251
|
Escobedo-Uribe CD, Monsiváis-Urenda AE, López-Quijano JM, Carrillo-Calvillo J, Leiva-Pons JL, Peña-Duque MA. [Cell therapy for ischemic heart disease]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2012; 82:218-29. [PMID: 23021359 DOI: 10.1016/j.acmx.2012.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/02/2012] [Accepted: 04/17/2012] [Indexed: 10/27/2022] Open
Abstract
Ischemic heart disease is the leading cause of death and heart failure worldwide. That is why it is important to develop new therapeutic modalities to decrease mortality and long-term complications in these patients. One of the main lines of research worldwide is myocardial regeneration, using progenitor cells in order to improve systolic and diastolic function in patients with ischemic heart disease, as well as to increase their survival. There have been carried out, with great enthusiasm worldwide, human and animal studies to define the usefulness of stem cells in the management of patients with ischemic heart disease. Today, regenerative therapy in ischemic heart disease is considered a novel therapeutic tool, with substantial theoretical benefits and few side effects. Here we present the scientific principles that support the use of this therapy, discuss the current clinical evidence available; and point out the controversial issues still not clarified on its use and usefulness in the short and long term.
Collapse
|
252
|
Majka SM, Miller HL, Sullivan T, Erickson PF, Kong R, Weiser-Evans M, Nemenoff R, Moldovan R, Morandi SA, Davis JA, Klemm DJ. Adipose lineage specification of bone marrow-derived myeloid cells. Adipocyte 2012; 1:215-229. [PMID: 23700536 PMCID: PMC3609111 DOI: 10.4161/adip.21496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells.
Collapse
|
253
|
Santini MP, Rosenthal N. Myocardial regenerative properties of macrophage populations and stem cells. J Cardiovasc Transl Res 2012; 5:700-12. [PMID: 22684511 PMCID: PMC3447141 DOI: 10.1007/s12265-012-9383-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/24/2012] [Indexed: 01/02/2023]
Abstract
The capacity to regenerate damaged tissue and appendages is lost to some extent in higher vertebrates such as mammals, which form a scar tissue at the expenses of tissue reconstitution and functionality. Whereas this process can protect from further damage and elicit fast healing, it can lead to functional deterioration in organs such as the heart. Based on the analyses performed in the last years, stem cell therapies may not be sufficient to induce cardiac regeneration and additional approaches are required to overcome scar formation. Among these, the immune cells and their humoral response have become a key parameter in regenerative processes. In this review, we will describe the recent findings on the possible therapeutical use of progenitor and immune cells to rescue a damaged heart.
Collapse
|
254
|
Zhang L, Chen B, Zhao Y, Dubielecka PM, Wei L, Qin GJ, Chin YE, Wang Y, Zhao TC. Inhibition of histone deacetylase-induced myocardial repair is mediated by c-kit in infarcted hearts. J Biol Chem 2012; 287:39338-48. [PMID: 23024362 DOI: 10.1074/jbc.m112.379115] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to test whether inhibition of HDACs induces myocardial repair and cardiac function restoration through c-kit signaling in mouse myocardial infarction models. Myocardial infarction in wild type Kit(+/+) and Kit(W)/Kit(W-v) mice was created following thoracotomy by applying permanent ligation to the left anterior descending artery. The HDAC inhibitor, trichostatin A (TSA, 0.1 mg/kg), was intraperitoneally injected daily for a consecutive 8 weeks after myocardial infarction. 5-Bromo-2-deoxyuridine (BrdU, 50 mg/kg) was intraperitoneally delivered every other day to pulse-chase label in vivo endogenous cardiac replication. Eight weeks later, inhibition of HDACs in vivo resulted in an improvement in ventricular functional recovery and the prevention of myocardial remodeling in Kit(+/+) mice, which was eliminated in Kit(W)/Kit(W-v) mice. HDAC inhibition promoted cardiac repairs and neovascularization in the infarcted myocardium, which were absent in Kit(W)/Kit(W-v) mice. Re-introduction of TSA-treated wild type c-kit(+) CSCs into Kit(W)/Kit(W-v) myocardial infarction heart restored myocardial functional improvement and cardiac repair. To further validate that HDAC inhibition stimulates c-kit(+) cardiac stem cells (CSCs) to facilitate myocardial repair, GFP(+) c-kit(+) CSCs were preconditioned with TSA (50 nmol/liter) for 24 h and re-introduced into infarcted hearts for 2 weeks. Preconditioning of c-kit(+) CSCs via HDAC inhibition with trichostatin A significantly increased c-kit(+) CSC-derived myocytes and microvessels and enhanced functional recovery in myocardial infarction hearts in vivo. Our results provide evidence that HDAC inhibition promotes myocardial repair and prevents cardiac remodeling, which is dependent upon c-kit signaling.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, Rhode Island 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Liu H, Zhang J, Liu CY, Hayashi Y, Kao WWY. Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 2012; 16:1114-24. [PMID: 21883890 PMCID: PMC4365890 DOI: 10.1111/j.1582-4934.2011.01418.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It remains elusive as to what bone marrow (BM) cell types infiltrate into injured and/or diseased tissues and subsequently differentiate to assume the phenotype of residential cells, for example, neurons, cardiac myocytes, keratocytes, etc., to repair damaged tissue. Here, we examined the possibility of whether BM cell invasion via circulation into uninjured and injured corneas could assume a keratocyte phenotype, using chimeric mice generated by transplantation of enhanced green fluorescent protein (EGFP)+ BM cells into keratocan null (Kera−/−) and lumican null (Lum−/−) mice. EGFP+ BM cells assumed dendritic cell morphology, but failed to synthesize corneal-specific keratan sulfate proteoglycans, that is KS-lumican and KS-keratocan. In contrast, some EGFP+ BM cells introduced by intrastromal transplantation assumed keratocyte phenotypes. Furthermore, BM cells were isolated from Kera-Cre/ZEG mice, a double transgenic mouse line in which cells expressing keratocan become EGFP+ due to the synthesis of Cre driven by keratocan promoter. Three days after corneal and conjunctival transplantations of such BM cells into Kera−/− mice, green keratocan positive cells were found in the cornea, but not in conjunctiva. It is worthy to note that transplanted BM cells were rejected in 4 weeks. MSC isolated from BM were used to examine if BM mesenchymal stem cells (BM-MSC) could assume keratocyte phenotype. When BM-MSC were intrastromal-transplanted into Kera−/− mice, they survived in the cornea without any immune and inflammatory responses and expressed keratocan in Kera−/− mice. These observations suggest that corneal intrastromal transplantation of BM-MSC may be an effective treatment regimen for corneal diseases involving dysfunction of keratocytes.
