251
|
Ionic mechanisms of arrhythmogenesis. Trends Cardiovasc Med 2015; 25:487-96. [PMID: 25701094 DOI: 10.1016/j.tcm.2015.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The understanding of ionic mechanisms underlying cardiac rhythm disturbances (arrhythmias) is an issue of significance in the medical science community. Several advances in molecular, cellular, and optical techniques in the past few decades have substantially increased our knowledge of ionic mechanisms that are thought to underlie arrhythmias. The application of these techniques in the study of ion channel biophysics and regulatory properties has provided a wealth of information, with some important therapeutic implications for dealing with the disease. In this review, we briefly consider the cellular and tissue manifestations of a number of cardiac rhythm disturbances, while focusing on our current understanding of the ionic current mechanisms that have been implicated in such rhythm disturbances.
Collapse
|
252
|
Zhao J, Yao Y, Shi R, Huang W, Smaill BH, Lever NA. Progressive modification of rotors in persistent atrial fibrillation by stepwise linear ablation. HeartRhythm Case Rep 2015; 1:22-26. [PMID: 28491503 PMCID: PMC5420065 DOI: 10.1016/j.hrcr.2014.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yan Yao
- Clinical EP Laboratory and Arrhythmia Center, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, and Beijing Union Medical College
| | - Rui Shi
- Clinical EP Laboratory and Arrhythmia Center, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, and Beijing Union Medical College
| | - Wen Huang
- Clinical EP Laboratory and Arrhythmia Center, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, and Beijing Union Medical College
| | - Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Physiology
| | - Nigel A Lever
- Medicine, Beijing, China; University of Auckland, Auckland, New Zealand.,Green Lane Cardiovascular Services, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
253
|
The different faces of ventricular fibrillation. Resuscitation 2015; 86:A3-4. [DOI: 10.1016/j.resuscitation.2014.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/09/2014] [Indexed: 11/17/2022]
|
254
|
Calvo CJ, Deo M, Zlochiver S, Millet J, Berenfeld O. Attraction of rotors to the pulmonary veins in paroxysmal atrial fibrillation: a modeling study. Biophys J 2014; 106:1811-21. [PMID: 24739180 DOI: 10.1016/j.bpj.2014.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022] Open
Abstract
Maintenance of paroxysmal atrial fibrillation (AF) by fast rotors in the left atrium (LA) or at the pulmonary veins (PVs) is not fully understood. To gain insight into this dynamic and complex process, we studied the role of the heterogeneous distribution of transmembrane currents in the PVs and LA junction (PV-LAJ) in the localization of rotors in the PVs. We also investigated whether simple pacing protocols could be used to predict rotor drift in the PV-LAJ. Experimentally observed heterogeneities in IK1, IKs, IKr, Ito, and ICaL in the PV-LAJ were incorporated into two- and pseudo three-dimensional models of Courtemanche-Ramirez-Nattel-Kneller human atrial kinetics to simulate various conditions and investigate rotor drifting mechanisms. Spatial gradients in the currents resulted in shorter action potential duration, minimum diastolic potential that was less negative, and slower upstroke and conduction velocity for rotors in the PV region than in the LA. Rotors under such conditions drifted toward the PV and stabilized at the shortest action potential duration and less-excitable region, consistent with drift direction under intercellular coupling heterogeneities and regardless of the geometrical constraint in the PVs. Simulations with various IK1 gradient conditions and current-voltage relationships substantiated its major role in the rotor drift. In our 1:1 pacing protocol, we found that among various action potential properties, only the minimum diastolic potential gradient was a rate-independent predictor of rotor drift direction. Consistent with experimental and clinical AF studies, simulations in an electrophysiologically heterogeneous model of the PV-LAJ showed rotor attraction toward the PV. Our simulations suggest that IK1 heterogeneity is dominant compared to other currents in determining the drift direction through its impact on the excitability gradient. These results provide a believed novel framework for understanding the complex dynamics of rotors in AF.
