251
|
Chedgy ECP, Vandekerkhove G, Herberts C, Annala M, Donoghue AJ, Sigouros M, Ritch E, Struss W, Konomura S, Liew J, Parimi S, Vergidis J, Hurtado-Coll A, Sboner A, Fazli L, Beltran H, Chi KN, Wyatt AW. Biallelic tumour suppressor loss and DNA repair defects in de novo
small-cell prostate carcinoma. J Pathol 2018; 246:244-253. [DOI: 10.1002/path.5137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/18/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Edmund CP Chedgy
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
- Institute of Biosciences and Medical Technology; University of Tampere; Tampere Finland
| | - Adam J Donoghue
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Michael Sigouros
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Elie Ritch
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Werner Struss
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Saki Konomura
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Janet Liew
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Sunil Parimi
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Joanna Vergidis
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Antonio Hurtado-Coll
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Andrea Sboner
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Kim N Chi
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| |
Collapse
|
252
|
Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ, Porter LH, Lister N, Pook D, Pezaro CJ, Goode DL, Rebello RJ, Clark AK, Papargiris M, Van Gramberg J, Hanson AR, Banks P, Wang H, Niranjan B, Keerthikumar S, Hedwards S, Huglo A, Yang R, Henzler C, Li Y, Lopez-Campos F, Castro E, Toivanen R, Azad A, Bolton D, Goad J, Grummet J, Harewood L, Kourambas J, Lawrentschuk N, Moon D, Murphy DG, Sengupta S, Snow R, Thorne H, Mitchell C, Pedersen J, Clouston D, Norden S, Ryan A, Dehm SM, Tilley WD, Pearson RB, Hannan RD, Frydenberg M, Furic L, Taylor RA, Risbridger GP. Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. Eur Urol 2018; 74:562-572. [PMID: 30049486 DOI: 10.1016/j.eururo.2018.06.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/13/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The intractability of castration-resistant prostate cancer (CRPC) is exacerbated by tumour heterogeneity, including diverse alterations to the androgen receptor (AR) axis and AR-independent phenotypes. The availability of additional models encompassing this heterogeneity would facilitate the identification of more effective therapies for CRPC. OBJECTIVE To discover therapeutic strategies by exploiting patient-derived models that exemplify the heterogeneity of CRPC. DESIGN, SETTING, AND PARTICIPANTS Four new patient-derived xenografts (PDXs) were established from independent metastases of two patients and characterised using integrative genomics. A panel of rationally selected drugs was tested using an innovative ex vivo PDX culture system. INTERVENTION The following drugs were evaluated: AR signalling inhibitors (enzalutamide and galeterone), a PARP inhibitor (talazoparib), a chemotherapeutic (cisplatin), a CDK4/6 inhibitor (ribociclib), bromodomain and extraterminal (BET) protein inhibitors (iBET151 and JQ1), and inhibitors of ribosome biogenesis/function (RNA polymerase I inhibitor CX-5461 and pan-PIM kinase inhibitor CX-6258). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Drug efficacy in ex vivo cultures of PDX tissues was evaluated using immunohistochemistry for Ki67 and cleaved caspase-3 levels. Candidate drugs were also tested for antitumour efficacy in vivo, with tumour volume being the primary endpoint. Two-tailed t tests were used to compare drug and control treatments. RESULTS AND LIMITATIONS Integrative genomics revealed that the new PDXs exhibited heterogeneous mechanisms of resistance, including known and novel AR mutations, genomic structural rearrangements of the AR gene, and a neuroendocrine-like AR-null phenotype. Despite their heterogeneity, all models were sensitive to the combination of ribosome-targeting agents CX-5461 and CX-6258. CONCLUSIONS This study demonstrates that ribosome-targeting drugs may be effective against diverse CRPC subtypes including AR-null disease, and highlights the potential of contemporary patient-derived models to prioritise treatment strategies for clinical translation. PATIENT SUMMARY Diverse types of therapy-resistant prostate cancers are sensitive to a new combination of drugs that inhibit protein synthesis pathways in cancer cells.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia
| | - Daisuke Obinata
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Cancer Tissue Collection After Death (CASCADE) Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Molecular Biomarkers and Translational Genomics Lab, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - David Pook
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Carmel J Pezaro
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
| | - David L Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard J Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Jenna Van Gramberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Banks
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hong Wang
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Shivakumar Keerthikumar
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shelley Hedwards
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alisee Huglo
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rendong Yang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Elena Castro
- Spanish National Cancer Research Centre, Madrid, Spain
| | - Roxanne Toivanen
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Arun Azad
- Medical Oncology, Monash Health, Clayton, VIC, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Damien Bolton
- Department of Urology, Austin Hospital, The University of Melbourne, Melbourne Heidelberg, VIC, Australia; Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Jeremy Goad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - Jeremy Grummet
- Epworth Healthcare, Melbourne, VIC, Australia; Department of Surgery, Central Clinical School, Monash University, Clayton, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia
| | - Laurence Harewood
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - John Kourambas
- Department of Medicine, Monash Health, Casey Hospital, Berwick, VIC, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Daniel Moon
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia; Central Clinical School, Monash University, Clayton, VIC, Australia; The Epworth Prostate Centre, Epworth Hospital, Richmond, VIC, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - Shomik Sengupta
- Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia; Department of Urology, Austin Hospital, The University of Melbourne, Melbourne Heidelberg, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia; Epworth Freemasons, Epworth Health, East Melbourne, VIC, Australia
| | - Ross Snow
- Australian Urology Associates, Melbourne, VIC, Australia
| | - Heather Thorne
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; kConFab, Research Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - John Pedersen
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; TissuPath, Mount Waverley, VIC, Australia
| | | | - Sam Norden
- TissuPath, Mount Waverley, VIC, Australia
| | | | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard B Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Oncogenic Signaling and Growth Control Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ross D Hannan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Oncogenic Signaling and Growth Control Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia; ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia; Department of Surgery, Monash University, Clayton, VIC, Australia
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
253
|
Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, Weinstein AS, Friedl V, Zhang C, Witte ON, Lloyd P, Gleave M, Evans CP, Youngren J, Beer TM, Rettig M, Wong CK, True L, Foye A, Playdle D, Ryan CJ, Lara P, Chi KN, Uzunangelov V, Sokolov A, Newton Y, Beltran H, Demichelis F, Rubin MA, Stuart JM, Small EJ. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 2018; 36:2492-2503. [PMID: 29985747 DOI: 10.1200/jco.2017.77.6880] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose The prevalence and features of treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC) are not well characterized in the era of modern androgen receptor (AR)-targeting therapy. We sought to characterize the clinical and genomic features of t-SCNC in a multi-institutional prospective study. Methods Patients with progressive, metastatic castration-resistant prostate cancer (mCRPC) underwent metastatic tumor biopsy and were followed for survival. Metastatic biopsy specimens underwent independent, blinded pathology review along with RNA/DNA sequencing. Results A total of 202 consecutive patients were enrolled. One hundred forty-eight (73%) had prior disease progression on abiraterone and/or enzalutamide. The biopsy evaluable rate was 79%. The overall incidence of t-SCNC detection was 17%. AR amplification and protein expression were present in 67% and 75%, respectively, of t-SCNC biopsy specimens. t-SCNC was detected at similar proportions in bone, node, and visceral organ biopsy specimens. Genomic alterations in the DNA repair pathway were nearly mutually exclusive with t-SCNC differentiation ( P = .035). Detection of t-SCNC was associated with shortened overall survival among patients with prior AR-targeting therapy for mCRPC (hazard ratio, 2.02; 95% CI, 1.07 to 3.82). Unsupervised hierarchical clustering of the transcriptome identified a small-cell-like cluster that further enriched for adverse survival outcomes (hazard ratio, 3.00; 95% CI, 1.25 to 7.19). A t-SCNC transcriptional signature was developed and validated in multiple external data sets with > 90% accuracy. Multiple transcriptional regulators of t-SCNC were identified, including the pancreatic neuroendocrine marker PDX1. Conclusion t-SCNC is present in nearly one fifth of patients with mCRPC and is associated with shortened survival. The near-mutual exclusivity with DNA repair alterations suggests t-SCNC may be a distinct subset of mCRPC. Transcriptional profiling facilitates the identification of t-SCNC and novel therapeutic targets.