Collapse
Affiliation(s)
- Hongshan Liu
- Department of Ophthalmology, Edith Crawley Vision Research Center, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
256
|
Finan A, Kiedrowski M, Turturice BA, Sopko NA, Penn MS. Cardiac pressure overload initiates a systemic stem cell response. Cytotherapy 2012; 14:983-93. [DOI: 10.3109/14653249.2012.684380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
257
|
Mamidi MK, Pal R, Dey S, Bin Abdullah BJJ, Zakaria Z, Rao MS, Das AK. Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy 2012; 14:902-16. [DOI: 10.3109/14653249.2012.693156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
258
|
Abstract
Cardiac stem cell therapy to promote engraftment of de novo beating cardiac muscle cells in cardiomyopathies could potentially improve clinical outcomes for many patients with congestive heart failure. Clinical trials carried out over the last decade for cardiac regeneration have revealed inadequacy of current approaches in cell therapy. Chief among them is the choice of stem cells to achieve the desired outcomes. Initial enthusiasm of adult bone marrow stems cells for myocyte regeneration has largely been relegated to paracrine-driven, donor cell-independent, endogenous cardiac repair. However, true functional restoration in heart failure is likely to require considerable myocyte replacement. In order to match stem cell application to various clinical scenarios, we review the necessity to preprime stem cells towards cardiac fate before myocardial transplantation and if these differentiated stem cells could confer added advantage over current choice of undifferentiated stem cells. We explore differentiation ability of various stem cells to cardiac progenitors/cardiomyocytes and compare their applicability in providing targeted recovery in light of current clinical challenges of cell therapy.
Collapse
Affiliation(s)
- Ashish Mehta
- Research and Development Unit, National Heart Centre Singapore, Singapore
| | | |
Collapse
|
259
|
Burt RK, Chen YH, Verda L, Lucena C, Navale S, Johnson J, Han X, Lomasney J, Baker JM, Ngai KL, Kino A, Carr J, Kajstura J, Anversa P. Mitotically inactivated embryonic stem cells can be used as an in vivo feeder layer to nurse damaged myocardium after acute myocardial infarction: a preclinical study. Circ Res 2012; 111:1286-96. [PMID: 22914647 DOI: 10.1161/circresaha.111.262584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. OBJECTIVE To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. METHODS AND RESULTS After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2'-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. CONCLUSIONS As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.
Collapse
Affiliation(s)
- Richard K Burt
- Division of Immunotherapy, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Lajiness JD, Conway SJ. The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res 2012; 5:739-48. [PMID: 22878976 DOI: 10.1007/s12265-012-9394-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022]
Abstract
Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically overlooked in terms of functional contributions to development and physiology, cardiac fibroblasts are now front and center. They are currently recognized as key protagonists during both normal development and cardiomyopathy disease, and work together with cardiomyocytes through paracrine, structural, and potentially electrical interactions. However, the lack of specific biomarkers and fibroblast heterogeneous nature currently convolutes the study of this dynamic cell lineage; though, efforts to advance marker analysis and lineage mapping technologies are ongoing. These tools will help elucidate the functional significance of fibroblast-cardiomyocyte interactions in vivo and delineate the dynamic nature of normal and pathological cardiac fibroblasts. Since therapeutic promise lies in understanding the interface between developmental biology and the postnatal injury response, future studies to understand the divergent roles played by cardiac fibroblasts both in utero and following cardiac insult are essential.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Room R4 W402F, Indianapolis, IN 46202, USA
| | | |
Collapse
|
261
|
Yasin M. Removing the cells from adult bone marrow derived stem cell therapy does not eliminate cardioprotection†. Eur J Cardiothorac Surg 2012; 43:840-8. [DOI: 10.1093/ejcts/ezs409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
262
|
Hu J, Li C, Wang L, Zhang X, Zhang M, Gao H, Yu X, Wang F, Zhao W, Yan S, Wang Y. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocr J 2012. [PMID: 22814142 DOI: 10.1016/j.jcyt.2013.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that several types of stem cells can differentiate into insulin-secreting islet beta-cells and that these cells can reduce blood glucose in some trials, but there has been no report of a long-term follow-up. We assessed the long-term effects of the use of autologous bone marrow mononuclear cells in the treatment of type 2 diabetes mellitus (T2DM). Based on the willingness to receive implantation of bone marrow mononuclear cells, One hundred and eighteen patients with T2DM were divided into two groups; the patients in group I were treated with autologous bone marrow mononuclear cells and patients in group II were treated with insulin intensification therapy. Mononuclear cells from bone marrow were injected back into the patient's pancreas via a catheter. Patients were followed-up after the operation at monthly intervals for the first 3 months and thereafter every 3 months for the next 33 months, the occurrence of any side effects and the results of laboratory examinations were evaluated. There were no reported acute or chronic side effects in group I and both the HbA1c and C-peptide in group I patients were significantly better than either pretherapy values or group II patients during the follow-up period. These data suggested that the implantation of autologous bone marrow mononuclear cells for the treatment of T2DM is safe and effective. This therapy can partially restore the function of islet beta-cells and maintain blood glucose homeostasis in a longer time.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Abstract
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.
Collapse
Affiliation(s)
- Jon M Oatley
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
264
|
Abstract
PURPOSE OF REVIEW Presentation of the current status of cardiac stem cell therapy for the treatment of ischaemic heart failure by highlighting recent clinical results and introducing ongoing trials. Furthermore, necessary upcoming procedural adjustments are discussed. RECENT FINDINGS During the last decade, stem cell application in the setting of ischaemic heart failure has been evaluated in phase I and II clinical trials, proving safety and feasibility of this approach. Functional results gained so far indicate moderate benefits. However, conclusive evaluation of cell therapy will not be possible before completion of ongoing phase III multicentre trials. Moreover, questions regarding the optimal cell population for treatment in a chronic setting and the favourable time-point of cell delivery have not been ultimately answered. SUMMARY Cell therapy for the treatment of ischaemic heart failure needs to be evaluated separately from the setting of acute myocardial infarction. In parallel with upcoming clinical evaluation in large-scale trials, further optimization of the 'cell product' regarding the favourable cell type and periprocedural processing, as well as route and time-point of application, is mandatory.
Collapse
|
265
|
Donndorf P, Kaminski A, Tiedemann G, Kundt G, Steinhoff G. Validating intramyocardial bone marrow stem cell therapy in combination with coronary artery bypass grafting, the PERFECT Phase III randomized multicenter trial: study protocol for a randomized controlled trial. Trials 2012; 13:99. [PMID: 22747980 PMCID: PMC3419083 DOI: 10.1186/1745-6215-13-99] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023] Open
Abstract
Background For the last decade continuous efforts have been made to translate regenerative cell therapy protocols in the cardiovascular field from ‘bench to bedside’. Successful clinical introduction, supporting safety, and feasibility of this new therapeutic approach, led to the initiation of the German, Phase III, multicenter trial - termed the PERFECT trial (ClinicalTrials.gov Identifier: NCT00950274), in order to evaluate the efficacy of surgical cardiac cell therapy on left ventricular function. Methods/Design The PERFECT trial has been designed as a prospective, randomized, double-blind, placebo controlled, multicenter trial, analyzing the effect of intramyocardial CD 133+ bone marrow stem cell injection in combination with coronary artery bypass grafting on postoperative left ventricular function. The trial includes patients aged between 18 and 79 years presenting with a coronary disease with indication for surgical revascularization and reduced global left ventricular ejection fraction as assessed by cardiac magnet resonance imaging. The included patients are treated in the chronic phase of ischemic cardiomyopathy after previous myocardial infarction. Discussion Patients undergoing coronary artery bypass grafting in combination with intramyocardial CD133+ cell injection will have a higher LV ejection fraction than patient who undergo CABG alone, measured 6 months after the operation. Trial registration ClinicalTrials.gov Identifier: NCT00950274
Collapse
Affiliation(s)
- Peter Donndorf
- Department of Cardiac Surgery, Reference and Translation Centre for Cardiac Stem Cell Therapy, University of Rostock, Schillingallee 35, Rostock, 18057 Germany.
