251
|
Yuan PQ, Wu SV, Elliott J, Anton PA, Chatzaki E, Million M, Taché Y. Expression of corticotropin releasing factor receptor type 1 (CRF1) in the human gastrointestinal tract and upregulation in the colonic mucosa in patients with ulcerative colitis. Peptides 2012; 38:62-9. [PMID: 22948128 PMCID: PMC3652978 DOI: 10.1016/j.peptides.2012.07.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 12/13/2022]
Abstract
Brain corticotropin-releasing factor (CRF) acting on CRF receptor type 1 (CRF(1)) is a main signaling pathway in the stress response. CRF is also produced in a variety of peripheral sites and acts locally as a proinflammatory mediator. We investigated CRF(1) mRNA expression in the human gastrointestinal tract, and localized CRF(1) immunoreactive cells in the colonic mucosa of healthy subjects and patients with ulcerative colitis (UC). In 4 male healthy subjects (24-29 years), CRF(1) transcript was detected by RT-PCR throughout the gastrointestinal tract with the highest levels in the ileum and rectum and the lowest level in the colon. Immunohistochemistry on whole thickness sigmoid colon sections showed that CRF(1) was localized in the lamina propria and epithelial cells and enteric neurons. In sigmoid colonic biopsies, immunohistochemically double-labeled cells with CRF(1) and CD163, a marker for macrophages, represent 79% of total CRF(1) immunoreactive (IR) cells in healthy subjects. In 10 UC patients, the total number of CRF(1) IR cells and CRF(1)/CD163 double-labeled macrophages was increased by 4.2 and 4.0 folds respectively compared to healthy subjects. These findings indicate that CRF(1) is distributed throughout the GI tract of healthy human subjects. The increase of CRF(1) IR cells prominently in macrophages of the sigmoid colonic mucosa of UC patients provides anatomical support for a role of CRF(1) signaling in modulating the immune-inflammatory process of UC.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Digestive Diseases Division, Department of Medicine, University of California, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
252
|
Abstract
The interaction of the host with its abundant intestinal microbiota is complex and engages most of the cells in the intestinal mucosa. The inflammatory bowel diseases appear to be disorders of the host immune response to the microbiota. This is supported by data from induced gene mutations in mice and more recently by the identification of gene variants in humans that result in IBD or IBD susceptibility. These genetic studies have provided insights into the cells and molecular pathways involved in the host-microbiota dialog. This review discusses the innate, adaptive, and regulatory immune response to the microbiota in the context of the mouse and human genes that are involved in maintaining intestinal homeostasis and preventing inflammation. These data continue to support the hypothesis that inflammatory bowel disease results from a dysregulated adaptive immune response, particularly a CD4 T-cell response, to the microbiota. The microbiota itself is an active participant in these homeostatic processes. The microbiota composition is perturbed during inflammation, resulting in a dysbiosis that may induce or perpetuate inflammation. However, host genotype and the environment have a major impact on the shape of such dysbiosis, as well as upon which members of the microbiota stimulate pathogenic immune responses.
Collapse
Affiliation(s)
- Charles O. Elson
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA,Correspondence to: Charles O. Elson,
| | - Yingzi Cong
- Departments of Microbiology/Immunology and Pathology; University of Texas Medical Branch; Galveston, TX USA
| |
Collapse
|
253
|
NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 2012; 13:449-56. [PMID: 22484733 PMCID: PMC3361590 DOI: 10.1038/ni.2263] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/15/2012] [Indexed: 02/07/2023]
Abstract
Intestinal phagocytes transport oral antigens and promote immune tolerance, but their role in innate immune responses remains unclear. Here we report that intestinal phagocytes are anergic to Toll-like receptor ligands or commensals, but constitutively express pro-interleukin-1β (proIL-1β). Upon infection with pathogenic Salmonella or Pseudomonas, intestinal phagocytes produce mature IL-1β through the NLRC4 inflammasome, but not tumor necrosis factor or IL-6. Mice deficient in NLRC4 or IL-1 receptor on a Balb/c background were highly susceptible to orogastric but not intraperitoneal infection with Salmonella. Increased lethality was preceded by impaired expression of endothelial adhesion molecules, lower neutrophil recruitment, and poor intestinal pathogen clearance. Thus, NLRC4-dependent IL-1β production by intestinal phagocytes represents a specific response discriminating pathogenic from commensal bacteria and contributes to host defense in the intestine.