Collapse
Affiliation(s)
- Conrado J Calvo
- Center for Arrhythmia Research, Department of Internal Medicine, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; BioITACA Grupo de Bioingeniería, Instituto de Aplicaciones Avanzadas, Valencia, Spain; Departamento Ingeniería Electrónica, Universitat Politècnica de Valencia, Valencia, Spain
| | - Makarand Deo
- Center for Arrhythmia Research, Department of Internal Medicine, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Engineering, Norfolk State University, Norfolk, Virginia
| | - Sharon Zlochiver
- Center for Arrhythmia Research, Department of Internal Medicine, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - José Millet
- BioITACA Grupo de Bioingeniería, Instituto de Aplicaciones Avanzadas, Valencia, Spain; Departamento Ingeniería Electrónica, Universitat Politècnica de Valencia, Valencia, Spain
| | - Omer Berenfeld
- Center for Arrhythmia Research, Department of Internal Medicine, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
255
|
Climent AM, Guillem MS, Atienza F, Fernández-Avilés F. Electrophysiological characteristics of permanent atrial fibrillation: insights from research models of cardiac remodeling. Expert Rev Cardiovasc Ther 2014; 13:1-3. [PMID: 25434351 DOI: 10.1586/14779072.2015.986465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atrial fibrillation (AF) results in a remodeling of the electrical and structural characteristics of the cardiac tissue which dramatically reduces the efficacy of pharmacological and catheter-based ablation therapies. Recent experimental and clinical results have demonstrated that the complexity of the fibrillatory process significantly differs in paroxysmal versus persistent AF; however, the lack of appropriate research models of remodeled atrial tissue precludes the elucidation of the underlying AF mechanisms and the identification of appropriated therapeutic targets. Here, we summarize the different research models used to date, highlighting the lessons learned from them and pointing to the new doors that should be open for the development of innovative treatments for AF.
Collapse
Affiliation(s)
- Andreu M Climent
- Department of Cardiology, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Dr. Esquerdo 46, 28009 Madrid, Spain
| | | | | | | |
Collapse
|
256
|
Rodrigo M, Pedrón-Torecilla J, Hernández I, Liberos A, Climent AM, Guillem MS. Data analysis in cardiac arrhythmias. Methods Mol Biol 2014; 1246:217-35. [PMID: 25417089 DOI: 10.1007/978-1-4939-1985-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.
Collapse
Affiliation(s)
- Miguel Rodrigo
- BIO-ITACA, Universitat Politècnica de València, Edificio 8G, Camino de Vera, S/N, 46022, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
257
|
Swarup V, Baykaner T, Rostamian A, Daubert JP, Hummel J, Krummen DE, Trikha R, Miller JM, Tomassoni GF, Narayan SM. Stability of rotors and focal sources for human atrial fibrillation: focal impulse and rotor mapping (FIRM) of AF sources and fibrillatory conduction. J Cardiovasc Electrophysiol 2014; 25:1284-92. [PMID: 25263408 DOI: 10.1111/jce.12559] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Several groups report electrical rotors or focal sources that sustain atrial fibrillation (AF) after it has been triggered. However, it is difficult to separate stable from unstable activity in prior studies that examined only seconds of AF. We applied phase-based focal impulse and rotor mapping (FIRM) to study the dynamics of rotors/sources in human AF over prolonged periods of time. METHODS We prospectively mapped AF in 260 patients (169 persistent, 61 ± 12 years) at 6 centers in the FIRM registry, using baskets with 64 contact electrodes per atrium. AF was phase mapped (RhythmView, Topera, Menlo Park, CA, USA). AF propagation movies were interpreted by each operator to assess the source stability/dynamics over tens of minutes before ablation. RESULTS Sources were identified in 258 of 260 of patients (99%), for 2.8 ± 1.4 sources/patient (1.8 ± 1.1 in left, 1.1 ± 0.8 in right atria). While AF sources precessed in stable regions, emanating activity including spiral waves varied from collision/fusion (fibrillatory conduction). Each source lay in stable atrial regions for 4,196 ± 6,360 cycles, with no differences between paroxysmal versus persistent AF (4,290 ± 5,847 vs. 4,150 ± 6,604; P = 0.78), or right versus left atrial sources (P = 0.26). CONCLUSIONS Rotors and focal sources for human AF mapped by FIRM over prolonged time periods precess ("wobble") but remain within stable regions for thousands of cycles. Conversely, emanating activity such as spiral waves disorganize and collide with the fibrillatory milieu, explaining difficulties in using activation mapping or signal processing analyses at fixed electrodes to detect AF rotors. These results provide a rationale for targeted ablation at AF sources rather than fibrillatory spiral waves.