| | | | | | | | | |
Collapse
|
266
|
Mahmoud AI, Porrello ER. Turning Back the Cardiac Regenerative Clock: Lessons From the Neonate. Trends Cardiovasc Med 2012; 22:128-33. [DOI: 10.1016/j.tcm.2012.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 01/07/2023]
|
267
|
Roles of p53 in various biological aspects of hematopoietic stem cells. J Biomed Biotechnol 2012; 2012:903435. [PMID: 22778557 PMCID: PMC3388322 DOI: 10.1155/2012/903435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the capacity to self-renew as well as to differentiate into all blood cell types, and they can reconstitute hematopoiesis in recipients with bone marrow ablation. In addition, transplantation therapy using HSCs is widely performed for the treatment of various incurable diseases such as hematopoietic malignancies and congenital immunodeficiency disorders. For the safe and successful transplantation of HSCs, their genetic and epigenetic integrities need to be maintained properly. Therefore, understanding the molecular mechanisms that respond to various cellular stresses in HSCs is important. The tumor suppressor protein, p53, has been shown to play critical roles in maintenance of “cell integrity” under stress conditions by controlling its target genes that regulate cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. In this paper, we summarize recent reports that describe various biological functions of HSCs and discuss the roles of p53 associated with them.
Collapse
|
268
|
Horváthy DB, Vácz G, Cselenyák A, Weszl M, Kiss L, Lacza Z. Albumin-coated bioactive suture for cell transplantation. Surg Innov 2012; 20:249-55. [PMID: 22717700 DOI: 10.1177/1553350612451353] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell therapy holds the promise for a novel modality in the surgical toolkit; however, delivery of cells into damaged soft tissues constitutes a challenge. The authors hypothesized that growing stem cells on the surface of absorbable sutures in vitro and then implanting them via stitching would be a suitable delivery route for cell therapy. Fibronectin, poly-L-lysine, and albumin coatings were used to increase attachment of human and rat bone-marrow-derived mesenchymal stem cells (BMSC) to polyfilament absorbable sutures in vitro. Fluorescence microscopy was performed to localize the cells on the suture. After 48 hours of incubation, the albumin-coated sutures had the highest cell number, and after 168 hours cell number reached confluency. In the in vivo experiments, a 10-mm incision was made on the triceps surae muscle of male Wistar rats and rat BMSC coated sutures were placed into the muscle. Two days after the implantation, cells were seen on the surface of the sutures as well as in the surrounding muscle tissue. Long-term results at 5 weeks showed that transplanted cells survived and the sutures were partly absorbed. In conclusion, coating absorbable sutures with proteins, especially serum albumin, improves attachment and proliferation of cells, and only 48 hours in culture is enough to cover the sutures sufficiently. Using these stitches in vivo resulted in short-term and long-term survival of cells. As a result, albumin-coated suture can be a vehicle for stem cell therapy in soft tissues such as muscle, tendon, or peripheral nerves.
Collapse
Affiliation(s)
- Dénes Balázs Horváthy
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
269
|
Rosenberg M, Lutz M, Kühl C, Will R, Eckstein V, Krebs J, Katus HA, Frey N. Coculture with hematopoietic stem cells protects cardiomyocytes against apoptosis via paracrine activation of AKT. J Transl Med 2012; 10:115. [PMID: 22672705 PMCID: PMC3408384 DOI: 10.1186/1479-5876-10-115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 06/06/2012] [Indexed: 02/08/2023] Open
Abstract
Background Previous experimental studies concluded that stem cells (SC) may exert their beneficial effects on the ischemic heart by paracrine activation of antiapoptotic pathways. In order to identify potential cardioprotective mediators, we performed a systematic analysis of the differential gene expression of hematopoietic SC after coculture with cardiomyocytes (CM). Methods After 48 h of coculture with neonatal rat ventricular CM (NRVCM), two consecutive cell sorting steps generated a highly purified population of conditioned murine hematopoietic SC (>99%). Next, a genome-wide microarray analysis of cocultured vs. monocultured hematopoietic SC derived from three independent experiments was performed. The analysis of differentially expressed genes was focused on products that are secretable and/or membrane-bound and potentially involved in antiapoptotic signalling. Results We found CCL-12, Macrophage Inhibitory Factor, Fibronectin and connexin 40 significantly upregulated in our coculture model. An ELISA of cell culture supernatants was performed to confirm secretion of candidate genes and showed that coculture supernatants revealed markedly higher CCL-12 concentrations. Moreover, we stimulated NRVCM with concentrated coculture supernatants which resulted in a significant reduction of apoptosis compared to monoculture-derived supernatant. Mechanistically, NRVCMs stimulated with coculture supernatants showed a higher level of AKT-phosphorylation, consistent with enhanced antiapoptotic signaling. Conclusion In summary, our results show that the interaction between hematopoietic SC and NRVCM led to a modified gene expression and induction of antiapoptotic pathways. These findings may thus at least in part explain the cardioprotective effects of hematopoietic SC.
Collapse
Affiliation(s)
- Mark Rosenberg
- Department of Internal Medicine III (Cardiology and Angiology), University Medical Center Schleswig-Holstein, Campus Kiel, Schittenhelmstr, 12, D-24105, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
270
|
Burrell K, Hill RP, Zadeh G. High-resolution in-vivo analysis of normal brain response to cranial irradiation. PLoS One 2012; 7:e38366. [PMID: 22675549 PMCID: PMC3366930 DOI: 10.1371/journal.pone.0038366] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/03/2012] [Indexed: 01/08/2023] Open
Abstract
Radiation therapy (RT) is a widely accepted treatment strategy for many central nervous system (CNS) pathologies. However, despite recognized therapeutic success, significant negative consequences are associated with cranial irradiation (CR), which manifests months to years post-RT. The pathophysiology and molecular alterations that culminate in the long-term detrimental effects of CR are poorly understood, though it is thought that endothelial injury plays a pivotal role in triggering cranial injury. We therefore explored the contribution of bone marrow derived cells (BMDCs) in their capacity to repair and contribute to neo-vascularization following CR. Using high-resolution in vivo optical imaging we have studied, at single-cell resolution, the spatio-temporal response of BMDCs in normal brain following CR. We demonstrate that BMDCs are recruited specifically to the site of CR, in a radiation dose and temporal-spatial manner. We establish that BMDCs do not form endothelial cells but rather they differentiate predominantly into inflammatory cells and microglia. Most notably we provide evidence that more than 50% of the microglia in the irradiated region of the brain are not resident microglia but recruited from the bone marrow following CR. These results have invaluable therapeutic implications as BMDCs may be a primary therapeutic target to block acute and long-term inflammatory response following CR. Identifying the critical steps involved in the sustained recruitment and differentiation of BMDCs into microglia at the site of CR can provide new insights into the mechanisms of injury following CR offering potential therapeutic strategies to counteract the long-term adverse effects of CR.
