251
|
Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen SM, Lopomo P, Vigny M, Fry TJ, Orentas RJ, Mackall CL. Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Mol Ther 2017; 25:2189-2201. [PMID: 28676342 DOI: 10.1016/j.ymthe.2017.06.008] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
We explored the utility of targeting anaplastic lymphoma kinase (ALK), a cell surface receptor overexpressed on pediatric solid tumors, using chimeric antigen receptor (CAR)-based immunotherapy. T cells expressing a CAR incorporating the single-chain variable fragment sequence of the ALK48 mAb linked to a 4-1BB-CD3ζ signaling domain lysed ALK-expressing tumor lines and produced interferon-gamma upon antigen stimulation but had limited anti-tumor efficacy in two xenograft models of human neuroblastoma. Further exploration demonstrated that cytokine production was highly dependent upon ALK target density and that target density of ALK on neuroblastoma cell lines was insufficient for maximal activation of CAR T cells. In addition, ALK CAR T cells demonstrated rapid and complete antigen-induced loss of receptor from the T cell surface via internalization. Using a model that simultaneously modulated antigen density and CAR expression, we demonstrated that CAR functionality is regulated by target antigen and CAR density and that low expression of either contributes to limited anti-tumor efficacy of the ALK CAR. These data suggest that stoichiometric relationships between CAR receptors and target antigens may significantly impact the anti-tumor efficacy of CAR T cells and that manipulation of these parameters could allow precise tuning of CAR T cell activity.
Collapse
Affiliation(s)
- Alec J Walker
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Zhang
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Kelsey Wanhainen
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Adrienne H Long
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Sang M Nguyen
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Paola Lopomo
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Marc Vigny
- INSERM/UPMC, Institut du Fer à Moulin, 75005 Paris, France
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Rimas J Orentas
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
252
|
Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, Liu H, Wu MF, Mei Z, Gee A, Mehta B, Zhang H, Mahmood N, Tashiro H, Heslop HE, Dotti G, Rooney CM, Brenner MK. CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Mol Ther 2017; 25:2214-2224. [PMID: 28602436 DOI: 10.1016/j.ymthe.2017.05.012] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022] Open
Abstract
Targeting disialoganglioside (GD2) on neuroblastoma (NB) with T cells expressing a first-generation chimeric antigen receptor (CAR) was safe, but the cells had poor expansion and long-term persistence. We developed a third-generation GD2-CAR (GD2-CAR3) and hypothesized that GD2-CAR3 T cells (CARTs) would be safe and effective. This phase 1 study enrolled relapsed or refractory NB patients in three cohorts. Cohort 1 received CART alone, cohort 2 received CARTs plus cyclophosphamide and fludarabine (Cy/Flu), and cohort 3 was treated with CARTs, Cy/Flu, and a programmed death-1 (PD-1) inhibitor. Eleven patients were treated with CARTs. The infusions were safe, and no dose-limiting toxicities occurred. CARTs were detectable in cohort 1, but the lymphodepletion induced by Cy/Flu increased circulating levels of the homeostatic cytokine interleukin (IL)-15 (p = 0.003) and increased CART expansion by up to 3 logs (p = 0.03). PD-1 inhibition did not further enhance expansion or persistence. Antitumor responses at 6 weeks were modest. We observed a striking expansion of CD45/CD33/CD11b/CD163+ myeloid cells (change from baseline, p = 0.0126) in all patients, which may have contributed to the modest early antitumor responses; the effect of these cells merits further study. Thus, CARTs are safe, and Cy/Flu can further increase their expansion.
Collapse
Affiliation(s)
- Andras Heczey
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Chrystal U Louis
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barbara Savoldo
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Olga Dakhova
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - April Durett
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Bambi Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics and Informatics Group, Shared Resources, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengfeng F Wu
- Biostatistics and Informatics Group, Shared Resources, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Adrian Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Birju Mehta
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Huimin Zhang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Nadia Mahmood
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haruko Tashiro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
253
|
Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell 2017; 31:476-485. [PMID: 28366678 DOI: 10.1016/j.ccell.2017.03.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapies can be classified into agents that amplify natural immune responses (e.g., checkpoint inhibitors) versus synthetic immunotherapies designed to initiate new responses (e.g., monoclonal antibodies [mAbs], chimeric antigen receptors [CARs]). Checkpoint inhibitors mediate unprecedented benefit in some adult cancers, but have not demonstrated significant activity in pediatric cancers, likely due their paucity of neoantigens. In contrast, synthetic immunotherapies such as mAbs and CAR T cells demonstrate impressive effects against childhood cancers. Intense efforts are underway to enhance the effectiveness of pediatric cancer immunotherapies through improved engineering of synthetic immunotherapies and by combining these with agents designed to amplify immune responses.
Collapse
Affiliation(s)
- Robbie G Majzner
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Crystal L Mackall
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy at Stanford, Stanford Cancer Institute, Stanford University, 265 Campus Drive, G3141A, MC5456, Stanford, CA 94305, USA.
| |
Collapse
|
254
|
CAR T-cell therapy of solid tumors. Immunol Cell Biol 2016; 95:356-363. [PMID: 28003642 DOI: 10.1038/icb.2016.128] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
The potential for immunotherapy as a treatment option for cancer is clear from remarkable responses of some leukemia patients to adoptive cell transfer using autologous T cells genetically modified to express chimeric antigen receptors (CARs). However, the vast majority of cancers, in particular the more common solid cancers, such as those of the breast, colon and lung, fail to respond significantly to infusions of CAR T cells. Solid cancers present some formidable barriers to adoptive cell transfer, including suppression of T-cell function and inhibition of T-cell localization. In this review, we discuss the current state of CAR T-cell therapy in solid cancers, the variety of concepts being investigated to overcome these barriers as well as approaches aimed at increasing the specificity and safety of adoptive cell transfer.
Collapse
|
255
|
Chen J, Ye Y, Liu P, Yu W, Wei F, Li H, Yu J. Suppression of T cells by myeloid-derived suppressor cells in cancer. Hum Immunol 2016; 78:113-119. [PMID: 27939507 DOI: 10.1016/j.humimm.2016.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their immunosuppression. Elevated levels of certain soluble cytokines in tumor microenvironment, such as IL-6 and IL-10, contribute to the recruitment and accumulation of tumor-associated MDSCs. In turn, MDSCs secret IL-6 and IL-10 and form a positive self-feedback to promote self-expansion. MDSCs also release other soluble cytokines such as TGF-β and chemokines to exert their suppressive function by induction of regulatory T cells. Exhaustion of some amino acids by MDSCs with many secretory enzymes or membrane transporters as well as their metabolites leads to blockage of T cells development. The interaction of membrane molecules on MDSCs and T cells leads inactivation and apoptosis of T cells. There may be one or some dominant mechanism(s) by which MDSCs impair the immune system in different tumor microenvironment. Thus, it is important to identify the subpopulations of MDSCs and clarify the dominant mechanism(s) through which MDSCs inhibit antitumor immunity in order to establish a more individual immunotherapy by eliminating MDSCs-mediated suppression. Currently studies concentrated on therapeutic strategies targeting MDSCs have obtained promising results. However, more studies are needed to demonstrate their clinical safety and efficacy.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yingnan Ye
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Core, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Feng Wei
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hui Li
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jinpu Yu
- Department of Immunology, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; Cancer Molecular Diagnostic Core, National Clinical Research Center of Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|