Collapse
|
258
|
Gómez R, Caballero R, Barana A, Amorós I, De Palm SH, Matamoros M, Núñez M, Pérez-Hernández M, Iriepa I, Tamargo J, Delpón E. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents. Cardiovasc Res 2014; 104:337-46. [PMID: 25205296 DOI: 10.1093/cvr/cvu203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS We hypothesize that some drugs, besides flecainide, increase the inward rectifier current (IK1) generated by Kir2.1 homotetramers (IKir2.1) and thus, exhibit pro- and/or antiarrhythmic effects particularly at the ventricular level. To test this hypothesis, we analysed the effects of propafenone, atenolol, dronedarone, and timolol on Kir2.x channels. METHODS AND RESULTS Currents were recorded with the patch-clamp technique using whole-cell, inside-out, and cell-attached configurations. Propafenone (0.1 nM-1 µM) did not modify either IK1 recorded in human right atrial myocytes or the current generated by homo- or heterotetramers of Kir2.2 and 2.3 channels recorded in transiently transfected Chinese hamster ovary cells. On the other hand, propafenone increased IKir2.1 (EC50 = 12.0 ± 3.0 nM) as a consequence of its interaction with Cys311, an effect which decreased inward rectification of the current. Propafenone significantly increased mean open time and opening frequency at all the voltages tested, resulting in a significant increase of the mean open probability of the channel. Timolol, which interacted with Cys311, was also able to increase IKir2.1. On the contrary, neither atenolol nor dronedarone modified IKir2.1. Molecular modelling of the Kir2.1-drugs interaction allowed identification of the pharmacophore of drugs that increase IKir2.1. CONCLUSIONS Kir2.1 channels exhibit a binding site determined by Cys311 that is responsible for drug-induced IKir2.1 increase. Drug binding decreases channel affinity for polyamines and current rectification, and can be a mechanism of drug-induced pro- and antiarrhythmic effects not considered until now.
Collapse
Affiliation(s)
- Ricardo Gómez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Adriana Barana
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Sue-Haida De Palm
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Mercedes Núñez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Isabel Iriepa
- Department of Organic Chemistry, School of Pharmacy, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
259
|
Dupraz M, Jacquemet V. Geometrical measurement of cardiac wavelength in reaction-diffusion models. CHAOS (WOODBURY, N.Y.) 2014; 24:033133. [PMID: 25273213 DOI: 10.1063/1.4895811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The dynamics of reentrant arrhythmias often consists in multiple wavelets propagating throughout an excitable medium. An arrhythmia can be sustained only if these reentrant waves have a sufficiently short wavelength defined as the distance traveled by the excitation wave during its refractory period. In a uniform medium, wavelength may be estimated as the product of propagation velocity and refractory period (electrophysiological wavelength). In order to accurately measure wavelength in more general substrates relevant to atrial arrhythmias (heterogeneous and anisotropic), we developed a mathematical framework to define geometrical wavelength at each time instant based on the length of streamlines following the propagation velocity field within refractory regions. Two computational methods were implemented: a Lagrangian approach in which a set of streamlines were integrated, and an Eulerian approach in which wavelength was the solution of a partial differential equation. These methods were compared in 1D/2D tissues and in a model of the left atrium. An advantage of geometrical definition of wavelength is that the wavelength of a wavelet can be tracked over time with high temporal resolution and smaller temporal variability in an anisotropic and heterogeneous medium. The results showed that the average electrophysiological wavelength was consistent with geometrical measurements of wavelength. Wavelets were however often shorter than the electrophysiological wavelength due to interactions with boundaries and other wavelets. These tools may help to assess more accurately the relation between substrate properties and wavelet dynamics in computer models.