Collapse
Affiliation(s)
- Kelly Burrell
- Brain Tumor Research Centre, SickKids Research Institute, Toronto, Canada
| | - Richard P. Hill
- Ontario Cancer Institute/Princess Margaret Hospital and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- University of Toronto, Toronto, Ontario, Canada
- Toronto Western Hospital University Health Network, Toronto, Canada
- * E-mail:
| |
Collapse
|
271
|
Haller JL, Panyutin I, Chaudhry A, Zeng C, Mach RH, Frank JA. Sigma-2 receptor as potential indicator of stem cell differentiation. Mol Imaging Biol 2012; 14:325-35. [PMID: 21614680 PMCID: PMC3164741 DOI: 10.1007/s11307-011-0493-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The sigma-2 (σ(2)) receptor is a potential biomarker of proliferative status of solid tumors. Specific synthetic probes using N-substituted-9-azabicyclo [3.3.1]nonan-3α-yl carbamate analogs have been designed and implemented for experimental cancer diagnosis and therapy. PROCEDURES We employed the fluorescently labeled σ(2) receptor probe, SW120, to evaluate σ(2) receptor expression in human stem cells (SC), including: bone marrow stromal, neural progenitor, amniotic fluid, hematopoetic, and embryonic stem cells. We concurrently evaluated the intensity of SW120 and 5-ethynyl-2'-deoxyuridine (EdU) relative to passage number and multi-potency. RESULTS We substantiated significantly higher σ(2) receptor density among proliferating SC relative to lineage-restricted cell types. Additionally, cellular internalization of the σ(2) receptor in SC was consistent with receptor-mediated endocytosis and confocal microscopy indicated SW120 specific co-localization with a fluorescent marker of lysosomes in all SC imaged. CONCLUSION These results suggest that σ(2) receptors may serve to monitor stem cell differentiation in future experimental studies.
Collapse
Affiliation(s)
- Jodi L Haller
- Frank Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Clinical Center, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
272
|
Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang XF. Endothelial progenitor cells in atherosclerosis. Front Biosci (Landmark Ed) 2012; 17:2327-49. [PMID: 22652782 DOI: 10.2741/4055] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs' population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
|
274
|
Karantalis V, Balkan W, Schulman IH, Hatzistergos KE, Hare JM. Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 2012; 303:H256-70. [PMID: 22636682 DOI: 10.1152/ajpheart.00221.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although pharmacological and interventional advances have reduced the morbidity and mortality of ischemic heart disease, there is an ongoing need for novel therapeutic strategies that prevent or reverse progressive ventricular remodeling following myocardial infarction, the process that forms the substrate for ventricular failure. The development of cell-based therapy as a strategy to repair or regenerate injured tissue offers extraordinary promise for a powerful anti-remodeling therapy. In this regard, the field of cell therapy has made major advancements in the past decade. Accumulating data from preclinical studies have provided novel insights into stem cell engraftment, differentiation, and interactions with host cellular elements, as well as the effectiveness of various methods of cell delivery and accuracy of diverse imaging modalities to assess therapeutic efficacy. These findings have in turn guided rationally designed translational clinical investigations. Collectively, there is a growing understanding of the parameters that underlie successful cell-based approaches for improving heart structure and function in ischemic and other cardiomyopathies.
Collapse
Affiliation(s)
- Vasileios Karantalis
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | | | | | | | |
Collapse
|
275
|
Differentiation of bone marrow-derived cells into regenerated mesothelial cells in peritoneal remodeling using a peritoneal fibrosis mouse model. J Artif Organs 2012; 15:272-82. [PMID: 22622710 DOI: 10.1007/s10047-012-0648-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/23/2012] [Indexed: 01/14/2023]
Abstract
Marked thickening of the peritoneum and vasculopathy in the submesothelial compact zone have been reported in long-term peritoneal dialysis patients. Bone marrow (BM)-derived cell lines are considered to be useful tools for therapy of various diseases. To clarify the role of BM-derived cells in the peritoneal fibrosis (PF) model, we analyzed several lineages of cells in the peritoneum. BM cells from green fluorescent protein (GFP) transgenic mice were transplanted into naïve C57Bl/6 mice. Chlorhexidine gluconate (CG) was injected intraperitoneally to induce PF. Immunohistochemical analysis was performed with parietal peritoneum using anti-Sca-1 or -c-Kit and -GFP antibodies. Isolated BM cells were also transplanted into the CG-stimulated peritoneum. BM-derived cells from GFP transgenic mice appeared in the submesothelium from days 14 to 42. Both GFP- and stem cell marker-positive cells were observed in the submesothelium and on the surface. Isolated c-Kit-positive cells, transplanted into the peritoneal cavity, differentiated into mesothelial cells. In this study, we investigated whether or not BM-derived cells play a role in the repair of PF and immature cells have the potential of inducing repair of the peritoneum. The findings of this study suggest a new concept for therapy of PF.
Collapse
|
276
|
Miki K, Uenaka H, Saito A, Miyagawa S, Sakaguchi T, Higuchi T, Shimizu T, Okano T, Yamanaka S, Sawa Y. Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Transl Med 2012. [PMID: 23197822 DOI: 10.5966/sctm.2011-0038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-based therapies are promising strategies for myocardial repair following myocardial infarction. Induced pluripotent stem (iPS) cells have the potential to generate many cardiomyocytes, and they hold significant promise for the application of regenerative medicine to heart failure. Here, we developed cardiac tissue sheets, termed bioengineered myocardium (BM), from mouse iPS cells and measured cardiac performance following BM implantation in a rat chronic myocardial infarction model. Immunostaining analyses revealed that the α-actinin(+) cell population was isolated with more than 99% purity under specific culture conditions. To evaluate the contribution of BM to the improvements in cardiac performance, we induced myocardial infarction in 30 F344/NJcl-rnu/rnu rats by left anterior descending coronary ligation. The rats were randomly divided into two groups, 2 weeks after ligation: a BM implantation group (n = 15) and a sham group (n = 15). Echocardiography and catheter examination showed that the BM implantation significantly improved cardiac function and attenuated cardiac remodeling compared with the sham group. Histological analyses demonstrated that the implanted BM survived at the epicardial implantation site 4 weeks after implantation. The implanted BM survived and attenuated left ventricular remodeling in the rat chronic myocardial infarction model. Thus, BM derived from iPS cells might be a promising new treatment for heart failure.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Surgery, Division of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Wohlschläger J, Milting H, Stypmann J, Hager T, Schmid C, Levkau B, Baba HA. [Congestive heart failure: reverse cardiac remodeling mediated by left ventricular assist devices]. DER PATHOLOGE 2012; 33:175-82. [PMID: 22576594 DOI: 10.1007/s00292-011-1559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Left ventricular assist devices (LVAD) are currently used to treat patients with terminal congestive heart failure as a bridge to transplantation or as destination therapy in individuals with contraindications for cardiac transplantation. The LVADs are pulsatile or non-pulsatile systems that transport blood from the left ventricle to the ascending aorta parallel to the circulation thus providing a profound volume and pressure reduction in the left ventricle. The use of LVADs is associated with a considerable decrease of cardiac hypertrophy and dilation with significantly improved cardiac performance in a small subset of patients. The underlying process is termed reverse cardiac remodelling and is characterized by a significant decrease in the size of cardiomyocytes and reversible regulation of numerous molecular systems in the myocardium.
