [PMID: 34055653 PMCID: PMC8162207 DOI: 10.3389/fonc.2021.691199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver cancer is a leading cause of cancer death worldwide, and novel prognostic factor is needed for early detection and therapeutic responsiveness monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer development in a mouse model, and its expression levels were reduced in liver cancer tissues and cell lines due to hypermethylation within its promoter region. However, it is not clear if NR0B2 expression is associated with cancer survival or disease progression and how NR0B2 gene expression is regulated at the molecular level. METHODS Multiple cancer databases were utilized to explore NR0B2 gene expression profiles crossing a variety of human cancers, including liver cancers, on several publicly assessable bioinformatics platforms. NR0B2 gene expression with or without kinase inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein expression was assessed in western blot assays. Two human hepatocellular carcinoma cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was evaluated using NR0B2 promoter-driven luciferase reporter assays. RESULTS NR0B2 gene is predominantly expressed in liver tissue crossing human major organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression is mostly downregulated in most common cancers but also upregulated in a few intestinal cancers. NR0B2 gene expression significantly correlated with patient overall survival status in multiple human malignancies, including lung, kidney, breast, urinary bladder, thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and progression-free survival, especially in Asian male patients with viral infection history. In addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2 expression at the transcription level was drastically reduced after MAPK inhibition but was significantly enhanced after PI3K inhibition. CONCLUSION NR0B2 gene expression is altered mainly in most human malignancies and significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for liver cancer.
Collapse
Affiliation(s)
- Runzhi Zhu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China,Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| | - Yanjie Tu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jingxia Chang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Haixia Xu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C. Li
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Ahn-Dao Do
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jinhu Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| |
Collapse
|
290
|
Lin YR, Yang WJ, Yang GW. Prognostic and immunological potential of PPM1G in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:12929-12954. [PMID: 33952716 PMCID: PMC8148464 DOI: 10.18632/aging.202964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Liver hepatocellular carcinoma (LIHC) remains one of the most common causes of cancer death. Prior research suggested that the PPM1G gene is involved in LIHC. To explore the role of PPM1G in LIHC, we used several online databases. Expression profiling was performed via the Gene Expression Profiling Interactive Analysis (GEPIA), Hepatocellular Carcinoma Database (HCCDB), Oncomine and Human Protein Atlas (HPA) platforms. Mutation profiles were investigated via cBio Cancer Genomics Portal (cBioPortal). Survival analysis was performed via the Kaplan-Meier (KM) plotter and International Cancer Genome Consortium (ICGC) platforms. The biological function of PPM1G was analyzed via the Enrichr database. The influence of PPM1G expression in the tumor immune microenvironment was assessed via Tumor Immune Estimation Resource (TIMER). PPM1G expression was upregulated in various tumors, including LIHC. Overexpression of PPM1G was associated with poor prognosis in LIHC. PPM1G expression might be regulated by promoter methylation, copy number variations (CNVs) and kinases and correlate with immune infiltration. The gene ontology (GO) terms associated with high PPM1G expression were mRNA splicing and the cell cycle. The results suggest that PPM1G is correlated with the prognosis of LIHC patients and associated with the tumor immune microenvironment in LIHC.