Collapse
Affiliation(s)
- Marie Dupraz
- Institut de Génie Biomédical, Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal (Québec) H3T 1J4, Canada and Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal (Québec) H4J 1C5, Canada
| | - Vincent Jacquemet
- Institut de Génie Biomédical, Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal (Québec) H3T 1J4, Canada and Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Montréal (Québec) H4J 1C5, Canada
| |
Collapse
|
260
|
A B Zaman Ma Bm BChir J, Schricker Md A, G Lalani Md G, Trikha Bs R, E Krummen Md D, M Narayan Md PhD S. Focal Impulse And Rotor Mapping (FIRM): Conceptualizing And Treating Atrial Fibrillation. J Atr Fibrillation 2014; 7:1103. [PMID: 27957100 DOI: 10.4022/jafib.1103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022]
Abstract
Current approaches for the ablation of atrial fibrillation are often effective, but only partially rooted in mechanistic understanding. Accordingly, they are unable to predict whether a given patient will or will not do well, or which lesions sets should or should not be performed - in any given patient. This goal would require clearer mechanistic definition of what sustains AF after it has been triggered (i.e. electrophysiological substrates). There are two schools of thought. The first proposes disorganized activity that self-sustains with no 'driver', and the second describes drivers that then cause disorganization. Interestingly, these mechanisms can be separated in human studies by mapping approach - proponents of the disorganized hypothesis studying small atrial areas at high resolution, and proponents of the driver model studying wide fields-of-view at varying resolutions. Focal impulse and rotor modulation (FIRM) mapping combines a wide field of view with physiologically based signal filtering and phase analysis, and has revealed that human AF is often sustained by rotors. In the CONFIRM Trial, targeting stable AF rotors/sources for ablation improved the single-procedure efficacy for paroxysmal and persistent AF over conventional ablation alone, as now confirmed by independent laboratories. FIRM mapping gives a mechanistic foundation to predict whether any selected lesions should intersect AF sources in any given patient and which mechanisms may cause recurrence. Rotors of varying characteristics have now been shown by many groups. These insights have reinvigorated interest in AF mapping, and rationalizing these findings will likely translate into improved therapy for our patients.
Collapse
Affiliation(s)
| | | | | | - Rishi Trikha Bs
- National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
261
|
Waks JW, Josephson ME. Mechanisms of Atrial Fibrillation - Reentry, Rotors and Reality. Arrhythm Electrophysiol Rev 2014; 3:90-100. [PMID: 26835073 DOI: 10.15420/aer.2014.3.2.90] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice, yet our understanding of the mechanisms that initiate and sustain this arrhythmia remains quite poor. Over the last 50 years, various mechanisms of AF have been proposed, yet none has been consistently observed in both experimental studies and in humans. Recently, there has been increasing interest in understanding how spiral waves or rotors - which are specific, organised forms of functional reentry - sustain human AF and how they might be therapeutic targets for catheter-based ablation. The following review describes the historical understanding of reentry and AF mechanisms from earlier in the 20th century, advances in our understanding of mechanisms that are able to sustain AF with a focus on rotors and complex fractionated atrial electrograms (CFAEs), and how the study of AF mechanisms has resulted in new strategies for treating AF with novel forms of catheter ablation.