Collapse
Affiliation(s)
- J Wohlschläger
- Institut für Pathologie und Neuropathologie, Universitätsklinik Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | | | | | | | | | | | | |
Collapse
|
278
|
Szardien S, Nef HM, Troidl C, Willmer M, Voss S, Liebetrau C, Hoffmann J, Rolf A, Rixe J, Elsässer A, Hamm CW, Möllmann H. Bone marrow-derived cells contribute to cell turnover in aging murine hearts. Int J Mol Med 2012; 30:283-7. [PMID: 22580818 DOI: 10.3892/ijmm.2012.995] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/12/2012] [Indexed: 11/06/2022] Open
Abstract
The paradigm that cardiac myocytes are non-proliferating, terminally differentiated cells was recently challenged by studies reporting the ability of bone marrow-derived cells (BMCs) to differentiate into cardiomyocytes after myocardial damage. However, little knowledge exists about the role of BMCs in the heart during physiological aging. Twelve-week-old mice (n=36) were sublethally irradiated and bone marrow from littermates transgenic for enhanced green fluorescent protein (eGFP) was transplanted. After 4 weeks, 18 mice were sacrificed at the age of 4 months and served as controls (group A); the remaining mice were sacrificed at the age of 18 months (group B). Group A did not exhibit a significant number of eGFP+ cells, whereas 9.4±2.8 eGFP+ cells/mm2 was documented in group B. In total, only five eGFP+ cardiomyocytes were detected in 20 examined hearts, excluding a functional role of BM differentiation in cardiomyocytes. Similarly, a relevant differentiation of BMCs in endothelial or smooth muscle cells was excluded. In contrast, numerous BM-derived fibroblasts and myofibroblasts were observed in group B, but none were detected in group A. The present study demonstrates that BMCs transdifferentiate into fibroblasts and myofibroblasts in the aging murine myocardium, suggesting their contribution to the preservation of the structural integrity of the myocardium, while they do not account for regenerative processes of the heart.
Collapse
Affiliation(s)
- Sebastian Szardien
- Department of Cardiology, Kerckhoff Heart Center, D-61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med 2012. [PMID: 23197819 DOI: 10.5966/sctm.2011-0064] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In November of 2011, the Committee for Advanced Therapies (CAT) of the European Medicines Agency (EMA) published two scientific recommendations regarding the classification of autologous bone marrow-derived mononuclear cells (BM-MNCs) and autologous bone marrow-derived CD133+ cells as advanced therapy medicinal products (ATMPs), specifically tissue-engineered products, when intended for regeneration in ischemic heart tissue on the basis that they are not used for the same essential function (hematological restoration) that they fulfill in the donor. In vitro and in vivo evidence demonstrates that bone marrow cells are physiologically involved in adult neovascularization and tissue repair, making their therapeutic use for these purposes a simple exploitation of their own essential functions. Therefore, from a scientific/legal point of view, nonsubstantially manipulated BM-MNCs and CD133+ cells are not an ATMP, because they have a physiological role in the processes of postnatal neovascularization and, when used therapeutically for vascular restoration in ischemic tissues, they are carrying out one of their essential physiological functions (the legal definition recognizes that cells can have several essential functions). The consequences of classifying BM-MNCs and CD133+ cells as medicinal products instead of cellular transplantation, like bone marrow transplantation, in terms of costs and time for these products to be introduced into clinical practice, make this an issue of crucial importance. Therefore, the recommendations of EMA/CAT could be reviewed in collaboration with scientific societies, in light of organizational and economic consequences as well as scientific knowledge recently acquired about the mechanisms of postnatal neovascularization and the function of bone marrow in the regeneration of remote tissues.
Collapse
Affiliation(s)
- Natividad Cuende
- Andalusian Initiative for Advanced Therapies, Servicio Andaluz de Salud, Consejería de Salud de Andalucía, Seville, Spain.
| | | | | |
Collapse
|
280
|
Abstract
Modulation of the RAS (renin–angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1–7) [angiotensin-(1–7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT1 receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT2 receptor (angiotensin II type 2 receptor) and the Ang-(1–7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1–7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.
Collapse
|
281
|
Xu DY, Davis BB, Wang ZH, Zhao SP, Wasti B, Liu ZL, Li N, Morisseau C, Chiamvimonvat N, Hammock BD. A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. Int J Cardiol 2012; 167:1298-304. [PMID: 22525341 DOI: 10.1016/j.ijcard.2012.03.167] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 03/21/2012] [Accepted: 03/30/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are natural angiogenic mediators regulated by soluble epoxide hydrolase (sEH). Inhibitors of sEH can stabilize EETs levels and were reported to reduce atherosclerosis and inhibit myocardial infarction in animal models. In this work, we investigated whether increasing EETs with the sEH inhibitor t-AUCB would increase angiogenesis related function in endothelial progenitor cells (EPCs) from patients with acute myocardial infarction (AMI). METHODS AND RESULTS EPCs were isolated from 50 AMI patients and 50 healthy subjects (control). EPCs were treated with different concentrations of t-AUCB for 24h with or without peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662. Migration of EPCs was assayed in trans-well chambers. Angiogenesis assays were performed using a Matrigel-Matrix in vitro model. The expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α) mRNA and protein in EPCs was measured by real-time PCR or Western blot, respectively. Also, the concentration of EETs in the culture supernatant was detected by ELISA. The activity of EPCs in the AMI patient group was reduced compared to healthy controls. Whereas increasing EET levels with t-AUCB promoted a dose dependent angiogenesis and migration in EPCs from AMI patients. Additionally, the t-AUCB dose dependently increased the expression of the angiogenic factors VEGF and HIF-α. Lastly, we provide evidence that these effects were PPARγ dependent. CONCLUSION The results demonstrate that the sEH inhibitor positively modulated the functions of EPCs in patients with AMI through the EETs-PPARγ pathway. The present study suggests the potential utility of sEHi in the therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Dan-yan Xu
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Liu J, Zhang Z, Liu Y, Guo C, Gong Y, Yang S, Ma M, Li Z, Gao WQ, He Z. Generation, characterization, and potential therapeutic applications of cardiomyocytes from various stem cells. Stem Cells Dev 2012; 21:2095-110. [PMID: 22428725 DOI: 10.1089/scd.2012.0031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heart failure is one of the leading causes of death worldwide. Myocardial cell transplantation emerges as a novel therapeutic strategy for heart failure, but this approach has been hampered by severe shortage of human cardiomyocytes. We have recently induced mouse embryonic stem cells to differentiate into embryoid bodies and eventually, cardiomyocytes. Here, we address recent advancements in cardiomyocyte differentiation from cardiac stem cells and pluripotent stem cells. We highlight the methodologies, using growth factors, endoderm-like cell cocultures, small molecules, and biomaterials, in directing the differentiation of pluripotent stem cells into cardiomyocytes. The characterization and identification of pluripotent stem cell-derived cardiomyocytes by morphological, phenotypic, and functional features are also discussed. Notably, increasing evidence demonstrates that cardiomyocytes may be generated from the stem cells of several tissues outside the cardiovascular system, including skeletal muscles, bone marrow, testes, placenta, amniotic fluid, and adipose tissues. We further address the potential applications of cardiomyocytes derived from various kinds of stem cells. The differentiation of stem cells into functional cardiomyocytes, especially from an extra-cardiac stem cell source, would circumvent the scarcity of heart donors and human cardiomyocytes, and, most importantly, it would offer an ideal and promising cardiomyocyte source for cell therapy and tissue engineering in treating heart failure.