Collapse
|
254
|
Hölttä V, Sipponen T, Westerholm-Ormio M, Salo HM, Kolho KL, Färkkilä M, Savilahti E, Vaarala O, Klemetti P. In Crohn's Disease, Anti-TNF-α Treatment Changes the Balance between Mucosal IL-17, FOXP3, and CD4 Cells. ISRN GASTROENTEROLOGY 2012; 2012:505432. [PMID: 22778976 PMCID: PMC3384926 DOI: 10.5402/2012/505432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/18/2012] [Indexed: 01/28/2023]
Abstract
Aim. In Crohn's disease (CD), anti-TNF-α treatment is a potent medication. We aimed to characterize the effect of anti-TNF-α treatment on T effector and regulatory cells. Material and Methods.
We studied T-effector and regulatory cells on cellular and mRNA levels in intestinal biopsy samples from 13 Crohn's disease patient. Biopsies were obtained at baseline and 3 months after anti-TNF-α treatment, and from 14 inflammation-free control subjects. Results. Patients had higher numbers of ileal IL-17+ and forkhead box P3 (FOXP3)+ cells than did control subjects, both before ( P ≤ 0.001 and P ≤ 0.05, resp.) and after the anti-TNF-α treatment (P ≤ 0.01, P ≤ 0.01). Intestinal interferon-γ and IL-17 mRNA expression was higher in Crohn's disease and remained elevated after anti-TNF-α treatment. The ratio of IL-17+ cells to CD4+ cells decreased (P ≤ 0.05) and compared to baseline the ratio of IL-17+ cells to FOXP3+ was lower after treatment (P ≤ 0.05). Conclusions. TNF-α-blocking agents improved intestinal balance between IL-17+ T-effector and regulatory T cells, although intestinal IL-17 upregulation remained elevated.
Collapse
Affiliation(s)
- Veera Hölttä
- Immune Response Unit, Department of Vaccination and Immune Protection, National Institute for Health and Welfare, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Raza A, Yousaf W, Giannella R, Shata MT. Th17 cells: interactions with predisposing factors in the immunopathogenesis of inflammatory bowel disease. Expert Rev Clin Immunol 2012; 8:161-8. [PMID: 22288454 DOI: 10.1586/eci.11.96] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory state of the GI tract of unknown etiology. Classically, tissue injury in IBD is thought to be primarily mediated by Th1 cells in Crohn's disease or Th2 cells in ulcerative colitis. The discoveries of new subsets of T-helper cells, especially Th17 cells, have revolutionized our understanding of the disease immunopathology. Th17 cells seem to affect both innate and adaptive immune responses by the release of regulatory cytokines. Understanding the role of Th17 cells in IBD pathogenesis and targeting their regulatory cytokines may provide potential therapeutic approaches for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Ali Raza
- Department of Internal Medicine, Division of Digestive Diseases, University of Cincinnati, 231 Albert B. Sabin Way, MSB 6466, PO Box 670595, Cincinnati, OH 45267-0595, USA.
| | | | | | | |
Collapse
|
256
|
Raza A, Yousaf W, Giannella R, Shata MT. Th17 cells: interactions with predisposing factors in the immunopathogenesis of inflammatory bowel disease. Expert Rev Clin Immunol 2012. [PMID: 22288454 DOI: 10.1586/eci.11.96.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory state of the GI tract of unknown etiology. Classically, tissue injury in IBD is thought to be primarily mediated by Th1 cells in Crohn's disease or Th2 cells in ulcerative colitis. The discoveries of new subsets of T-helper cells, especially Th17 cells, have revolutionized our understanding of the disease immunopathology. Th17 cells seem to affect both innate and adaptive immune responses by the release of regulatory cytokines. Understanding the role of Th17 cells in IBD pathogenesis and targeting their regulatory cytokines may provide potential therapeutic approaches for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Ali Raza
- Department of Internal Medicine, Division of Digestive Diseases, University of Cincinnati, 231 Albert B. Sabin Way, MSB 6466, PO Box 670595, Cincinnati, OH 45267-0595, USA.