Collapse
Affiliation(s)
- Jonathan W Waks
- Clinical Fellow in Cardiac Electrophysiology, Harvard Medical School, Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Beth Israel Deaconess Medical Center, Boston, US
| | - Mark E Josephson
- Herman C. Dana Professor of Medicine, Harvard Medical School, Chief of the Cardiovascular Division, Beth Israel Deaconess Medical Center and Director, Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Beth Israel Deaconess Medical Center, Boston, US
| |
Collapse
|
262
|
Narayan SM, Jalife J. CrossTalk proposal: Rotors have been demonstrated to drive human atrial fibrillation. J Physiol 2014; 592:3163-6. [PMID: 25085968 PMCID: PMC4146362 DOI: 10.1113/jphysiol.2014.271031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sanjiv M Narayan
- Department of Medicine/Cardiology, University of California, San Diego, CA, USA Veterans Affairs Medical Center, San Diego, CA, USA
| | - José Jalife
- Center for Arrhythmia Research and Department of Internal Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
263
|
Abstract
Atrial fibrillation (AF) is the most common arrhythmia targeted by catheter ablation. Despite significant advances in our understanding of AF, ablation outcomes remain suboptimal, and this is due in large part to an incomplete understanding of the underlying sustaining mechanisms of AF. Recent developments of patient-tailored and physiology-based computational mapping systems have identified localized electrical spiral waves, or rotors, and focal sources as mechanisms that may represent novel targets for therapy. This report provides an overview of Focal Impulse and Rotor Modulation (FIRM) mapping, which reveals that human AF is often not actually driven by disorganized activity but instead that disorganization is secondary to organized rotors or focal sources. Targeted ablation of such sources alone can eliminate AF and, when added to pulmonary vein isolation, improves long-term outcome compared with conventional ablation alone. Translating mechanistic insights from such patient-tailored mapping is likely to be crucial in achieving the next major advances in personalized medicine for AF.
Collapse
Affiliation(s)
- Amir A. Schricker
- Department of Medicine/Cardiology, University of California San Diego Medical Center, San Diego, CA 92161, USA
| | - Gautam G. Lalani
- Department of Medicine/Cardiology, University of California San Diego Medical Center, San Diego, CA 92161, USA
| | - David E. Krummen
- Department of Medicine/Cardiology, University of California San Diego Medical Center, San Diego, CA 92161, USA
| | - Sanjiv M. Narayan
- Department of Medicine/Cardiology, University of California San Diego Medical Center, San Diego, CA 92161, USA
| |
Collapse
|
264
|
Gomez JF, Cardona K, Martinez L, Saiz J, Trenor B. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study. PLoS One 2014; 9:e103273. [PMID: 25054335 PMCID: PMC4108391 DOI: 10.1371/journal.pone.0103273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure. OBJECTIVE In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations. METHODS The electrical activity of human transmural ventricular tissue (5 cm × 5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation. RESULTS No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components. CONCLUSION Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.
Collapse
Affiliation(s)
- Juan F. Gomez
- Instituto de Investigación en Ingeniería Biomédica, UniversitatPolitècnica de València, Valencia, Spain
| | - Karen Cardona
- Instituto de Investigación en Ingeniería Biomédica, UniversitatPolitècnica de València, Valencia, Spain
| | - Laura Martinez
- Instituto de Investigación en Ingeniería Biomédica, UniversitatPolitècnica de València, Valencia, Spain
| | - Javier Saiz
- Instituto de Investigación en Ingeniería Biomédica, UniversitatPolitècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Instituto de Investigación en Ingeniería Biomédica, UniversitatPolitècnica de València, Valencia, Spain
| |
Collapse
|
265
|
Computational model of erratic arrhythmias in a cardiac cell network: the role of gap junctions. PLoS One 2014; 9:e100288. [PMID: 24941068 PMCID: PMC4062566 DOI: 10.1371/journal.pone.0100288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
Cardiac morbidity and mortality increases with the population age. To investigate the underlying pathological mechanisms, and suggest new ways to reduce clinical risks, computational approaches complementing experimental and clinical investigations are becoming more and more important. Here we explore the possible processes leading to the occasional onset and termination of the (usually) non-fatal arrhythmias widely observed in the heart. Using a computational model of a two-dimensional network of cardiac cells, we tested the hypothesis that an ischemia alters the properties of the gap junctions inside the ischemic area. In particular, in agreement with experimental findings, we assumed that an ischemic episode can alter the gap junctions of the affected cells by reducing their average conductance. We extended these changes to include random fluctuations with time, and modifications in the gap junction rectifying conductive properties of cells along the edges of the ischemic area. The results demonstrate how these alterations can qualitatively give an account of all the main types of non-fatal arrhythmia observed experimentally, and suggest how premature beats can be eliminated in three different ways: a) with a relatively small surgical procedure, b) with a pharmacological reduction of the rectifying conductive properties of the gap-junctions, and c) by pharmacologically decreasing the gap junction conductance. In conclusion, our model strongly supports the hypothesis that non-fatal arrhythmias can develop from post-ischemic alteration of the electrical connectivity in a relatively small area of the cardiac cell network, and suggests experimentally testable predictions on their possible treatments.