Collapse
Affiliation(s)
- Yi-Ren Lin
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| | - Guo-Wang Yang
- Department of Oncology, Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing, China
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Dongcheng, Beijing, China
| |
Collapse
|
291
|
Wang J, Zhang C, Chen X, Li Y, Li A, Liu D, Li F, Luo T. Functions of CXC chemokines as biomarkers and potential therapeutic targets in the hepatocellular carcinoma microenvironment. Transl Cancer Res 2021; 10:2169-2187. [PMID: 35116536 PMCID: PMC8797652 DOI: 10.21037/tcr-21-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Background Several studies have indicated that CXC chemokines influence the prognosis and therapy in patients with hepatocellular carcinoma (HCC). However, there are limited studies on the roles of CXC chemokines in HCC based on data acquired from various databases. This study aimed to conduct an in-depth and comprehensive bioinformatic analysis of the expression and functions of CXC chemokines in HCC. Methods Data was obtained from various databases including ONCOMINE, UALCAN, STRING, GeneMinia, DAVID, Kaplan-Meier plotter, TIMER, GSCALite and NetworkAnalyst for the analysis of the expression and functions of the CXC chemokines in HCC. Results Analysis of the differential expression levels of CXC chemokines between HCC and adjacent normal tissues revealed that the mRNA expression levels of CXCL1/2/5/6/7/12/14 were significantly lower in HCC tissues than those in adjacent normal tissues, whereas the mRNA expression levels of CXCL9/16/17 were significantly higher in HCC tissues. Analysis of the relationship between CXC chemokines and overall survival revealed that high mRNA expression levels of CXCL1/3/5/6/8 were associated with poor overall survival, whereas high mRNA expression levels of CXCL2/4/7/9/10/12 were associated with better overall survival. The functions of CXC chemokines and related genes were associated with cytokine-cytokine receptor interactions and chemokine signaling pathway. Analysis of the association between CXC chemokines and activity of cancer pathways indicated that the DNA damage response and hormone androgen receptor (AR) signaling pathways were inhibited, whereas apoptosis, epithelial-mesenchymal transition (EMT) and Ras/mitogen-activated protein kinase (MAPK) signaling pathways were activated. The expression of CXC chemokines was positively correlated with the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells). Conclusions This study has demonstrated that CXC chemokines can influence survival of patients with HCC by recruiting different types of immune cells into the tumor microenvironment.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongbin Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
292
|
Huang R, Liu J, Li H, Zheng L, Jin H, Zhang Y, Ma W, Su J, Wang M, Yang K. Identification of Hub Genes and Their Correlation With Immune Infiltration Cells in Hepatocellular Carcinoma Based on GEO and TCGA Databases. Front Genet 2021; 12:647353. [PMID: 33995482 PMCID: PMC8120231 DOI: 10.3389/fgene.2021.647353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with extremely high mortality in worldwide. HCC is hard to diagnose and has a poor prognosis due to the less understanding of the molecular pathological mechanisms and the regulation mechanism on immune cell infiltration during hepatocarcinogenesis. Herein, by performing multiple bioinformatics analysis methods, including the RobustRankAggreg (RRA) rank analysis, weighted gene co-expression network analysis (WGCNA), and a devolution algorithm (CIBERSORT), we first identified 14 hub genes (NDC80, DLGAP5, BUB1B, KIF20A, KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2, UBE2C, and PRC1) in HCC, whose expression levels were significantly up-regulated and negatively correlated with overall survival time. Moreover, we found that the expression of these hub genes was significantly positively correlated with immune infiltration cells, including regulatory T cells (Treg), T follicular helper (TFH) cells, macrophages M0, but negatively correlated with immune infiltration cells including monocytes. Among these hub genes, KIF2C and UBE2C showed the most significant correlation and were associated with immune cell infiltration in HCC, which was speculated as the potential prognostic biomarker for guiding immunotherapy.
Collapse
Affiliation(s)
- Rui Huang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jinying Liu
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Hui Li
- Lanzhou Maternity and Child Health Care Hospital, Lanzhou, China
| | - Lierui Zheng
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Haojun Jin
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Yaqing Zhang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Wei Ma
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Min Wang
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
293
|
A Bioinformatics Analysis Identifies the Telomerase Inhibitor MST-312 for Treating High-STMN1-Expressing Hepatocellular Carcinoma. J Pers Med 2021; 11:jpm11050332. [PMID: 33922244 PMCID: PMC8145764 DOI: 10.3390/jpm11050332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients are highly refractory to these drugs. Therefore, the development of more effective therapies for advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug-gene connectivity mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used for treating STMN1-high expression HCC.