Collapse
Affiliation(s)
- Rahul Aggarwal
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Jiaoti Huang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Joshi J Alumkal
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Li Zhang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Felix Y Feng
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - George V Thomas
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Alana S Weinstein
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Verena Friedl
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Can Zhang
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Owen N Witte
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Paul Lloyd
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Martin Gleave
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Christopher P Evans
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Jack Youngren
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Tomasz M Beer
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Matthew Rettig
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Christopher K Wong
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Lawrence True
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Adam Foye
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Denise Playdle
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Charles J Ryan
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Primo Lara
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Kim N Chi
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Vlado Uzunangelov
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Artem Sokolov
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Yulia Newton
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Himisha Beltran
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Francesca Demichelis
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Mark A Rubin
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Joshua M Stuart
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| | - Eric J Small
- Rahul Aggarwal, Li Zhang, Felix Y. Feng, Paul Lloyd, Jack Youngren, Adam Foye, Denise Playdle, Charles J. Ryan, and Eric J. Small, University of California San Francisco, San Francisco; Alana S. Weinstein, Verena Friedl, Can Zhang, Christopher K. Wong, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, and Joshua M. Stuart, University of California Santa Cruz, Santa Cruz; Owen N. Witte and Matthew Rettig, University of California Los Angeles, Los Angeles; Christopher P. Evans and Primo Lara, University of California Davis, Davis, CA; Jiaoti Huang, Duke University, Durham, NC; Joshi J. Alumkal, George V. Thomas, and Tomasz M. Beer, Oregon Health Sciences University, Portland, OR; Martin Gleave and Kim N. Chi, University of British Columbia, Vancouver, British Columbia, Canada; Lawrence True, University of Washington, Seattle, WA; Himisha Beltran and Mark A. Rubin, Weill Cornell Medicine, New York, NY; and Francesca Demichelis, University of Trento, Trento, Italy
| |
Collapse
|
254
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
255
|
Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, Lu J, Zhou S, Wang M, Li H, Larson NB, McDonnell SK, Patel PS, Liang Y, Yao CQ, van der Kwast T, Lupien M, Feng FY, Zoubeidi A, Tsao MS, Thibodeau SN, Boutros PC, He HH. Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT19. Cell 2018; 174:564-575.e18. [DOI: 10.1016/j.cell.2018.06.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/26/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022]
|
256
|
欧 艺, 姜 耀, 李 琦, 庄 永, 党 强, 谭 万. [Infiltrating mast cells promote neuroendocrine differentiation and increase docetaxel resistance of prostate cancer cells by up-regulating p21]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:723-730. [PMID: 29997096 PMCID: PMC6765720 DOI: 10.3969/j.issn.1673-4254.2018.06.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of infiltrating mast cells on neuroendocrine differentiation (NED) and docetaxel sensitivity of prostate cancer (PCa) cells in vitro. METHODS Human PCa cell lines (LNCaP and C4-2) were co-cultured with human mast cell line (HMC-1) in Transwell chambers. Androgen receptor (AR) was silenced in C4-2 cells using sh-AR lentivirus, and p21 was knocked down and overexpressed by transfecting C4-2 cells with pLKO.1-sh-p21 and pCMV-p21, respectively. The morphological changes of LNCaP and C4-2 cells were observed. MTT assay and colony formation assay were used to assess the proliferation of LNCaP and C4-2 cells. CCK8 assay was used to detect the cell viability of C4-2 cells following docetaxel trreatment. RT-qPCR and Western blotting were performed to determine the mRNA and protein expressions of neuroendocrine markers, AR and p21 in the cells. RESULTS Co-culture with HMC-1 cells enhanced the neuroendocrine phenotypes, inhibited the proliferation and up-regulated the expression of p21 in LNCaP and C4-2 cells. P21 positively regulated NED through a non-AR-dependent signaling pathway, while p21 knockdown partially reversed NED promoted by the mast cells. PCa cells co-cultured with HMC-1 cells showed increased resistance to docetaxel, and silencing p21 partially reversed docetaxel resistance in PCa cells. CONCLUSION Infiltrating mast cells up-regulates p21 to promote NED and increase docetaxel resistance in PCa cells in vitro.
Collapse
Affiliation(s)
- 艺虹 欧
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 耀东 姜
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 琦 李
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 永江 庄
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 强 党
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 万龙 谭
- />南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
257
|
Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M, Gao D, Cyrta J, Sailer V, Vosoughi A, Pauli C, Churakova Y, Cheung C, Deonarine LD, McNary TJ, Rosati R, Tagawa ST, Nanus DM, Mosquera JM, Sawyers CL, Chen Y, Inghirami G, Rao RA, Grandori C, Elemento O, Sboner A, Demichelis F, Rubin MA, Beltran H. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 2018; 9:2404. [PMID: 29921838 PMCID: PMC6008438 DOI: 10.1038/s41467-018-04495-z] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.
