251
|
Crompton JG, Sukumar M, Restifo NP. Targeting Akt in cell transfer immunotherapy for cancer. Oncoimmunology 2015; 5:e1014776. [PMID: 27757294 DOI: 10.1080/2162402x.2015.1014776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 10/22/2022] Open
Abstract
Pharmacologic inhibitors of the serine/threonine kinase Akt, initially aimed at deranged oncogenic pathways in tumors, have recently been shown to act as immunomodulators that markedly enhance the antitumor properties of T cells. Repurposing Akt inhibitors to improve antitumor immunity may be viewed as a manifestation of a larger paradigmatic shift in which hallmark characteristics of cancer (e.g., immune evasion), rather than merely causal features (e.g., somatic mutations) can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Joseph G Crompton
- Surgery Branch of National Cancer Institute; National Institutes of Health; Bethesda, MD USA; Department of Surgery; University of California Los Angeles; Los Angeles, CA USA
| | - Madhusudhanan Sukumar
- Surgery Branch of National Cancer Institute; National Institutes of Health ; Bethesda, MD USA
| | - Nicholas P Restifo
- Surgery Branch of National Cancer Institute; National Institutes of Health ; Bethesda, MD USA
| |
Collapse
|
252
|
Ji Y, Hocker JD, Gattinoni L. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Semin Immunol 2015; 28:45-53. [PMID: 26710685 DOI: 10.1016/j.smim.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.
Collapse
Affiliation(s)
- Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
253
|
Zikich D, Schachter J, Besser MJ. Predictors of tumor-infiltrating lymphocyte efficacy in melanoma. Immunotherapy 2015; 8:35-43. [PMID: 26653685 DOI: 10.2217/imt.15.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decades, the increasing knowledge in cellular immunology and tumor-host immune interactions, led to the development of immunotherapy approaches. Immunotherapy, based on adoptive cell transfer of ex vivo activated and expanded tumor-infiltrating T lymphocytes (TILs), has shown promising clinical results in patients with metastatic melanoma. TIL therapy yields response rates of around 50% and significant survival benefit in refractory melanoma patients, even after failing other immunotherapies, such as checkpoint inhibitors or cytokine-based therapy. Identifying predictors of TIL efficacy and detection of TIL subsets with specific reactivity against the patient's tumor might be an important milestone toward further improvement of clinical responses and prolonged survival.
Collapse
Affiliation(s)
- Dragoslav Zikich
- The Ella Lemelbaum Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel
| | - Jacob Schachter
- The Ella Lemelbaum Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel
| | - Michal J Besser
- The Ella Lemelbaum Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel.,Department of Clinical Microbiology & Immunology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
254
|
Böttcher M, D. Hofmann A, Bruns H, Haibach M, Loschinski R, Saul D, Mackensen A, Le Blanc K, Jitschin R, Mougiakakos D. Mesenchymal Stromal Cells Disrupt mTOR-Signaling and Aerobic Glycolysis During T-Cell Activation. Stem Cells 2015; 34:516-21. [DOI: 10.1002/stem.2234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Andreas D. Hofmann
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Martina Haibach
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Romy Loschinski
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet; Karolinska University Hospital; Stockholm Sweden
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology; University of Erlangen-Nuremberg; Germany
| |
Collapse
|
255
|
Abstract
Epidemiological studies have established an association between obesity, insulin resistance, type 2 diabetes and a number of cancer types. Research has focused predominantly on altered endocrine factors, growth factors and signalling pathways, with little known in man about the immune involvement in the relevant pathophysiological processes. Moreover, in an era of exciting new breakthroughs in cancer immunotherapy, there is also a need to study the safety and efficacy of immunotherapeutics in the complex setting of inflammatory-driven obesity-associated cancer. This review addresses key immune cell subsets underpinning obesity-associated inflammation and describes how such immune compartments might be targeted to prevent and treat obesity-associated cancer. We propose that the modulation, metabolism, migration and abundance of pro- and anti-inflammatory cells and tumour-specific T cells might be therapeutically altered to both restore immune balance, alleviating pathological inflammation, and to improve anti-tumour immune responses in obesity-associated cancer.
Collapse
|
256
|
|
257
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
258
|
Flores-Santibáñez F, Fernández D, Meza D, Tejón G, Vargas L, Varela-Nallar L, Arredondo S, Guixé V, Rosemblatt M, Bono MR, Sauma D. CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells. Immunology 2015; 146:582-94. [PMID: 26331349 DOI: 10.1111/imm.12529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/08/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.