Collapse
|
294
|
Zhang Y, Chen X, Cao Y, Yang Z. C8B in Complement and Coagulation Cascades Signaling Pathway is a predictor for Survival in HBV-Related Hepatocellular Carcinoma Patients. Cancer Manag Res 2021; 13:3503-3515. [PMID: 33911900 PMCID: PMC8075182 DOI: 10.2147/cmar.s302917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The role of the complement and coagulation cascades signaling pathway in the pathogenesis of cancers remains uncertain. This study aimed to investigate the associations between enriched differentially expressed genes (DEGs) in this pathway and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. MATERIALS AND METHODS Clinical and gene expression data of the Gene Expression Omnibus (GEO) series profile GSE14520 were downloaded. The "Limma" package was used to screen the DEGs and the "clusterProfiler" package was used to identify the complement and coagulation cascades pathway and enriched significant genes. Cox regression analysis, the Kaplan-Meier method, and the nomogram model were used to address the correlations between significantly enriched DEGs in the complement and coagulation cascades pathway and HCC survival. RESULTS A total of 220 HBV-related HCC patients were enrolled in this study. The complement and coagulation cascades pathway was significantly enriched by 37 DEGs (p-value < 0.05 and adjusted p-value < 0.05). Complement 8 beta chain (C8B) expression levels had protective effects on overall survival (OS) and recurrence-free survival (RFS) in HBV-related HCC patients. High levels of C8B contributed to favorable OS and RFS in this population (both p < 0.01), even after adjustment of clinicopathological characteristics including tumor node metastasis (TNM) staging, Barcelona Clinic liver cancer (BCLC) staging, gender, and fibrinogen beta chain (FGB) expression (all p < 0.05). CONCLUSION C8B in the complement and coagulation cascades signaling pathway serves as a predictive candidate for survival in HBV-related HCC patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Yajuan Cao
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| |
Collapse
|
295
|
Fujiwara N, Kobayashi M, Fobar AJ, Hoshida A, Marquez CA, Koneru B, Panda G, Taguri M, Qian T, Raman I, Li QZ, Hoshida H, Sezaki H, Kumada H, Tateishi R, Yokoo T, Yopp AC, Chung RT, Fuchs BC, Baumert TF, Marrero JA, Parikh ND, Zhu S, Singal AG, Hoshida Y. A blood-based prognostic liver secretome signature and long-term hepatocellular carcinoma risk in advanced liver fibrosis. MED 2021; 2:836-850.e10. [PMID: 34318286 DOI: 10.1016/j.medj.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Accurate non-invasive prediction of long-term hepatocellular carcinoma (HCC) risk in advanced liver fibrosis is urgently needed for cost-effective HCC screening; however, this currently remains an unmet need. Methods A serum-protein-based prognostic liver secretome signature (PLSec) was bioinformatically derived from previously validated hepatic transcriptome signatures and optimized in 79 patients with advanced liver fibrosis. We independently validated PLSec for HCC risk in 331 cirrhosis patients with mixed etiologies (validation set 1 [V1]) and thereafter developed a score with clinical prognostic variables. The score was then validated in two independent cohorts: validation set 2 (V2): 164 patients with advanced liver fibrosis due to hepatitis C virus (HCV) infection cured after direct-acting antiviral therapy; validation set 3 (V3): 146 patients with advanced liver fibrosis with successfully-treated HCC and cured HCV infection. Findings An 8-protein blood-based PLSec recapitulated transcriptome-based hepatic HCC risk status. In V1, PLSec was significantly associated with incident HCC risk (adjusted hazard ratio [aHR], 2.35; 95% confidence interval [CI], 1.30-4.23). A composite score with serum alpha-fetoprotein (PLSec-AFP) was defined in V1, and validated in V2 (adjusted odds ratio, 3.80 [95%CI, 1.66-8.66]) and V3 (aHR, 3.08 [95%CI, 1.78-5.31]; c-index, 0.74). PLSec-AFP outperformed AFP alone (Brier score, 0.165 vs. 0.186 in V2; 0.196 vs. 0.206 in V3, respectively). Conclusions The blood-based PLSec-AFP can accurately stratify patients with advanced liver fibrosis for long-term HCC risk and thereby guide risk-based tailored HCC screening.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | | | - Austin J Fobar
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, U.S
| | - Ayaka Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Cesia A Marquez
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Bhuvaneswari Koneru
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Gayatri Panda
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Masataka Taguri
- Department of Data Science, School of Data Science, Yokohama City University, Kanagawa, 236-0027, Japan
| | - Tongqi Qian
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Indu Raman
- Microarray Core Facility, Department of Immunology, BioCenter, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Quan-Zhen Li
- Microarray Core Facility, Department of Immunology, BioCenter, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Hiroki Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Hitomi Sezaki
- Department of Hepatology, Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Adam C Yopp
- Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, U.S
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, U.S.,Ferring Pharmaceuticals, San Diego, CA, 92121, U.S
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and IHU, Pole Hépato-digestif, Strasbourg University Hospitals, Strasbourg, 67200, France
| | - Jorge A Marrero
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, U.S
| | - Shijia Zhu
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Amit G Singal
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, U.S
| |
Collapse
|
296
|
Wang W, Zhang X, Dai DQ. DeFusion: a denoised network regularization framework for multi-omics integration. Brief Bioinform 2021; 22:6210063. [PMID: 33822879 DOI: 10.1093/bib/bbab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/03/2021] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
With diverse types of omics data widely available, many computational methods have been recently developed to integrate these heterogeneous data, providing a comprehensive understanding of diseases and biological mechanisms. But most of them hardly take noise effects into account. Data-specific patterns unique to data types also make it challenging to uncover the consistent patterns and learn a compact representation of multi-omics data. Here we present a multi-omics integration method considering these issues. We explicitly model the error term in data reconstruction and simultaneously consider noise effects and data-specific patterns. We utilize a denoised network regularization in which we build a fused network using a denoising procedure to suppress noise effects and data-specific patterns. The error term collaborates with the denoised network regularization to capture data-specific patterns. We solve the optimization problem via an inexact alternating minimization algorithm. A comparative simulation study shows the method's superiority at discovering common patterns among data types at three noise levels. Transcriptomics-and-epigenomics integration, in seven cancer cohorts from The Cancer Genome Atlas, demonstrates that the learned integrative representation extracted in an unsupervised manner can depict survival information. Specially in liver hepatocellular carcinoma, the learned integrative representation attains average Harrell's C-index of 0.78 in 10 times 3-fold cross-validation for survival prediction, which far exceeds competing methods, and we discover an aggressive subtype in liver hepatocellular carcinoma with this latent representation, which is validated by an external dataset GSE14520. We also show that DeFusion is applicable to the integration of other omics types.