Collapse
Affiliation(s)
- Loredana Puca
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Davide Prandi
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Reid Shaw
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Matteo Benelli
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Judy Hess
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Michael Sigouros
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Adam Donoghue
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Myriam Kossai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joanna Cyrta
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Verena Sailer
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Aram Vosoughi
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chantal Pauli
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Yelena Churakova
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | | | - Terra J McNary
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rachele Rosati
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan Miguel Mosquera
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rema A Rao
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Carla Grandori
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Mark A Rubin
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA.
| |
Collapse
|
258
|
Fane ME, Chhabra Y, Smith AG, Sturm RA. BRN2, a POUerful driver of melanoma phenotype switching and metastasis. Pigment Cell Melanoma Res 2018; 32:9-24. [PMID: 29781575 DOI: 10.1111/pcmr.12710] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
The POU domain family of transcription factors play a central role in embryogenesis and are highly expressed in neural crest cells and the developing brain. BRN2 is a class III POU domain protein that is a key mediator of neuroendocrine and melanocytic development and differentiation. While BRN2 is a central regulator in numerous developmental programs, it has also emerged as a major player in the biology of tumourigenesis. In melanoma, BRN2 has been implicated as one of the master regulators of the acquisition of invasive behaviour within the phenotype switching model of progression. As a mediator of melanoma cell phenotype switching, it coordinates the transition to a dedifferentiated, slow cycling and highly motile cell type. Its inverse expression relationship with MITF is believed to mediate tumour progression and metastasis within this model. Recent evidence has now outlined a potential epigenetic switching mechanism in melanoma cells driven by BRN2 expression that induces melanoma cell invasion. We summarize the role of BRN2 in tumour cell dissemination and metastasis in melanoma, while also examining it as a potential metastatic regulator in other tumour models.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
259
|
Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, Qu S, Gout PW, Zhang F, Haegert AM, Fazli L, Crea F, Ong CJ, Zoubeidi A, He HH, Gleave ME, Collins CC, Lin D, Wang Y. Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Res 2018; 78:2691-2704. [PMID: 29487201 DOI: 10.1158/0008-5472.can-17-3677] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer arising mostly from adenocarcinoma via neuroendocrine transdifferentiation following androgen deprivation therapy. Mechanisms contributing to both NEPC development and its aggressiveness remain elusive. In light of the fact that hyperchromatic nuclei are a distinguishing histopathologic feature of NEPC, we utilized transcriptomic analyses of our patient-derived xenograft (PDX) models, multiple clinical cohorts, and genetically engineered mouse models to identify 36 heterochromatin-related genes that are significantly enriched in NEPC. Longitudinal analysis using our unique, first-in-field PDX model of adenocarcinoma-to-NEPC transdifferentiation revealed that, among those 36 heterochromatin-related genes, heterochromatin protein 1α (HP1α) expression increased early and steadily during NEPC development and remained elevated in the developed NEPC tumor. Its elevated expression was further confirmed in multiple PDX and clinical NEPC samples. HP1α knockdown in the NCI-H660 NEPC cell line inhibited proliferation, ablated colony formation, and induced apoptotic cell death, ultimately leading to tumor growth arrest. Its ectopic expression significantly promoted NE transdifferentiation in adenocarcinoma cells subjected to androgen deprivation treatment. Mechanistically, HP1α reduced expression of androgen receptor and RE1 silencing transcription factor and enriched the repressive trimethylated histone H3 at Lys9 mark on their respective gene promoters. These observations indicate a novel mechanism underlying NEPC development mediated by abnormally expressed heterochromatin genes, with HP1α as an early functional mediator and a potential therapeutic target for NEPC prevention and management.Significance: Heterochromatin proteins play a fundamental role in NEPC, illuminating new therapeutic targets for this aggressive disease. Cancer Res; 78(10); 2691-704. ©2018 AACR.
Collapse
Affiliation(s)
- Xinpei Ci
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Jun Hao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Y Choi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Sifeng Qu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Fang Zhang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Anne M Haegert
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francesco Crea
- School of Life, Health and Chemical Sciences, the Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Christopher J Ong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Housheng H He
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
260
|
Konieczkowski DJ, Johannessen CM, Garraway LA. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell 2018; 33:801-815. [PMID: 29763622 PMCID: PMC5957297 DOI: 10.1016/j.ccell.2018.03.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Despite advances in cancer biology and therapeutics, drug resistance remains problematic. Resistance is often multifactorial, heterogeneous, and prone to undersampling. Nonetheless, many individual mechanisms of targeted therapy resistance may coalesce into a smaller number of convergences, including pathway reactivation (downstream re-engagement of original effectors), pathway bypass (recruitment of a parallel pathway converging on the same downstream output), and pathway indifference (development of a cellular state independent of the initial therapeutic target). Similar convergences may also underpin immunotherapy resistance. Such parsimonious, convergence-based frameworks may help explain resistance across tumor types and therapeutic categories and may also suggest strategies to overcome it.
Collapse
|
261
|
Chen R, Dong X, Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-570. [DOI: 10.1111/bju.14207] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruiqi Chen
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Xuesen Dong
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| | - Martin Gleave
- Department of Urologic Sciences; Vancouver Prostate Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
262
|
Ruggero K, Farran-Matas S, Martinez-Tebar A, Aytes A. Epigenetic Regulation in Prostate Cancer Progression. ACTA ACUST UNITED AC 2018; 4:101-115. [PMID: 29888169 PMCID: PMC5976687 DOI: 10.1007/s40610-018-0095-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Recent Findings Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Summary Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.