Collapse
Affiliation(s)
- Jianfang Liu
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Domínguez-Bendala J, Inverardi L, Ricordi C. Regeneration of pancreatic beta-cell mass for the treatment of diabetes. Expert Opin Biol Ther 2012; 12:731-41. [DOI: 10.1517/14712598.2012.679654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
284
|
Wang X, Takagawa J, Lam VC, Haddad DJ, Tobler DL, Mok PY, Zhang Y, Clifford BT, Pinnamaneni K, Saini SA, Su R, Bartel MJ, Sievers RE, Carbone L, Kogan S, Yeghiazarians Y, Hermiston M, Springer ML. Donor myocardial infarction impairs the therapeutic potential of bone marrow cells by an interleukin-1-mediated inflammatory response. Sci Transl Med 2012; 3:100ra90. [PMID: 21918107 DOI: 10.1126/scitranslmed.3002814] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery of bone marrow cells (BMCs) to the heart has substantially improved cardiac function in most rodent models of myocardial infarction (MI), but clinical trials of BMC therapy have led to only modest improvements. Rodent models typically involve intramyocardial injection of BMCs from distinct donor individuals who are healthy. In contrast, autologous BMCs from individuals after MI are used for clinical trials. Using BMCs from donor mice after MI, we discovered that recent MI impaired BMC therapeutic efficacy. MI led to myocardial inflammation and an increased inflammatory state in the bone marrow, changing the BMC composition and reducing their efficacy. Injection of a general anti-inflammatory drug or a specific interleukin-1 inhibitor to donor mice after MI prevented this impairment. Our findings offer an explanation of why human trials have not matched the success of rodent experiments and suggest potential strategies to improve the success of clinical autologous BMC therapy.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Kumar S, Ponnazhagan S. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone 2012; 50:1012-8. [PMID: 22342795 PMCID: PMC3339043 DOI: 10.1016/j.bone.2012.01.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing.
Collapse
Affiliation(s)
| | - Selvarangan Ponnazhagan
- Corresponding author Selvarangan Ponnazhagan, Ph.D., Department of Pathology, LHRB 513, 701, 19 Street South, University of Alabama at Birmingham, Birmingham, AL 35294-0007, Phone: (205) 934-6731, Fax: (205) 975-9927,
| |
Collapse
|
286
|
Andukuri A, Vines JB, Anderson JM, Jun HW. Supramolecular Systems for Tissue Engineering. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
287
|
Abstract
During embryonic development, multilineage HSCs/progenitor cells are derived from specialized endothelial cells, termed hemogenic endothelium, within the yolk sac, placenta, and aorta. Whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, such as in the fetal liver and fetal bone marrow, is not known. Also unknown is whether such cells exist within the vasculature of adult bone marrow and generate hematopoietic stem cells after birth. These issues and their clinical relevance are discussed herein.
Collapse
|
288
|
Zhang EY, Xiong Q, Ye L, Suntharalingam P, Wang X, Astle CM, Zhang J, Harrison DE. Fetal myocardium in the kidney capsule: an in vivo model of repopulation of myocytes by bone marrow cells. PLoS One 2012; 7:e31099. [PMID: 22383995 PMCID: PMC3285614 DOI: 10.1371/journal.pone.0031099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/02/2012] [Indexed: 11/25/2022] Open
Abstract
Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model — a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors.
Collapse
Affiliation(s)
- Eric Y. Zhang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Qiang Xiong
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Lei Ye
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Piradeep Suntharalingam
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Xiaohong Wang
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - C. Michael Astle
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jianyi Zhang
- Division of Cardiology, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (JZ); david.harrison@.jax.org (DEH)
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (JZ); david.harrison@.jax.org (DEH)
| |
Collapse
|
289
|
Alcon A, Cagavi Bozkulak E, Qyang Y. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 2012; 69:2635-56. [PMID: 22388688 DOI: 10.1007/s00018-012-0942-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/21/2012] [Accepted: 02/13/2012] [Indexed: 12/20/2022]
Abstract
Heart disease is one of the leading causes of death worldwide and the number of patients with the disease is likely to grow with the continual decline in health for most of the developed world. Heart transplantation is one of the only treatment options for heart failure due to an acute myocardial infarction, but limited donor supply and organ rejection limit its widespread use. Cellular cardiomyoplasty, or cellular implantation, combined with various tissue-engineering methods aims to regenerate functional heart tissue. This review highlights the numerous cell sources that have been used to regenerate the heart as well as cover the wide range of tissue-engineering strategies that have been devised to optimize the delivery of these cells. It will probably be a long time before an effective regenerative therapy can make a serious impact at the bedside.
Collapse
Affiliation(s)
- Andre Alcon
- Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
290
|
Nie H, Lee CH, Tan J, Lu C, Mendelson A, Chen M, Embree MC, Kong K, Shah B, Wang S, Cho S, Mao JJ. Musculoskeletal tissue engineering by endogenous stem/progenitor cells. Cell Tissue Res 2012; 347:665-76. [PMID: 22382390 DOI: 10.1007/s00441-012-1339-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/23/2012] [Indexed: 12/13/2022]
Abstract
From its inception, tissue engineering has had three tenets: cells, biomaterial scaffolds and signaling molecules. Among the triad, cells are the center piece, because cells are the building blocks of tissues. For decades, cell therapies have focused on the procurement, manipulation and delivery of healthy cells for the treatment of diseases or trauma. Given the complexity and potential high cost of cell delivery, there is recent and surging interest to orchestrate endogenous cells for tissue regeneration. Biomaterial scaffolds are vital for many but not all, tissue-engineering applications and serve to accommodate or promote multiple cellular functions. Signaling molecules can be produced by transplanted cells or endogenous cells, or delivered specifically to regulate cell functions. This review highlights recent work in tissue engineering and cell therapies, with a focus on harnessing the capacity of endogenous cells as an alternative or adjunctive approach for tissue regeneration.