Collapse
Affiliation(s)
- Weiwen Wang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiwen Zhang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dao-Qing Dai
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
297
|
Wei X, Zhao L, Ren R, Ji F, Xue S, Zhang J, Liu Z, Ma Z, Wang XW, Wong L, Liu N, Shi J, Guo X, Roessler S, Zheng X, Ji J. MiR-125b Loss Activated HIF1α/pAKT Loop, Leading to Transarterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology 2021; 73:1381-1398. [PMID: 32609900 PMCID: PMC9258000 DOI: 10.1002/hep.31448] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor β (PDGFβ)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFβ receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.
Collapse
Affiliation(s)
- Xiyang Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Ruizhe Ren
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fubo Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuting Xue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jianjuan Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhaogang Liu
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Zhao Ma
- Shandong Cancer Hospital and Institute, Shandong Cancer Hospital of Shandong First Medical University, Jinan, China
| | - Xin W. Wang
- Liver Cancer Program and Laboratory of Human Carcinogenesis, Cancer for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Linda Wong
- University of Hawaii Cancer Center, Honolulu, HI
| | - Niya Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiong Shi
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xing Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
298
|
Tao Q, Chen S, Liu J, Zhao P, Jiang L, Tu X, Tang X, Liu Z, Yasheng A, Tuerxun K, Zheng Y. The roles of the cell division cycle-associated gene family in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:781-794. [PMID: 34012666 DOI: 10.21037/jgo-21-110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The members of the cell division cycle-associated (CDCA) gene family are significant regulators of cell proliferation known to play key roles in various cancers. However, the function of CDCA genes in hepatocellular carcinoma (HCC) is unclear. The aim of this research was to clarify the roles of CDCA family members in HCC using bioinformatics analysis tools. Methods We studied data on the mRNA and protein expression of CDCA genes and survival in patients with HCC using the Oncomine, UALCAN, HPA, CCLE, LinkedOmics, cBioPortal, and Metascape databases. Results Significant overexpression of all CDCA members was found in HCC tissues. The expression levels of CDCAs were related to the tumor stage, and high expression levels were correlated with a low survival rate in patients with HCC. Also, we observed a high mutation rate (45%) of CDCAs in the HCC samples, which manifested as deep deletion, amplification, or increased mRNA expression. In the correlation analysis, we found that any 2 CDCA members were significantly positively correlated with each other. Cycle-related genes including AHCTF1, AKT1, BIRC5, CENPF, CENPL, and CENPQ were closely associated with CDCA gene alterations. Conclusions The findings of this study indicate that CDCAs may be potential therapeutic targets and prognostic indicators for patients with HCC.