Collapse
Affiliation(s)
- Katia Ruggero
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sonia Farran-Matas
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adrian Martinez-Tebar
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Alvaro Aytes
- Programs of Molecular Mechanisms and Experimental Therapeutics in Oncology (ONCOBell), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Granvia de l'Hopitalet, 199 08908, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.,Programs of Cancer Therapeutics Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
263
|
Lee AR, Che N, Lovnicki JM, Dong X. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Front Oncol 2018; 8:93. [PMID: 29666783 PMCID: PMC5891588 DOI: 10.3389/fonc.2018.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
While the use of next-generation androgen receptor pathway inhibition (ARPI) therapy has significantly increased the survival of patients with metastatic prostate adenocarcinoma (AdPC), several groups have reported a treatment-resistant mechanism, whereby cancer cells can become androgen receptor (AR) indifferent and gain a neuroendocrine (NE)-like phenotype. This subtype of castration-resistant prostate cancer has been termed "treatment-induced castration-resistant neuroendocrine prostate cancer" (CRPC-NE). Recent reports indicate that the overall genomic landscapes of castration-resistant tumors with AdPC phenotypes and CRPC-NE are not significantly altered. However, CRPC-NE tumors have been found to contain a NE-specific pattern throughout their epigenome and splicing transcriptome, which are significantly modified. The molecular mechanisms by which CRPC-NE develops remain unclear, but several factors have been implicated in the progression of the disease. Recently, Ser/Arg repetitive matrix 4 (SRRM4), a neuronal-specific RNA splicing factor that is upregulated in CRPC-NE tumors, has been shown to establish a CRPC-NE-unique splicing transcriptome, to induce a NE-like morphology in AdPC cells, and, most importantly, to transform AdPC cells into CRPC-NE xenografts under ARPI. Moreover, the SRRM4-targeted splicing genes are highly enriched in various neuronal processes, suggesting their roles in facilitating a CRPC-NE program. This article will address the importance of SRRM4-mediated alternative RNA splicing in reprogramming translated proteins to facilitate NE differentiation, survival, and proliferation of cells to establish CRPC-NE tumors. In addition, we will discuss the potential roles of SRRM4 in conjunction with other known pathways and factors important for CRPC-NE development, such as the AR pathway, TP53 and RB1 genes, the FOXA family of proteins, and environmental factors. This study aims to explore the multifaceted functions of SRRM4 and SRRM4-mediated splicing in driving a CRPC-NE program as a coping mechanism for therapy resistance, as well as define future SRRM4-targeted therapeutic approaches for treating CRPC-NE or mitigating its development.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Che
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
264
|
Soundararajan R, Aparicio AM, Logothetis CJ, Mani SA, Maity SN. Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Front Oncol 2018; 8:69. [PMID: 29600194 PMCID: PMC5862804 DOI: 10.3389/fonc.2018.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/01/2018] [Indexed: 12/26/2022] Open
Abstract
Combined loss of tumor suppressors (TSPs), PTEN, TP53, and RB1, is highly associated with small cell carcinoma of prostate phenotype. Recent genomic studies of human tumors as well as analyses in mouse genetic models have revealed a unique role for these TSPs in dictating epithelial lineage plasticity-a phenomenon that plays a critical role in the development of aggressive variant prostate cancer (PCa) and associated androgen therapy resistance. Here, we summarize recently published key observations on this topic and hypothesize a possible mechanism by which concurrent loss of TSPs could potentially regulate the PCa disease phenotype.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sankar N. Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
265
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
266
|
Akamatsu S, Inoue T, Ogawa O, Gleave ME. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018; 25:345-351. [PMID: 29396873 DOI: 10.1111/iju.13526] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
Treatment-related neuroendocrine prostate cancer is a lethal form of prostate cancer that emerges in the later stages of castration-resistant prostate cancer treatment. Treatment-related neuroendocrine prostate cancer transdifferentiates from adenocarcinoma as an adaptive response to androgen receptor pathway inhibition. The incidence of treatment-related neuroendocrine prostate cancer has been rising due to the increasing use of potent androgen receptor pathway inhibitors. Typically, treatment-related neuroendocrine prostate cancer is characterized by either low or absent androgen receptor expression, small cell carcinoma morphology and expression of neuroendocrine markers. Clinically, it manifests with predominantly visceral or lytic bone metastases, bulky tumor masses, low prostate-specific antigen levels or a short response duration to androgen deprivation therapy. Furthermore, although the tumor initially responds to platinum-based chemotherapy, the duration of the response is short. Based on the poor prognosis, it is imperative to identify novel molecular targets for treatment-related neuroendocrine prostate cancer. Recent advances in genomic and molecular research, supported by novel in vivo models, have identified some of the key molecular characteristics of treatment-related neuroendocrine prostate cancer. The gain of MYCN and AURKA oncogenes, along with the loss of tumor suppressor genes TP53 and RB1 are key genomic alterations associated with treatment-related neuroendocrine prostate cancer. Androgen receptor repressed genes, such as BRN2 and PEG10, are also necessary for treatment-related neuroendocrine prostate cancer. These genetic changes converge on pathways upregulating genes, such as SOX2 and EZH2, that facilitate lineage plasticity and neuroendocrine differentiation. As a result, on potent androgen receptor pathway inhibition, castration-resistant prostate cancer transdifferentiates to treatment-related neuroendocrine prostate cancer in a clonally divergent manner. Further understanding of the disease biology is required to develop novel drugs and biomarkers that would help treat this aggressive prostate cancer variant.
Collapse
Affiliation(s)
- Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
267
|
Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, Carver B, Castellano D, Chung BH, Clarke N, Daugaard G, Davis ID, de Bono J, Borges Dos Reis R, Drake CG, Eeles R, Efstathiou E, Evans CP, Fanti S, Feng F, Fizazi K, Frydenberg M, Gleave M, Halabi S, Heidenreich A, Higano CS, James N, Kantoff P, Kellokumpu-Lehtinen PL, Khauli RB, Kramer G, Logothetis C, Maluf F, Morgans AK, Morris MJ, Mottet N, Murthy V, Oh W, Ost P, Padhani AR, Parker C, Pritchard CC, Roach M, Rubin MA, Ryan C, Saad F, Sartor O, Scher H, Sella A, Shore N, Smith M, Soule H, Sternberg CN, Suzuki H, Sweeney C, Sydes MR, Tannock I, Tombal B, Valdagni R, Wiegel T, Omlin A. Management of Patients with Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur Urol 2018; 73:178-211. [PMID: 28655541 DOI: 10.1016/j.eururo.2017.06.002] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND In advanced prostate cancer (APC), successful drug development as well as advances in imaging and molecular characterisation have resulted in multiple areas where there is lack of evidence or low level of evidence. The Advanced Prostate Cancer Consensus Conference (APCCC) 2017 addressed some of these topics. OBJECTIVE To present the report of APCCC 2017. DESIGN, SETTING, AND PARTICIPANTS Ten important areas of controversy in APC management were identified: high-risk localised and locally advanced prostate cancer; "oligometastatic" prostate cancer; castration-naïve and castration-resistant prostate cancer; the role of imaging in APC; osteoclast-targeted therapy; molecular characterisation of blood and tissue; genetic counselling/testing; side effects of systemic treatment(s); global access to prostate cancer drugs. A panel of 60 international prostate cancer experts developed the program and the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The panel voted publicly but anonymously on 150 predefined questions, which have been developed following a modified Delphi process. RESULTS AND LIMITATIONS Voting is based on panellist opinion, and thus is not based on a standard literature review or meta-analysis. The outcomes of the voting had varying degrees of support, as reflected in the wording of this article, as well as in the detailed voting results recorded in Supplementary data. CONCLUSIONS The presented expert voting results can be used for support in areas of management of men with APC where there is no high-level evidence, but individualised treatment decisions should as always be based on all of the data available, including disease extent and location, prior therapies regardless of type, host factors including comorbidities, as well as patient preferences, current and emerging evidence, and logistical and economic constraints. Inclusion of men with APC in clinical trials should be strongly encouraged. Importantly, APCCC 2017 again identified important areas in need of trials specifically designed to address them. PATIENT SUMMARY The second Advanced Prostate Cancer Consensus Conference APCCC 2017 did provide a forum for discussion and debates on current treatment options for men with advanced prostate cancer. The aim of the conference is to bring the expertise of world experts to care givers around the world who see less patients with prostate cancer. The conference concluded with a discussion and voting of the expert panel on predefined consensus questions, targeting areas of primary clinical relevance. The results of these expert opinion votes are embedded in the clinical context of current treatment of men with advanced prostate cancer and provide a practical guide to clinicians to assist in the discussions with men with prostate cancer as part of a shared and multidisciplinary decision-making process.