Collapse
|
266
|
Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res 2014; 114:1500-15. [PMID: 24763467 PMCID: PMC4043633 DOI: 10.1161/circresaha.114.303772] [Citation(s) in RCA: 560] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future.
Collapse
Affiliation(s)
- Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lan S. Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Stanley Nattel
- Deartment of Medicine, Montreal Heart Institute and Université de Montréal
| |
Collapse
|
267
|
Mapping and ablating stable sources for atrial fibrillation: summary of the literature on Focal Impulse and Rotor Modulation (FIRM). J Interv Card Electrophysiol 2014; 40:237-44. [DOI: 10.1007/s10840-014-9889-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
268
|
Ravens U. [New developments in the antiarrhythmic therapy of atrial fibrillation]. Herzschrittmacherther Elektrophysiol 2014; 25:41-46. [PMID: 24496483 DOI: 10.1007/s00399-014-0302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Atrial fibrillation often affects elderly people with cardiovascular disease and takes a progressive course with increasing resistance to treatment. For the latter, electrical and structural changes (remodelling) seem to be responsible that are directly related to the high excitatory rate in the atria. Therapeutic strategies for atrial fibrillation consist of (i) treating the underlying cardiovascular disease, (ii) re-establishing sinus rhythm and (iii) reducing ventricular rate. Rapid pharmacological or electrical cardioversion is expected to prevent remodelling. Classical antiarrhythmic drugs are notoriously ineffective and burdened with serious cardiac and extracardiac side effects so that there is an urgent need for effective and safe novel compounds. In this review the three recently introduced drugs dronedarone, vernakalant and ranolazine are discussed with respect to the use in atrial fibrillation. Other new antiarrhythmic agents are still in the developmental phase and aim at atria-selective mechanisms thereby excluding ventricular proarrhythmic effects. The mechanisms of action will be discussed in the context of the present understanding of the pathophysiology of onset and maintenance of atrial fibrillation.
Collapse
Affiliation(s)
- Ursula Ravens
- Medizinische Fakultät Carl Gustav Carus, Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Deutschland,
| |
Collapse
|
269
|
Martins RP, Kaur K, Hwang E, Ramirez RJ, Willis BC, Filgueiras-Rama D, Ennis SR, Takemoto Y, Ponce-Balbuena D, Zarzoso M, O'Connell RP, Musa H, Guerrero-Serna G, Avula UMR, Swartz MF, Bhushal S, Deo M, Pandit SV, Berenfeld O, Jalife J. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 2014; 129:1472-82. [PMID: 24463369 DOI: 10.1161/circulationaha.113.004742] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Little is known about the mechanisms underlying the transition from paroxysmal to persistent atrial fibrillation (AF). In an ovine model of long-standing persistent AF we tested the hypothesis that the rate of electric and structural remodeling, assessed by dominant frequency (DF) changes, determines the time at which AF becomes persistent. METHODS AND RESULTS Self-sustained AF was induced by atrial tachypacing. Seven sheep were euthanized 11.5±2.3 days after the transition to persistent AF and without reversal to sinus rhythm; 7 sheep were euthanized after 341.3±16.7 days of long-standing persistent AF. Seven sham-operated animals were in sinus rhythm for 1 year. DF was monitored continuously in each group. Real-time polymerase chain reaction, Western blotting, patch clamping, and histological analyses were used to determine the changes in functional ion channel expression and structural remodeling. Atrial dilatation, mitral valve regurgitation, myocyte hypertrophy, and atrial fibrosis occurred progressively and became statistically significant after the transition to persistent AF, with no evidence for left ventricular dysfunction. DF increased progressively during the paroxysmal-to-persistent AF transition and stabilized when AF became persistent. Importantly, the rate of DF increase correlated strongly with the time to persistent AF. Significant action potential duration abbreviation, secondary to functional ion channel protein expression changes (CaV1.2, NaV1.5, and KV4.2 decrease; Kir2.3 increase), was already present at the transition and persisted for 1 year of follow up. CONCLUSIONS In the sheep model of long-standing persistent AF, the rate of DF increase predicts the time at which AF stabilizes and becomes persistent, reflecting changes in action potential duration and densities of sodium, L-type calcium, and inward rectifier currents.