Collapse
Affiliation(s)
- Qiang Tao
- The Second Department of General surgery, The First People's Hospital of Kashi Prefecture, Kashi, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Liu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Peng Zhao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyue Tu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiang Tang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zonghao Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Abudoukeyimu Yasheng
- The Second Department of General surgery, The First People's Hospital of Kashi Prefecture, Kashi, China
| | - Kahaer Tuerxun
- The Second Department of General surgery, The First People's Hospital of Kashi Prefecture, Kashi, China
| | - Yun Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
299
|
Hwang HS, An J, Kang HJ, Oh B, Oh YJ, Oh JH, Kim W, Sung CO, Shim JH, Yu E. Prognostic Molecular Indices of Resectable Hepatocellular Carcinoma: Implications of S100P for Early Recurrence. Ann Surg Oncol 2021; 28:6466-6478. [PMID: 33786678 DOI: 10.1245/s10434-021-09825-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although hepatocellular carcinomas (HCCs) often recur in patients undergoing hepatectomy, there are no reliable biomarkers of this undesirable event. Recent RNA-based efforts have developed valuable genetic indices prognostic of cancer outcomes. We aimed to identify molecular predictors of early recurrence after resection of HCC, and reveal the genomolecular structure of the resected tumors. METHOD Based on the transcriptomic and genomic datasets of 206 HCC samples surgically resected in the Asan Medical Center (AMC), we performed a differential gene expression analysis to identify quantitative markers associated with early recurrence and used the unsupervised clustering method to classify genomolecular subtypes. RESULTS Differential gene expression profiling revealed that S100P was the highest-ranked overexpressed gene in HCCs that recurred within 2 years of surgery. This trend was reproduced in immunohistochemical studies of the original cohort and an independent AMC cohort. S100P expression also independently predicted HCC-specific mortality post-resection (adjusted hazard ratio 1.09, 95% confidence interval 1.01-1.19; p = 0.042). Validation in a Chinese cohort and in in vitro experiments confirmed the prognostic value of S100P in HCC. We further identified five discrete molecular subtypes of HCC; a subtype with stem cell features ('AMC-C4') was associated with the worst prognosis, both in our series and another two Asian datasets, and S100P was most strongly upregulated in that subtype. CONCLUSION We identified a promising prognostic biomolecule, S100P, associated with early recurrence after HCC resection, and established the genomolecular architecture of tumors affecting clinical outcomes, particularly in Asian patients. These new insights into molecular mediators should contribute to effective care for affected patients.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University College of Medicine, Guri, Gyeonggi, Republic of Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bora Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoo Jin Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Wonkyung Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Ju Hyun Shim
- Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .,Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
300
|
Zhang Z, Chen P, Xie H, Cao P. Overexpression of GINS4 Is Associated With Tumor Progression and Poor Survival in Hepatocellular Carcinoma. Front Oncol 2021; 11:654185. [PMID: 33842367 PMCID: PMC8027117 DOI: 10.3389/fonc.2021.654185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Our research was aimed to identify the expression, clinical value and biological significance of GINS complex subunit 4 (GINS4) in hepatocellular carcinoma (HCC). Materials and Methods GINS4 was initially screened through weighted gene co-expression network analysis (WGCNA). The TCGA, GEO, and TIMER databases were applied for analyzing the GINS4 mRNA expression in HCC. GINS4 protein levels were detected via immunohistochemistry (IHC). Receiver operating characteristic (ROC) curve was applied for estimating the diagnostic significance of GINS4 in HCC. Kaplan-Meier plots, Cox model, and nomogram were used to assess the prognostic performance of GINS4 in HCC. Nomogram validation was conducted through time-dependent ROC and decision curve analysis (DCA). The Wanderer, UALCAN, and DiseaseMeth databases were utilized to identify GINS4 methylation levels in HCC. Genes co-expressed with GINS4 in HCC were estimated through the TCGA, cBioPortal, and GEPIA. GO, KEGG, and GSEA unraveled the possible biological mechanisms of GINS4 in HCC. Results WGCNA confirmed that GINS4 was one of hub genes significantly associated with histological grade of HCC. Multiple databases confirmed the significant upregulation of GINS4 in HCC tissues compared with non-tumor controls. IHC analysis of 35 HCC patients demonstrated that overexpressed GINS4 positively correlated with advanced TNM stage and poor pathological differentiation. GINS4 could effectively differentiate HCC cases from healthy individuals, with an AUC of 0.865. Increased GINS4 expression predicted unsatisfactory prognosis in HCC patients, especially in age >60 years, histological grade 1, HBV infection-negative, and occurring relapse subgroup. Nomogram incorporating GINS4 level and TNM stage displayed satisfactory predictive accuracy and clinical utility in predicting HCC prognosis. Upregulated GINS4 exhibited hypomethylated levels in HCC. Functional analysis indicated that GINS4 potentially positively modulated cell cycle and PI3K/AKT/mTOR pathway. Conclusion GINS4 is overexpressed in HCC and is correlated with undesirable survival of HCC patients.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|