Collapse
Affiliation(s)
- Hemin Nie
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Lachtermacher S, Esporcatte BLB, Fortes FDSDA, Rocha NN, Montalvão F, Costa PC, Belem L, Rabischoffisky A, Faria Neto HCC, Vasconcellos R, Iacobas DA, Iacobas S, Spray DC, Thomas NM, Goldenberg RCS, de Carvalho ACC. Functional and transcriptomic recovery of infarcted mouse myocardium treated with bone marrow mononuclear cells. Stem Cell Rev Rep 2012; 8:251-61. [PMID: 21671060 PMCID: PMC3212608 DOI: 10.1007/s12015-011-9282-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although bone marrow-derived mononuclear cells (BMNC) have been extensively used in cell therapy for cardiac diseases, little mechanistic information is available to support reports of their efficacy. To address this shortcoming, we compared structural and functional recovery and associated global gene expression profiles in post-ischaemic myocardium treated with BMNC transplantation. BMNC suspensions were injected into cardiac scar tissue 10 days after experimental myocardial infarction. Six weeks later, mice undergoing BMNC therapy were found to have normalized antibody repertoire and improved cardiac performance measured by ECG, treadmill exercise time and echocardiography. After functional testing, gene expression profiles in cardiac tissue were evaluated using high-density oligonucleotide arrays. Expression of more than 18% of the 11981 quantified unigenes was significantly altered in the infarcted hearts. BMNC therapy restored expression of 2099 (96.2%) of the genes that were altered by infarction but led to altered expression of 286 other genes, considered to be a side effect of the treatment. Transcriptional therapeutic efficacy, a metric calculated using a formula that incorporates both recovery and side effect of treatment, was 73%. In conclusion, our results confirm a beneficial role for bone marrow-derived cell therapy and provide new information on molecular mechanisms operating after BMNC transplantation on post ischemic heart failure in mice.
Collapse
Affiliation(s)
- Stephan Lachtermacher
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Doyle ME, Perley JP, Skalak TC. Bone marrow-derived progenitor cells augment venous remodeling in a mouse dorsal skinfold chamber model. PLoS One 2012; 7:e32815. [PMID: 22389724 PMCID: PMC3289672 DOI: 10.1371/journal.pone.0032815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/06/2012] [Indexed: 12/01/2022] Open
Abstract
The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment.
Collapse
Affiliation(s)
- Megan E Doyle
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
293
|
Sandstedt J, Jonsson M, Kajic K, Sandstedt M, Lindahl A, Dellgren G, Jeppsson A, Asp J. Left atrium of the human adult heart contains a population of side population cells. Basic Res Cardiol 2012; 107:255. [PMID: 22361742 DOI: 10.1007/s00395-012-0255-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 12/15/2022]
Abstract
Cardiac "side population" (SP) cells have previously been found to differentiate into both endothelial cells and cardiomyocytes in mice and rats, but there are no data on SP cells in the human adult heart. Therefore, human cardiac atrial biopsies were dissociated, stained for SP cells and analyzed with FACS. Identified cell populations were analyzed for gene expression by quantitative real-time PCR and subjected to in vitro differentiation. Only biopsies from the left atrium contained a clearly distinguishable population of SP cells (0.22 ± 0.08%). The SP population was reduced by co-incubation with MDR1 inhibitor Verapamil, while the ABCG2 inhibitor FTC failed to decrease the number of SP cells. When the gene expression was analyzed, SP cells were found to express significantly more MDR1 than non-SP cells. For ABCG2, there was no detectable difference. SP cells also expressed more of the stem cell-associated markers C-KIT and OCT-4 than non-SP cells. On the other hand, no significant difference in the expression of endothelial and cardiac genes could be detected. SP cells were further subdivided based on CD45 expression. The CD45-SP population showed evidence of endothelial commitment at gene expression level. In conclusion, the results show that a SP population of cells is present also in the human adult heart.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-41345, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol 2012; 12:243-52. [PMID: 21962068 DOI: 10.1089/ham.2010.1086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that intermittent hypoxia treatment (IHT) modulates circulating hematopoietic stem and progenitor cells (HSPC) and augments humoral and cellular components of innate immunity in young, healthy men. Ten subjects (group 1: age 31±4 yr) were studied before and at 1 and 7 days after a 14-day IHT program consisting of four 5-min bouts/day of breathing 10% O2, lowering arterial O2 saturation to 84% to 85%, with intervening 5-min room-air exposures. Five more subjects (group 2: age 29±5 yr) were studied during 1 IHT session. Immunofluorescence detected HSPCs as CD45+CD34+ cells in peripheral blood. Phagocytic and bactericidal activities of neutrophils, circulating immunoglobulins (IgM, IgG, IgA), immune complexes, complement, and cytokines (erythropoietin, TNF-α, IL-4, IFN-γ) were measured. In group 1, the HSPC count fell 27% below pre-IHT baseline 1 week after completing IHT, without altering erythrocyte and reticulocyte counts. The IHT program also activated complement, increased circulating platelets, augmented phagocytic and bactericidal activities of neutrophils, sharply lowered circulating TNF-α and IL-4 by >90% and ∼75%, respectively, and increased IFN-γ, particularly 1 week after IHT. During acute IHT (group 2), HSPC increased by 51% after the second hypoxia bout and by 19% after the fourth bout, and total leukocyte, neutrophil, monocyte, and lymphocyte counts also increased; but these effects subsided by 30 min post-IHT. Collectively, these results demonstrate that IHT enhances innate immunity by mobilizing HSPC, activating neutrophils, and increasing circulating complement and immunoglobulins. These findings support the potential for eventual application of IHT for immunotherapy.
Collapse
|
295
|
Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Watt S, Martin-Rendon E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2012:CD006536. [PMID: 22336818 DOI: 10.1002/14651858.cd006536.pub3] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Stem cell therapy offers a promising approach to the regeneration of damaged vascular and cardiac tissue after acute myocardial infarction (AMI). This has resulted in multiple randomised controlled trials (RCTs) worldwide. OBJECTIVES To critically evaluate evidence from RCTs on the effectiveness of adult bone marrow-derived stem cells (BMSC) to treat acute myocardial infarction (AMI). SEARCH METHODS This Cochrane review is an update of a previous one (published in 2008). MEDLINE (1950 to January 2011), EMBASE (1974 to January 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 1, 2011), CINAHL (1982 to January 2011) and the Transfusion Evidence Library (1980 to January 2011) were searched. In addition, several international and ongoing trial databases were searched and handsearching of relevant conference proceedings undertaken to January 2011. SELECTION CRITERIA RCTs comparing autologous stem/progenitor cells with no autologous stem/progenitor cells in patients diagnosed with AMI were eligible. DATA COLLECTION AND ANALYSIS Two authors independently screened all references, assessed trial quality and extracted data. Meta-analyses using a random-effects model were conducted and heterogeneity was explored for the primary outcome using sub-group analyses. MAIN RESULTS Thirty-three RCTs (1765 participants) were eligible for inclusion. Stem/progenitor cell treatment was not associated with statistically significant changes in the incidence of mortality (RR 0.70, 95% CI 0.40 to 1.21) or morbidity (the latter measured by re-infarction, hospital re-admission, restenosis and target vessel revascularisation). A considerably high degree of heterogeneity has been observed among the included trials. In short-term follow up, stem cell treatment was observed to improve left ventricular ejection fraction (LVEF) significantly (WMD 2.87, 95% CI 2.00 to 3.73). This improvement in LVEF was maintained over long-term follow up of 12 to 61 months (WMD 3.75, 95% CI 2.57 to 4.93). With certain measurements and at certain times, stem cell treatment was observed to reduce left ventricular end systolic and end diastolic volumes (LVESV & LVEDV) and infarct size significantly in long-term follow up. There was a positive correlation between mononuclear cell dose infused and the effect on LVEF measured by magnetic resonance imaging. A correlation between timing of stem cell treatment and effect on LVEF measured by left ventricular angiography was also observed. AUTHORS' CONCLUSIONS Despite the high degree of heterogeneity observed, the results of this systematic review suggest that moderate improvement in global heart function is significant and sustained long-term. However, because mortality rates after successful revascularization of the culprit arteries are very low, larger number of participants would be required to assess the full clinical effect of this treatment. Standardisation of methodology, cell dosing and cell product formulation, timing of cell transplantation and patient selection may also be required in order to reduce the substantial heterogeneity observed among the included studies.