Collapse
Affiliation(s)
- Silke Gillessen
- Department of Medical Oncology, Cantonal Hospital St. Gallen and University of Berne, Switzerland.
| | - Gerhardt Attard
- Department of Medical Oncology, The Institute of Cancer Research/Royal Marsden, London, UK
| | - Tomasz M Beer
- Oregon Health & Science University Knight Cancer Institute, OR, USA
| | - Himisha Beltran
- Department of Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Alberto Bossi
- Department of Radiation Oncology, Genito Urinary Oncology, Prostate Brachytherapy Unit, Goustave Roussy, Paris, France
| | - Rob Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, USA
| | - Brett Carver
- Department of Urology, Sidney Kimmel Center for Prostate and Urologic Cancers, New York, NY, USA
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Byung Ha Chung
- Department of Urology, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Noel Clarke
- Department of Urology, The Christie and Salford Royal Hospitals, Manchester, UK
| | - Gedske Daugaard
- Department of Medical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ian D Davis
- Monash University and Eastern Health, Eastern Health Clinical School, Box Hill, Australia
| | - Johann de Bono
- Department of Medical Oncology, The Institute of Cancer Research/Royal Marsden, London, UK
| | - Rodolfo Borges Dos Reis
- Department of Urology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Charles G Drake
- Department of Medical Oncology, Division of Haematology/Oncology, Columbia University Medical Center, New York, NY, USA
| | - Ros Eeles
- Department of Clinical Oncology and Genetics, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Eleni Efstathiou
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, TX, USA
| | - Christopher P Evans
- Department of Urology, University of California, Davis School of Medicine, CA, USA
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, Università di Bologna, Italy
| | - Felix Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Karim Fizazi
- Department of Medical Oncology, Gustave Roussy, University of Paris Sud, Paris, France
| | - Mark Frydenberg
- Department of Surgery, Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University
| | - Martin Gleave
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Susan Halabi
- Department of Clinical trials and Statistics, Duke University, Durham, NC, USA
| | | | - Celestia S Higano
- Department of Medicine, Division of Medical Oncology, University of Washington and Fred Hutchinson Cancer Research Center, WA, USA
| | - Nicolas James
- Department of Clinical Oncology, Clinical Oncology Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Philip Kantoff
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Clinical Oncology, Tampere University Hospital, Faculty of Medicine and Life Sciences, University of Tampere, Finland
| | - Raja B Khauli
- Department of Urology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Chris Logothetis
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Centre, Houston, TX, USA
| | - Fernando Maluf
- Department of Medical Oncology Hospital Israelita Albert Einstein and Department of Medical Oncology Beneficência Portuguesa de São Paulo
| | - Alicia K Morgans
- Department of Medical Oncology and Epidemiology, Vanderbilt University Medical Center, Division of Hematology/Oncology, Nashville, TN, USA
| | - Michael J Morris
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicolas Mottet
- Department of Urology, University Hospital Nord St. Etienne, St. Etienne, France
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, India
| | - William Oh
- Department of Medical Oncology, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Anwar R Padhani
- Department of Radiology, Mount Vernon Cancer Centre and Institute of Cancer Research, London, UK
| | - Chris Parker
- Department of Clinical Oncology, Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Mack Roach
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Mark A Rubin
- Department of Pathology, University of Bern and the Inselspital, Bern (CH)
| | - Charles Ryan
- Department of Medical Oncology, Clinical Medicine and Urology at the Helen Diller Family Comprehensive Cancer Center at the University of, California, San Francisco, CA, USA
| | - Fred Saad
- Department of Urology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Oliver Sartor
- Department of Medical Oncology, Tulane Cancer Center, New Orleans, LA, USA
| | - Howard Scher
- Department of Medical Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Avishay Sella
- Department of Medical Oncology, Department of Oncology, Assaf Harofeh Medical Centre, Tel-Aviv University, Sackler School of Medicine, Zerifin, Israel
| | - Neal Shore
- Department of Urology, Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Matthew Smith
- Department of Medical Oncology, Massachusetts General Hospital Cancer Centre, Boston, MA, USA
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Cora N Sternberg
- Department of Medical Oncology, San Camillo Forlanini Hospital, Rome, Italy
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Japan
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Ian Tannock
- Department of Medical Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Bertrand Tombal
- Department of Urology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Riccardo Valdagni
- Department of Oncology and Haemato-oncology, Università degli Studi di Milano. Radiation Oncology 1, Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Thomas Wiegel
- Department of Radiation Oncology, Klinik für Strahlentherapie und Radioonkologie des Universitätsklinikum Ulm, Albert-Einstein-Allee, Ulm, Germany
| | - Aurelius Omlin
- Department of Medical Oncology, Cantonal Hospital St. Gallen and University of Berne, Switzerland
| |
Collapse
|
268
|
Sheahan AV, Ellis L. Epigenetic reprogramming: A key mechanism driving therapeutic resistance. Urol Oncol 2018; 36:375-379. [PMID: 29395951 DOI: 10.1016/j.urolonc.2017.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023]
Abstract
Prostate cancer initiation, development and progression is driven by androgen receptor (AR) signaling. Androgen deprivation therapy is the primary treatment for patients that present with locally advanced or metastatic disease. However, androgen deprivation therapy is not curative, and patients will progress to castrate-resistant disease (CRPC). Although most patient's progress to CRPC via restoration of AR signaling (CRPC-Ad), approximately a quarter of patients will progress via mechanisms independent of AR signaling. This highly lethal phenotype is termed aggressive variant prostate cancer (AVPC). Data from clinical and preclinical studies demonstrate that AVPC involves combinatorial loss-of-function mutations in key tumor suppressor genes, low to absent AR levels, and re-expression of reprogramming, stem, and neuroendocrine related gene signatures. Further, AVPC is shown to evolve from a CRPC-Ad phenotype. Overall, lineage plasticity underlying progression to AVPC is thought to be provoked by genome-wide chromatin remodeling. Here, we will discuss an emerging focus on key drivers of chromatin remodeling in AVPC, and how their identification could provide noninvasive biomarkers to predict or detect AVPC emergence, and therapeutic targets to prevent or reverse progression to AVPC.