Collapse
Affiliation(s)
- Raphael P Martins
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI (R.P.M., K.K., E.H., R.J.R., B.C.W., D.F.-R., S.R.E., Y.T., D.P.-B., M.Z., R.P.O., H.M., G.G.-S., U.M.R.A., S.V.P., O.B., J.J.); Department of Surgery, University of Rochester, Rochester, NY (M.F.S.); and Department of Engineering, Norfolk State University, Norfolk, VA (S.B., M.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Affiliation(s)
- Gautam G. Lalani
- University of California Medical Center, Veterans Affairs San Diego
- Stanford University
| | - Rishi Trikha
- University of California Medical Center, Veterans Affairs San Diego
- Stanford University
| | - David E. Krummen
- University of California Medical Center, Veterans Affairs San Diego
- Stanford University
| | - Sanjiv M. Narayan
- University of California Medical Center, Veterans Affairs San Diego
- Stanford University
| |
Collapse
|
271
|
Obel O, Joglar JA. Unveiling the remodeled atrium: lessons from the early recurrence of atrial fibrillation. J Cardiovasc Electrophysiol 2013; 25:168-70. [PMID: 24237906 DOI: 10.1111/jce.12323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Owen Obel
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
272
|
Jiménez ZA, Zhang Z, Steinbock O. Electric-field-controlled unpinning of scroll waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052918. [PMID: 24329342 DOI: 10.1103/physreve.88.052918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Indexed: 06/03/2023]
Abstract
Three-dimensional excitation vortices exist in systems such as chemical reactions and the human heart. Their one-dimensional rotation backbone can pin to unexcitable heterogeneities, which greatly affect the structure, dynamics, and lifetime of the vortex. In experiments with the Belousov-Zhabotinsky reaction, we demonstrate vortex unpinning from a pair of inert and impermeable spheres using externally applied electric fields. Unpinning occurs abruptly but is preceded by a slow reorientation and deformation of the initially circular vortex loop. Our experimental findings are reproduced by numerical simulations of an excitable reaction-diffusion-advection model.