Collapse
Affiliation(s)
- David M Clifford
- StemCell Research Lab, NuffieldDepartment of ClinicalLaboratory Sciences, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
296
|
Fujita Y, Inokuma D, Abe R, Sasaki M, Nakamura H, Shimizu T, Shimizu H. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clin Exp Dermatol 2012; 37:658-64. [PMID: 22329411 DOI: 10.1111/j.1365-2230.2011.04312.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent studies have reported that bone-marrow-derived stem cells (BMSCs), including haematopoietic stem cells (HSCs) and mesenchymal stromal cells, differentiate in order to regenerate various cellular lineages. Based on these findings, it is known that BMSCs can be used clinically to treat various disorders, such as myocardial infarction and neurotraumatic injuries. However, the mechanism of HSC conversion into organ cells is incompletely understood. The mechanism is suspected to involve direct cell-cell interaction between BMSCs, damaged organ cells, and paracrine-regulated soluble factors from the organ, but to date, there have been no investigations into which of these are essential for keratinocyte differentiation from HSCs. AIM To elucidate the mechanism and necessary conditions for HSC differentiation into keratinocytes in vitro. METHODS We cultured human (h)HSCs under various conditions to try to elucidate the mechanism and necessary conditions for hHSCs to differentiate into keratinocytes. RESULT hHSCs cocultured with mouse keratinocytes induced expression of human keratin 14 and transglutaminase I. Only 0.1% of the differentiated keratinocytes possessed multiple nuclei indicating cell fusion. Coculture of hHSCs with fixed murine keratinocytes (predicted to stabilize cellular components) failed to induce conversion into keratinocytes. Conversely, keratinocyte-conditioned medium from both human and mouse keratinocytes was found to mediate hHSC conversion into keratinocytes. CONCLUSIONS Human HSCs are capable of differentiation into keratinocytes, and cell fusion is extremely rare. This differentiating is mediated by the plasma environment rather than by direct cell-cell interactions.
Collapse
Affiliation(s)
- Y Fujita
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
297
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 858] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
298
|
Stastna M, Van Eyk JE. Investigating the secretome: lessons about the cells that comprise the heart. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:o8-o18. [PMID: 22337932 PMCID: PMC3282018 DOI: 10.1161/circgenetics.111.960187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell/environment interface is composed of the proteins of plasma membrane which face the extracellular space and by the proteins secreted directly by the cell of origin or by neighboring cells. The secreted proteins can act as extracellular matrix proteins and/or autocrine/paracrine proteins. This report discusses the technical aspects involved in the identification and characterization of the secreted proteins of specific cell types that comprise the heart. These aspects include the culturing of the cells, cell co-culturing and quantitative labeling, conditioned media collection and dealing with high abundant serum proteins, post-translational modification enrichment, the use of protein separation methods and mass spectrometry, protein identification and validation and the incorporation of pathway analysis to better understand the novel discovery on the background of already known experimental biological systems. The proteomic methods have the solid emplacement in cardiovascular research and the identification of proteins secreted by cardiac cells has been used in various applications such as determination the specificity between secretomes of different cell types, e.g. cardiac stem cells and cardiac myocytes, for the global secretome screening of e.g. human arterial smooth muscle cells, for the mapping of the beneficial effect of conditioned medium of one cell type on the other cell type, e.g. conditioned medium of human mesenchymal stem cells on cardiac myocytes, and for the searching the candidate paracrine factors and potential biomarkers.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | |
Collapse
|
299
|
Mäki MT, Koskenvuo JW, Ukkonen H, Saraste A, Tuunanen H, Pietilä M, Nesterov SV, Aalto V, Airaksinen KEJ, Pärkkä JP, Lautamäki R, Kervinen K, Miettinen JA, Mäkikallio TH, Niemelä M, Säily M, Koistinen P, Savolainen ER, Ylitalo K, Huikuri HV, Knuuti J. Cardiac Function, Perfusion, Metabolism, and Innervation following Autologous Stem Cell Therapy for Acute ST-Elevation Myocardial Infarction. A FINCELL-INSIGHT Sub-Study with PET and MRI. Front Physiol 2012; 3:6. [PMID: 22363288 PMCID: PMC3277266 DOI: 10.3389/fphys.2012.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/10/2012] [Indexed: 01/04/2023] Open
Abstract
Purpose: Beneficial mechanisms of bone marrow cell (BMC) therapy for acute ST-segment elevation myocardial infarct (STEMI) are largely unknown in humans. Therefore, we evaluated the feasibility of serial positron emission tomography (PET) and MRI studies to provide insight into the effects of BMCs on the healing process of ischemic myocardial damage. Methods: Nineteen patients with successful primary reteplase thrombolysis (mean 2.4 h after symptoms) for STEMI were randomized for BMC therapy (2.9 × 106 CD34+ cells) or placebo after bone marrow aspiration in a double-blind, multi-center study. Three days post-MI, coronary angioplasty, and paclitaxel eluting stent implantation preceded either BMC or placebo therapy. Cardiac PET and MRI studies were performed 7–12 days after therapies and repeated after 6 months, and images were analyzed at a central core laboratory. Results: In BMC-treated patients, there was a decrease in [11C]-HED defect size (−4.9 ± 4.0 vs. −1.6 ± 2.2%, p = 0.08) and an increase in [18F]-FDG uptake in the infarct area at risk (0.06 ± 0.09 vs. −0.05 ± 0.16, p = 0.07) compared to controls, as well as less left ventricular dilatation (−4.4 ± 13.3 vs. 8.0 ± 16.7 mL/m2, p = 0.12) at 6 months follow-up. However, BMC treatment was inferior to placebo in terms of changes in rest perfusion in the area at risk (−0.09 ± 0.17 vs. 0.10 ± 0.17, p = 0.03) and infarct size (0.4 ± 4.2 vs. −5.1 ± 5.9 g, p = 0.047), and no effect was observed on ejection fraction (p = 0.37). Conclusion: After the acute phase of STEMI, BMC therapy showed only minor trends of long-term benefit in patients with rapid successful thrombolysis. There was a trend of more decrease in innervation defect size and enhanced glucose metabolism in the infarct-related myocardium and also a trend of less ventricular dilatation in the BMC-treated group compared to placebo. However, no consistently better outcome was observed in the BMC-treated group compared to placebo.
Collapse
Affiliation(s)
- Maija T Mäki
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Kumar G, Hara H, Long C, Shaikh H, Ayares D, Cooper DKC, Ezzelarab M. Adipose-derived mesenchymal stromal cells from genetically modified pigs: immunogenicity and immune modulatory properties. Cytotherapy 2012; 14:494-504. [PMID: 22264190 DOI: 10.3109/14653249.2011.651529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS The immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC. METHODS Pig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors. RESULTS GTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell-cell contact-dependent. CONCLUSIONS Initial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.
Collapse
Affiliation(s)
- Goutham Kumar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|