Collapse
Affiliation(s)
- Anjali V Sheahan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; The Broad Institute, Cambridge, MA.
| |
Collapse
|
269
|
Luo J, Attard G, Balk SP, Bevan C, Burnstein K, Cato L, Cherkasov A, De Bono JS, Dong Y, Gao AC, Gleave M, Heemers H, Kanayama M, Kittler R, Lang JM, Lee RJ, Logothetis CJ, Matusik R, Plymate S, Sawyers CL, Selth LA, Soule H, Tilley W, Weigel NL, Zoubeidi A, Dehm SM, Raj GV. Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. Eur Urol 2017; 73:715-723. [PMID: 29258679 DOI: 10.1016/j.eururo.2017.11.038] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Although a number of studies have demonstrated the importance of constitutively active androgen receptor variants (AR-Vs) in prostate cancer, questions still remain about the precise role of AR-Vs in the progression of castration-resistant prostate cancer (CRPC). OBJECTIVE Key stakeholders and opinion leaders in prostate cancer convened on May 11, 2017 in Boston to establish the current state of the field of AR-Vs. EVIDENCE ACQUISITION The meeting "Mission Androgen Receptor Variants" was the second of its kind sponsored by the Prostate Cancer Foundation (PCF). This invitation-only event was attended by international leaders in the field and representatives from sponsoring organizations (PCF and industry sponsors). Eighteen faculty members gave short presentations, which were followed by in-depth discussions. Discussions focused on three thematic topics: (1) potential of AR-Vs as biomarkers of therapeutic resistance; (2) role of AR-Vs as functionally active CRPC progression drivers; and (3) utility of AR-Vs as therapeutic targets in CRPC. EVIDENCE SYNTHESIS The three meeting organizers synthesized this meeting report, which is intended to summarize major data discussed at the meeting and identify key questions as well as strategies for addressing these questions. There was a critical consensus that further study of the AR-Vs is an important research focus in CRPC. Contrasting views and emphasis, each supported by data, were presented at the meeting, discussed among the participants, and synthesized in this report. CONCLUSIONS This article highlights the state of knowledge and outlines the most pressing questions that need to be addressed to advance the AR-V field. PATIENT SUMMARY Although further investigation is needed to delineate the role of androgen receptor (AR) variants in metastatic castration-resistant prostate cancer, advances in measurement science have enabled development of blood-based tests for treatment selection. Detection of AR variants (eg, AR-V7) identified a patient population with poor outcomes to existing AR-targeting therapies, highlighting the need for novel therapeutic agents currently under development.
Collapse
Affiliation(s)
- Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Steven P Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Charlotte Bevan
- Department of Surgery & Cancer, Imperial College London, Imperial Centre for Translational & Experimental Medicine (ICTEM), Hammersmith Hospital Campus, London, UK
| | - Kerry Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Artem Cherkasov
- Department of Urologic Sciences, University of British Columbia, The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Johann S De Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Allen C Gao
- Department of Urology, University of California Davis, Sacramento, CA, USA
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Hannelore Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Urology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Hematology/Medical Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mayuko Kanayama
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joshua M Lang
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Richard J Lee
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Logothetis
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Matusik
- Department of Urologic Surgery, Vanderbilt Prostate Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Plymate
- Department of Medicine, University of Washington and VAPSHCS GRECC, Seattle, WA, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, SA, Australia
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Wayne Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, SA, Australia
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, The Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA; Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| | - Ganesh V Raj
- Department of Urology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA; Department of Urology and Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
270
|
Predicting therapy response and resistance in metastatic prostate cancer with circulating tumor DNA. Urol Oncol 2017; 36:380-384. [PMID: 29248429 DOI: 10.1016/j.urolonc.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) is empirical, with progress to a more precision medicine approach hampered by lack of predictive biomarkers. This is due in large part to the historical difficulty of molecularly profiling a bone-predominant metastatic disease. Focus has turned to minimally invasive sources of tumor material to better understand the molecular drivers of therapy resistance. Circulating cell-free tumor DNA (ctDNA) is highly abundant in the bloodstream of mCRPC patients and appears to provide an accurate snapshot of real-time tumor genomics. Already, the analysis of androgen receptor gene alterations in the ctDNA of mCRPC patient cohorts has suggested significant potential for guiding the use of androgen receptor-directed therapy. Furthermore, the monitoring of patient ctDNA burden in the wake of systemic therapy may offer a powerful surrogate for tracking tumor responses and emerging resistant subclones. This seminar covers recent advances in mCRPC patient ctDNA profiling, emerging associations of distinct molecular subtypes with clinical outcomes, and the potential for ctDNA to augment precision oncology.
Collapse
|
271
|
Miyahira AK, Cheng HH, Abida W, Ellis L, Harshman LC, Spratt DE, Simons JW, Pienta KJ, Soule HR. Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2017; 77:1478-1488. [PMID: 28925066 DOI: 10.1002/pros.23424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The 2017 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Beyond the Androgen Receptor II: New Approaches to Understanding and Treating Metastatic Prostate Cancer," was held in Carlsbad, California from June 14-17, 2017. METHODS The CHPCA is an annual scientific conference hosted by the Prostate Cancer Foundation (PCF) that is uniquely designed to produce extensive and constructive discussions on the most urgent and impactful topics concerning research into the biology and treatment of metastatic prostate cancer. The 2017 CHPCA Meeting was the 5th meeting in this annual series and was attended by 71 investigators focused on prostate cancer and a variety of other fields including breast and ovarian cancer. RESULTS The discussions at the meeting were concentrated on topics areas including: mechanisms and therapeutic approaches for molecular subclasses of castrate resistant prostate cancer (CRPC), the epigenetic landscape of prostate cancer, the role of DNA repair gene mutations, advancing the use of germline genetics in clinical practice, radionuclides for imaging and therapy, advances in molecular imaging, and therapeutic strategies for successful use of immunotherapy in advanced prostate cancer. DISCUSSION This article reviews the presentations and discussions from the 2017 CHPCA Meeting in order to disseminate this knowledge and accelerate new biological understandings and advances in the treatment of patients with metastatic prostate cancer.