Collapse
Affiliation(s)
| | - Dominique Fernández
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Meza
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gabriela Tejón
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Leonardo Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Centro de Investigaciones Biomedicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Sebastián Arredondo
- Centro de Investigaciones Biomedicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Victoria Guixé
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
259
|
Wu Y, Deng Z, Tang Y, Zhang S, Zhang YQ. Over-expressing Akt in T cells to resist tumor immunosuppression and increase anti-tumor activity. BMC Cancer 2015; 15:603. [PMID: 26310246 PMCID: PMC4550078 DOI: 10.1186/s12885-015-1611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor employs various means to escape immunosurveillance and inhibit immune attack, and strategies have been developed to counteract the inhibitory signals. However, due to the complex suppressive mechanisms in the tumor microenvironment, blocking one or a few inhibitory signals has only limited effects on therapeutic efficacy. Instead of targeting tumor immunosuppression, we considered from another point of view, and hypothesized that manipulating T cells to make them resist any known or unknown suppressive mechanism may be more effective for cancer treatment. METHODS We used OT-1 cells transduced with retroviruses encoding Akt and human peripheral blood lymphocytes (PBLs) transduced with retroviruses encoding both Akt and a chimeric antigen receptor (CAR) specific for tumor antigen EpCAM to examine the effect of over-expressing Akt on tumor specific T cells in tumor environment. RESULTS We show that Akt activity of T cells in the tumor environment was inhibited, and over-expressing Akt in OT-1 cells increased the cytokine production and cell proliferation in the presence of B16-OVA tumor cells. What's more, adoptive transfer of OT-1 cells over-expressing Akt inhibited B16-OVA tumor growth and prolonged mouse survival. To examine if over-expressing Akt could increase the anti-tumor activity of T cells in human cancer, PBLs co-expressing EpCAM specific CAR and Akt were cultured with EpCAM-expressing human prostate cancer cells PC3M, and less inhibition on cell proliferation and less apoptosis were observed. In addition, adoptive transfer of PC3M specific T cells over-expressing Akt resulted in more dramatic tumor inhibitory effects in PC3M bearing NOD/SCID mice. CONCLUSIONS These data indicates that over-expressing Akt in tumor specific T cells increases T cell proliferation and activity in the tumor environment, and enhances anti-tumor effects of adoptively transferred T cells. Our study provides a new strategy to improve the efficacy of adoptive T cell therapy, and serves as an important foundation for clinical translation.
Collapse
Affiliation(s)
- Yanhong Wu
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Zhenling Deng
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Yishu Tang
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Shuren Zhang
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Yu-Qian Zhang
- Department of Immunology, Cancer Hospital & Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
260
|
Abstract
Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments.
Collapse
Affiliation(s)
- Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
261
|
Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. ACTA ACUST UNITED AC 2015; 212:1345-60. [PMID: 26261266 PMCID: PMC4548052 DOI: 10.1084/jem.20151159] [Citation(s) in RCA: 856] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022]
Abstract
Buck et al. discuss the role of lymphocyte metabolism on immune cell development and function. Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism.
Collapse
Affiliation(s)
- Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
262
|
Bono MR, Fernández D, Flores-Santibáñez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett 2015; 589:3454-60. [PMID: 26226423 DOI: 10.1016/j.febslet.2015.07.027] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
Extracellular ATP is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. However, extracellular adenosine acts as an immunoregulatory signal that modulates the function of several cellular components of the adaptive and innate immune response. Consequently, the balance between ATP and adenosine concentration is crucial in immune homeostasis. CD39 and CD73 are two ectonucleotidases that cooperate in the generation of extracellular adenosine through ATP hydrolysis, thus tilting the balance towards immunosuppressive microenvironments. Extracellular adenosine can prevent activation, proliferation, cytokine production and cytotoxicity in T cells through the stimulation of the A2A receptor; however, recent evidence has shown that adenosine may also affect other processes in T-cell biology. In this review, we discuss evidence that supports a role of CD73 and CD39 ectonucleotidases in controlling naive T-cell homeostasis and memory cell survival through adenosine production. Finally, we propose a novel hypothesis of a possible role of these ectonucleotidases and autocrine adenosine signaling in controlling T-cell differentiation.
Collapse
Affiliation(s)
- María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dominique Fernández
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Fundacion Ciencia y Vida, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
263
|
Chakravarti D, Wong WW. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol 2015; 33:449-61. [PMID: 26088008 DOI: 10.1016/j.tibtech.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing.