Collapse
Affiliation(s)
- Zulma A Jiménez
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Zhihui Zhang
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| | - Oliver Steinbock
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
273
|
Shi KH, Tao H, Yang JJ, Wu JX, Xu SS, Zhan HY. Role of microRNAs in atrial fibrillation: New insights and perspectives. Cell Signal 2013; 25:2079-84. [DOI: 10.1016/j.cellsig.2013.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 01/15/2023]
|
274
|
|
275
|
Fansler DR, Smith TW. Rotors: Linking VF and VT? Heart Rhythm 2013; 10:1917-8. [PMID: 23969071 DOI: 10.1016/j.hrthm.2013.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Derrick R Fansler
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | |
Collapse
|
276
|
Hayase J, Tung R, Narayan SM, Krummen DE. A case of a human ventricular fibrillation rotor localized to ablation sites for scar-mediated monomorphic ventricular tachycardia. Heart Rhythm 2013; 10:1913-6. [PMID: 23911894 DOI: 10.1016/j.hrthm.2013.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Indexed: 11/20/2022]
Affiliation(s)
- Justin Hayase
- University of California San Diego, San Diego, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | | | | |
Collapse
|
277
|
Abstract
New antiarrhythmic drugs for treatment of atrial fibrillation should ideally be atrial selective in order to avoid pro-arrhythmic effects in the ventricles. Currently recognized atrial selective targets include atrial Nav1.5 channels, Kv1.5 channels and constitutively active Kir3.1/3.4 channels, each of which confers atrial selectivity by different mechanisms. Na(+) channel blockers with potential- and frequency-dependent action preferentially suppress atrial fibrillation because of the high excitation rate and less negative atrial resting potential, which promote drug binding in atria. Kv1.5 channels are truly atrial selective because they do not conduct repolarizing current IKur in ventricles. Constitutively active IK,ACh is predominantly observed in remodelled atria from patients in permanent atrial fibrillation (AF). A lot of effort has been invested to detect compounds which will selectively block Kir3.1/Kir3.4 in their remodelled constitutively active form. Novel drugs which have been and are being developed aim at atrial-selective targets. Vernakalant and ranolazine which mainly block atrial Na(+) channels are clinically effective. Newly designed selective IKur blockers and IK,ACh blockers are effective in animal models; however, clinical benefit in converting AF into sinus rhythm (SR) or reducing AF burden remains to be demonstrated. In conclusion, atrial-selective antiarrhythmic agents have a lot of potential, but a long way to go.
Collapse
Affiliation(s)
- Ursula Ravens
- U. Ravens: Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
278
|
Amorós I, Dolz-Gaitón P, Gómez R, Matamoros M, Barana A, de la Fuente MG, Núñez M, Pérez-Hernández M, Moraleda I, Gálvez E, Iriepa I, Tamargo J, Caballero R, Delpón E. Propafenone blocks human cardiac Kir2.x channels by decreasing the negative electrostatic charge in the cytoplasmic pore. Biochem Pharmacol 2013; 86:267-78. [PMID: 23648307 DOI: 10.1016/j.bcp.2013.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/24/2022]
Abstract
Human cardiac inward rectifier current (IK1) is generated by Kir2.x channels. Inhibition of IK1 could offer a useful antiarrhythmic strategy against fibrillatory arrhythmias. Therefore, elucidation of Kir2.x channels pharmacology, which still remains elusive, is mandatory. We characterized the electrophysiological and molecular basis of the inhibition produced by the antiarrhythmic propafenone of the current generated by Kir2.x channels (IKir2.x) and the IK1 recorded in human atrial myocytes. Wild type and mutated human Kir2.x channels were transiently transfected in CHO and HEK-293 cells. Macroscopic and single-channel currents were recorded using the patch-clamp technique. At concentrations >1μM propafenone inhibited IKir2.x the order of potency being Kir2.3∼IK1>Kir2.2>Kir2.1 channels. Blockade was irrespective of the extracellular K(+) concentration whereas markedly increased when the intracellular K(+) concentration was decreased. Propafenone decreased inward rectification since at potentials positive to the K(+) equilibrium potential propafenone-induced block decreased in a voltage-dependent manner. Importantly, propafenone favored the occurrence of subconductance levels in Kir2.x channels and decreased phosphatidylinositol 4,5-bisphosphate (PIP2)-channel affinity. Blind docking and site-directed mutagenesis experiments demonstrated that propafenone bound Kir2.x channels at the cytoplasmic domain, close to, but not in the pore itself, the binding site involving two conserved Arg residues (residues 228 and 260 in Kir2.1). Our results suggested that propafenone incorporated into the cytoplasmic domain of the channel in such a way that it decreased the net negative charge sensed by K(+) ions and polyamines which, in turn, promotes the appearance of subconductance levels and the decrease of PIP2 affinity of the channels.
Collapse
Affiliation(s)
- Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
|