Collapse
Affiliation(s)
| | - Heather H Cheng
- Department of Medicine, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Wassim Abida
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
272
|
Chen R, Li Y, Buttyan R, Dong X. Implications of PI3K/AKT inhibition on REST protein stability and neuroendocrine phenotype acquisition in prostate cancer cells. Oncotarget 2017; 8:84863-84876. [PMID: 29156689 PMCID: PMC5689579 DOI: 10.18632/oncotarget.19386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that arises as a consequence of rigorous androgen receptor (AR) pathway inhibition (ARPI) therapies. While the PI3K/AKT pathway has been investigated as a co-therapeutic target with ARPI for advanced PCa, whether this strategy can prevent tumor progression to t-NEPC remains unknown. Here, we report that PI3K/AKT inhibition alone reduces RE-1 silencing transcription factor (REST) protein expression and induces multiple NE markers in PCa cells. The loss of REST by PI3K/AKT inhibition is through protein degradation mediated by the E3-ubiquitin ligase β-TRCP and REST phosphorylations at the S1024, S1027, and S1030 sites. Since AR inhibition can also deplete REST, the combinational inhibition of PI3K/AKT and AR further aggravated REST protein reduction. We profiled the transcriptomes of AKT and AR inhibitions in the LNCaP cells. The Gene Set Enrichment Analysis (GSEA) showed that these transcriptomes are highly correlated with the REST-regulated gene signature. Co-targeting AKT and AR resulted in a higher correlation comparing to those of single treatment. Comparing these transcriptomes to the t-NEPC gene signature in patients by GSEA, we observed that adding AKT inhibition to AR blockade enhanced the expression of neurogenesis-related genes and resulted in a stronger and broader upregulation of REST-regulated genes specific to t-NEPC. These results indicate that AKT pathway inhibition can induce neuroendocrine differentiation of PCa cells via REST protein degradation. It delineates a potential risk for the AR and PI3K/AKT co-targeting strategy as it may further facilitate t-NEPC development.
Collapse
Affiliation(s)
- Ruiqui Chen
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Yinan Li
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Ralph Buttyan
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| | - Xuesen Dong
- Vancouver Prostate Center, Department of Urologic Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
273
|
Rodríguez-Zarco E, Vallejo-Benítez A, Umbría-Jiménez S, Pereira-Gallardo S, Pabón-Carrasco S, Azueta A, González-Cámpora R, Espinal P, García-Escudero A. Immunohistochemical study of the neural development transcription factors (TTF1, ASCL1 and BRN2) in neuroendocrine prostate tumours. Actas Urol Esp 2017; 41:529-534. [PMID: 28285791 DOI: 10.1016/j.acuro.2016.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Prostatic small-cell neuroendocrine carcinoma is an uncommon malignancy that constitutes 0.5-1% of all prostate malignancies. The median cancer-specific survival of patients with prostatic small-cell neuroendocrine carcinoma is 19 months, and 60.5% of the patients have metastatic disease. Neural development transcription factors are molecules involved in the organogenesis of the central nervous system and of neuroendocrine precursors of various tissues, including the suprarenal gland, thyroid glands, lungs and prostate. MATERIAL AND METHODS We present 3 cases of this uncommon condition, applying the new World Health Organisation criteria. We conducted studies through haematoxylin and eosin staining and analysed the expression of the neural development transcription factors achaete-scute homolog like 1, thyroid transcription factor 1 and the class III/IV POU transcription factors, as a new research line in the carcinogenesis of prostatic neuroendocrine tumours. RESULTS In case 1, there was no TTF1 immunoexpression. Cases 2 and 3 had positive immunostaining for ASCL1, and Case 1 had negative immunostaining. BRN2 immunostaining was negative in case 1 and positive in cases 2 and 3. CONCLUSION The World Health Organisation does not recognise any molecular or genetic marker with prognostic value. ASCL-1 is related to the NOTCH and WNT signalling pathways. ASCL-1, TTF1 and BRN2 could be used for early diagnosis and as prognostic factors and therapeutic targets.
Collapse
|
274
|
Ketola K, Munuganti RSN, Davies A, Nip KM, Bishop JL, Zoubeidi A. Targeting Prostate Cancer Subtype 1 by Forkhead Box M1 Pathway Inhibition. Clin Cancer Res 2017; 23:6923-6933. [PMID: 28899970 DOI: 10.1158/1078-0432.ccr-17-0901] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Prostate cancer was recently classified to three clinically relevant subtypes (PCS) demarcated by unique pathway activation and clinical aggressiveness. In this preclinical study, we investigated molecular targets and therapeutics for PCS1, the most aggressive and lethal subtype, with no treatment options available in the clinic.Experimental Design: We utilized the PCS1 gene set and our model of enzalutamide (ENZR) castration-resistant prostate cancer (CRPC) to identify targetable pathways and inhibitors for PCS1. The findings were evaluated in vitro and in the ENZR CRPC xenograft model in vivoResults: The results revealed that ENZR CRPC cells are enriched with PCS1 signature and that Forkhead box M1 (FOXM1) pathway is the central driver of this subtype. Notably, we identified Monensin as a novel FOXM1-binding agent that selectively targets FOXM1 to reverse the PCS1 signature and its associated stem-like features and reduces the growth of ENZR CRPC cells and xenograft tumors.Conclusions: Our preclinical data indicate FOXM1 pathway as a master regulator of PCS1 tumors, namely in ENZR CRPC, and targeting FOXM1 reduces cell growth and stemness in ENZR CRPC in vitro and in vivo These preclinical results may guide clinical evaluation of targeting FOXM1 to eradicate highly aggressive and lethal PCS1 prostate cancer tumors. Clin Cancer Res; 23(22); 6923-33. ©2017 AACR.
Collapse
Affiliation(s)
- Kirsi Ketola
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Alastair Davies
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ka Mun Nip
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada. .,Department of Urology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
275
|
Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10. [PMID: 28586335 DOI: 10.1038/nm.4341] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.