Collapse
Affiliation(s)
- Deboki Chakravarti
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
264
|
Xue G, Zippelius A, Wicki A, Mandala M, Tang F, Massi D, Hemmings BA. Integrated Akt/PKB Signaling in Immunomodulation and Its Potential Role in Cancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv171. [DOI: 10.1093/jnci/djv171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
|
265
|
Abstract
INTRODUCTION Adoptive cell therapy of malignant diseases takes advantage of the cellular immune system to recognize and destroy cancer cells. This is impressively demonstrated by redirecting T cells with a chimeric antigen receptor (CAR) towards CD19, inducing complete and lasting remission of leukemia in more than two-thirds of patients in early phase trials. AREAS COVERED We outline how the CAR strategy is highly specific in redirecting T cells towards pre-defined target cells, however, reaches its limits when targeting solid tumors with a tremendous phenotypic heterogeneity. After initial tumor reduction by CAR T cells, antigen-negative cancer cells not recognized by CAR may give rise to tumor relapse. The situation may be overcome by CAR-mediated activation of T cells in the tumor, releasing inducible IL-12 which augments T-cell activation and attracts and activates innate immune cells to eliminate antigen-negative cancer cells in the targeted lesion. EXPERT OPINION CAR T cells with a transgenic 'payload', so-called TRUCK T cells or the 'fourth-generation' CAR T cells, are worthwhile to explore to shape the tumor environment by the inducible release of transgenic immune modifiers. Such TRUCK T cells are moreover envisioned to be applied in fields beyond cancer therapy including the therapy of virus infections, auto-immune diseases or metabolic disorders.
Collapse
Affiliation(s)
- Markus Chmielewski
- University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Clinic I for Internal Medicine , Robert-Koch-Street 21, D-50931 Cologne , Germany
| | | |
Collapse
|
266
|
Byrne KT, Vonderheide RH, Jaffee EM, Armstrong TD. Special Conference on Tumor Immunology and Immunotherapy: A New Chapter. Cancer Immunol Res 2015; 3:590-597. [PMID: 25968457 DOI: 10.1158/2326-6066.cir-15-0106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
The overall objective of the fifth American Association for Cancer Research Special Conference, "Tumor Immunology and Immunotherapy: A New Chapter," organized by the Cancer Immunology Working Group, was to highlight multidisciplinary approaches of immunotherapy and mechanisms related to the ability of immunotherapy to fight established tumors. With the FDA approval of sipuleucel-T, ipilimumab (anti-CTLA-4; Bristol-Myers Squibb), and the two anti-PD-1 antibodies, pembrolizumab (formerly MK-3475 or lambrolizumab; Merck) and nivolumab (Bristol-Myers Squibb), immunotherapy has become a mainstream treatment option for some cancers. Many of the data presented at the conference and reviewed in this article showcase the progress made in determining the mechanistic reasons for the success of some treatments and the mechanisms associated with tolerance within the tumor microenvironment, both of which are potential targets for immunotherapy. In addition to combination and multimodal therapies, improvements in existing therapies will be needed to overcome the numerous ways that tumor-specific tolerance thwarts the immune system. This conference built upon the success of the 2012 conference and focused on seven progressing and/or emerging areas-new combination therapies, combination therapies and vaccine improvement, mechanisms of antibody therapy, factors in the tumor microenvironment affecting the immune response, the microbiomes effect on cancer and immunotherapy, metabolism in immunotherapy, and adoptive T-cell therapy. Cancer Immunol Res; 3(6); 1-8. ©2015 AACR.
Collapse
Affiliation(s)
- Katelyn T Byrne
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth M Jaffee
- Department of Oncology, Division of Gastrointestinal Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland. Skip Viragh Pancreatic Cancer Center, Johns Hopkins University, Baltimore, Maryland. Sol Goldman Pancreatic Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Todd D Armstrong
- Department of Oncology, Division of Gastrointestinal Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland. Skip Viragh Pancreatic Cancer Center, Johns Hopkins University, Baltimore, Maryland. Sol Goldman Pancreatic Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
267
|
Aranda F, Buqué A, Bloy N, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for oncological indications. Oncoimmunology 2015; 4:e1046673. [PMID: 26451319 DOI: 10.1080/2162402x.2015.1046673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
One particular paradigm of anticancer immunotherapy relies on the administration of (potentially) tumor-reactive immune effector cells. Generally, these cells are obtained from autologous peripheral blood lymphocytes (PBLs) ex vivo (in the context of appropriate expansion, activation and targeting protocols), and re-infused into lymphodepleted patients along with immunostimulatory agents. In spite of the consistent progress achieved throughout the past two decades in this field, no adoptive cell transfer (ACT)-based immunotherapeutic regimen is currently approved by regulatory agencies for use in cancer patients. Nonetheless, the interest of oncologists in ACT-based immunotherapy continues to increase. Accumulating clinical evidence indicates indeed that specific paradigms of ACT, such as the infusion of chimeric antigen receptor (CAR)-expressing autologous T cells, are associated with elevated rates of durable responses in patients affected by various neoplasms. In line with this notion, clinical trials investigating the safety and therapeutic activity of ACT in cancer patients are being initiated at an ever increasing pace. Here, we review recent preclinical and clinical advances in the development of ACT-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Fernando Aranda