Collapse
|
276
|
Stankiewicz E, Mao X, Mangham DC, Xu L, Yeste-Velasco M, Fisher G, North B, Chaplin T, Young B, Wang Y, Kaur Bansal J, Kudahetti S, Spencer L, Foster CS, Møller H, Scardino P, Oliver RT, Shamash J, Cuzick J, Cooper CS, Berney DM, Lu YJ. Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer. Sci Rep 2017; 7:5124. [PMID: 28698647 PMCID: PMC5505985 DOI: 10.1038/s41598-017-05209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/24/2017] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1-16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by 'liquid biopsy'. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion.
Collapse
Affiliation(s)
- Elzbieta Stankiewicz
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Xueying Mao
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - D Chas Mangham
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire, SY10 7AG, UK
| | - Lei Xu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Marc Yeste-Velasco
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gabrielle Fisher
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Bernard North
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Tracy Chaplin
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bryan Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yuqin Wang
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jasmin Kaur Bansal
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sakunthala Kudahetti
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lucy Spencer
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Christopher S Foster
- Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool, L69 3BX, UK
- HCA Pathology Laboratories, Shropshire House, Capper Street, London, WC1E6JA, UK
| | - Henrik Møller
- King's College London, Cancer Epidemiology and Population Health, London, SE1 9RT, UK
| | - Peter Scardino
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - R Tim Oliver
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonathan Shamash
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jack Cuzick
- Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1 6BQ, UK
| | - Colin S Cooper
- School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Daniel M Berney
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Yong-Jie Lu
- Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
277
|
Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, Le Magnen C, Chester D, Mostaghel EA, Califano A, Rubin MA, Shen MM, Abate-Shen C. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov 2017; 7:736-749. [PMID: 28411207 PMCID: PMC5501744 DOI: 10.1158/2159-8290.cd-16-1174] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/14/2016] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
Current treatments for castration-resistant prostate cancer (CRPC) that target androgen receptor (AR) signaling improve patient survival, yet ultimately fail. Here, we provide novel insights into treatment response for the antiandrogen abiraterone by analyses of a genetically engineered mouse (GEM) model with combined inactivation of Trp53 and Pten, which are frequently comutated in human CRPC. These NPp53 mice fail to respond to abiraterone and display accelerated progression to tumors resembling treatment-related CRPC with neuroendocrine differentiation (CRPC-NE) in humans. Cross-species computational analyses identify master regulators of adverse response that are conserved with human CRPC-NE, including the neural differentiation factor SOX11, which promotes neuroendocrine differentiation in cells derived from NPp53 tumors. Furthermore, abiraterone-treated NPp53 prostate tumors contain regions of focal and/or overt neuroendocrine differentiation, distinguished by their proliferative potential. Notably, lineage tracing in vivo provides definitive and quantitative evidence that focal and overt neuroendocrine regions arise by transdifferentiation of luminal adenocarcinoma cells. These findings underscore principal roles for TP53 and PTEN inactivation in abiraterone resistance and progression from adenocarcinoma to CRPC-NE by transdifferentiation.Significance: Understanding adverse treatment response and identifying patients likely to fail treatment represent fundamental clinical challenges. By integrating analyses of GEM models and human clinical data, we provide direct genetic evidence for transdifferentiation as a mechanism of drug resistance as well as for stratifying patients for treatment with antiandrogens. Cancer Discov; 7(7); 736-49. ©2017 AACR.See related commentary by Sinha and Nelson, p. 673This article is highlighted in the In This Issue feature, p. 653.
Collapse
Affiliation(s)
- Min Zou
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Roxanne Toivanen
- Departments of Medicine and Genetics and Developmental Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Antonina Mitrofanova
- Department of Systems Biology, Columbia University Medical Center, New York, New York; and Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Nicolas Floch
- Department of Urology, Columbia University Medical Center, New York, New York
| | - Sheida Hayati
- Department of Health Informatics, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yanping Sun
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Clémentine Le Magnen
- Departments of Medicine and Urology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Daniel Chester
- Department of Urology, Columbia University Medical Center, New York, New York
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Califano
- Departments of Systems Biology, Biomedical Informatics, and Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Mark A Rubin
- Englander Institute for Precision Medicine and Department of Pathology and Laboratory Medicine, Weil Cornell Medical College and New York-Presbyterian Hospital, New York, New York
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
278
|
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is associated with substantial clinical, pathologic, and molecular heterogeneity. Most tumors remain driven by androgen receptor (AR) signaling, which has clinical implications for patient selection for AR-directed approaches. However, histologic and clinical resistance phenotypes can emerge after AR inhibition, in which the tumors become less dependent on the AR. In this review, we discuss prostate cancer variants including neuroendocrine (NEPC) and aggressive variant (AVPC) prostate cancers and their clinical implications. Improvements in the understanding of the biologic mechanisms and molecular features underlying prostate cancer variants may help prognostication and facilitate the development of novel therapeutic approaches for subclasses of patient with CRPC.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Loredana Puca
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Himisha Beltran
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA.
| |
Collapse
|
279
|
Crumbaker M, Khoja L, Joshua AM. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers (Basel) 2017; 9:E34. [PMID: 28420128 PMCID: PMC5406709 DOI: 10.3390/cancers9040034] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a leading cause of cancer-related death in men worldwide. Aberrant signaling in the androgen pathway is critical in the development and progression of prostate cancer. Despite ongoing reliance on androgen receptor (AR) signaling in castrate resistant disease, in addition to the development of potent androgen targeting drugs, patients invariably develop treatment resistance. Interactions between the AR and PI3K pathways may be a mechanism of treatment resistance and inhibitors of this pathway have been developed with variable success. Herein we outline the role of the PI3K pathway in prostate cancer and, in particular, its association with androgen receptor signaling in the pathogenesis and evolution of prostate cancer, as well as a review of the clinical utility of PI3K targeting.
Collapse
Affiliation(s)
- Megan Crumbaker
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Leila Khoja
- AstraZeneca UK, Clinical Discovery Unit, Early Clinical Development Innovative Medicines, da Vinci Building, Melbourn Science Park, Melbourn, Hertfordshire SG8 6HB, UK.
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, UK.
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
280
|
Gupta K, Gupta S. Neuroendocrine differentiation in prostate cancer: key epigenetic players. Transl Cancer Res 2017; 6:S104-S108. [PMID: 30613478 DOI: 10.21037/tcr.2017.01.20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karishma Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
281
|
|