- Group of Immune Receptors of the Innate and Adaptive System; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) ; Barcelona, Spain
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Francesca Castoldi
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Dept. of Immunology; 2nd Faculty of Medicine and University Hospital Motol; Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; INSERM; U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Université Paris Descartes/Paris V , Sorbonne Paris Cité , Paris, France
| |
Collapse
|
268
|
Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, Wang E, Marincola FM, Klebanoff CA, Zhao K, Tsang JS, Gattinoni L, Restifo NP. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2015. [DOI: 10.1038/cmi.2015.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
269
|
Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM, Powell JD. mTORC1 and mTORC2 selectively regulate CD8⁺ T cell differentiation. J Clin Invest 2015; 125:2090-108. [PMID: 25893604 DOI: 10.1172/jci77746] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Activation of mTOR-dependent pathways regulates the specification and differentiation of CD4+ T effector cell subsets. Herein, we show that mTOR complex 1 (mTORC1) and mTORC2 have distinct roles in the generation of CD8+ T cell effector and memory populations. Evaluation of mice with a T cell-specific deletion of the gene encoding the negative regulator of mTORC1, tuberous sclerosis complex 2 (TSC2), resulted in the generation of highly glycolytic and potent effector CD8+ T cells; however, due to constitutive mTORC1 activation, these cells retained a terminally differentiated effector phenotype and were incapable of transitioning into a memory state. In contrast, CD8+ T cells deficient in mTORC1 activity due to loss of RAS homolog enriched in brain (RHEB) failed to differentiate into effector cells but retained memory characteristics, such as surface marker expression, a lower metabolic rate, and increased longevity. However, these RHEB-deficient memory-like T cells failed to generate recall responses as the result of metabolic defects. While mTORC1 influenced CD8+ T cell effector responses, mTORC2 activity regulated CD8+ T cell memory. mTORC2 inhibition resulted in metabolic reprogramming, which enhanced the generation of CD8+ memory cells. Overall, these results define specific roles for mTORC1 and mTORC2 that link metabolism and CD8+ T cell effector and memory generation and suggest that these functions have the potential to be targeted for enhancing vaccine efficacy and antitumor immunity.
Collapse
|
270
|
Abstract
Adoptive cell therapy (ACT) is a highly personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity. ACT using naturally occurring tumor-reactive lymphocytes has mediated durable, complete regressions in patients with melanoma, probably by targeting somatic mutations exclusive to each cancer. These results have expanded the reach of ACT to the treatment of common epithelial cancers. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.
Collapse
Affiliation(s)
- Steven A Rosenberg
- Surgery Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, CRC Building, Room 3W-3940, Bethesda, MD 20892, USA.
| | - Nicholas P Restifo
- Surgery Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, CRC Building, Room 3W-3940, Bethesda, MD 20892, USA.
| |
Collapse
|
271
|
van der Waart AB, Hobo W, Dolstra H. Time to Akt: Superior tumor-reactive T cells for adoptive immunotherapy. Oncoimmunology 2015; 4:e1003016. [PMID: 26155398 DOI: 10.1080/2162402x.2014.1003016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 10/23/2022] Open
Abstract
T cells are crucial players in the protection against cancer, and can be used in adoptive cell therapy to prevent or treat relapse. However, their state of differentiation determines their effectiveness, with early memory cells being the most favorable. Here, we discuss restraining of differentiation to engineer the ultimate tumor-reactive T cell.
Collapse
Affiliation(s)
- Anniek B van der Waart
- Department of Laboratory Medicine - Laboratory of Hematology; Radboud university medical center ; Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology; Radboud university medical center ; Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Hematology; Radboud university medical center ; Nijmegen, The Netherlands
| |
Collapse
|
272
|
O'Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol 2015; 36:71-80. [PMID: 25601541 DOI: 10.1016/j.it.2014.12.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
In the past several years a wealth of evidence has emerged illustrating how metabolism supports many aspects of T cell biology, as well as how metabolic changes drive T cell differentiation and fate. We outline developing principles in the regulation of T cell metabolism, and discuss how these processes are affected in settings of inflammation and cancer. In this context we discuss how metabolic pathways might be manipulated for the treatment of human disease, including how metabolism may be targeted to prevent T cell dysfunction in inhospitable microenvironments, to generate more effective adoptive cellular immunotherapies in cancer, and to direct T cell differentiation and function towards non-pathogenic phenotypes in settings of autoimmunity.
Collapse
Affiliation(s)
- David O'Sullivan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|