| | | | | | | |
Collapse
|
257
|
Hedl M, Abraham C. IRF5 risk polymorphisms contribute to interindividual variance in pattern recognition receptor-mediated cytokine secretion in human monocyte-derived cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5348-56. [PMID: 22544929 DOI: 10.4049/jimmunol.1103319] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monocyte-derived cells display highly variable cytokine secretion upon pattern recognition receptor (PRR) stimulation across individuals; such variability likely affects interindividual inflammatory/autoimmune disease susceptibility. To define mechanisms for this heterogeneity, we examined PRR-induced monocyte-derived cell cytokine secretion from a large cohort of healthy individuals. Although cytokine secretion ranged widely among individuals, the magnitude of cytokine induction after individual nucleotide-binding oligomerization domain 2 (Nod2) and TLR2 stimulation (a cohort of 86 individuals) or stimulation of multiple TLRs (a cohort of 77 individuals), either alone or in combination with Nod2, was consistent intraindividually across these stimuli. Nod2 and TLRs signal through IFN regulatory factor 5 (IRF5), and common IRF5 polymorphisms confer risk for autoimmunity. We find that cells from rs2004640 IRF5 risk-associated allele carriers secrete increased cytokines upon individual or synergistic PRR stimulation in a gene dose- and ligand dose-dependent manner in both monocyte-derived dendritic cells and monocyte-derived macrophages. IRF5 expression knockdown in IRF5 risk allele carrier cells significantly decreases PRR-induced cytokines. Moreover, we find that IRF5 knockdown profoundly decreases Nod2-mediated MAPK and NF-κB pathway activation, whereas the PI3K and mammalian target of rapamycin pathways are not impaired. Finally, the IRF5 rs2004640 polymorphism is a major determinant of the variance (r(2) = 0.53) in Nod2-induced cytokine secretion by monocyte-derived cells from different individuals. We therefore show a profound contribution of a single gene to the variance in interindividual PRR-induced cytokines. The hyperresponsiveness of IRF5 disease-associated polymorphisms to a wide spectrum of microbial triggers has broad implications on global immunological responses, host defenses against pathogens, and inflammatory/autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | | |
Collapse
|
258
|
Tang C, Chen S, Qian H, Huang W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 2012; 135:112-24. [PMID: 22044352 DOI: 10.1111/j.1365-2567.2011.03522.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin-23 (IL-23) is a member of the IL-12 family of cytokines with pro-inflammatory properties. Its ability to potently enhance the expansion of T helper type 17 (Th17) cells indicates the responsibility for many of the inflammatory autoimmune responses. Emerging data demonstrate that IL-23 is a key participant in central regulation of the cellular mechanisms involved in inflammation. Both IL-23 and IL-17 form a new axis through Th17 cells, which has evolved in response to human diseases associated with immunoactivation and immunopathogeny, including bacterial or viral infections and chronic inflammation. Targeting of IL-23 or the IL-23 receptor or IL-23 axis is a potential therapeutic approach for autoimmune diseases including psoriasis, inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. The current review focuses on the immunobiology of IL-23 and summarizes the most recent findings on the role of IL-23 in the pre-clinical and ongoing clinical studies.
Collapse
Affiliation(s)
- Chunlei Tang
- Centre of Drug Discovery, State Key Laboratory of Bioactive Natural Products and Function, China
| | | | | | | |
Collapse
|
259
|
Carbohydrate Elimination or Adaptation Diet for Symptoms of Intestinal Discomfort in IBD: Rationales for "Gibsons' Conundrum". Int J Inflam 2012; 2012:493717. [PMID: 22518336 PMCID: PMC3299284 DOI: 10.1155/2012/493717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022] Open
Abstract
Therapeutic use of carbohydrates in inflammatory bowel diseases (IBDs) is discussed from two theoretical, apparent diametrically opposite perspectives: regular ingestion of prebiotics or withdrawal of virtually all carbohydrate components. Pathogenesis of IBD is discussed connecting microbial flora, host immunity, and genetic interactions. The best studied genetic example, NOD2 in Crohn's disease, is highlighted as a model which encompasses these interactions and has been shown to depend on butyrate for normal function. The role of these opposing concepts in management of irritable bowel syndrome (IBS) is contrasted with what is known in IBD. The conclusion reached is that, while both approaches may alleviate symptoms in both IBS and IBD, there is insufficient data yet to determine whether both approaches lead to equivalent bacterial effects in mollifying the immune system. This is particularly relevant in IBD. As such, caution is urged to use long-term carbohydrate withdrawal in IBD in remission to control IBS-like symptoms.
Collapse
|
260
|
Yu LCH, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012; 3:27-43. [PMID: 22368784 PMCID: PMC3284523 DOI: 10.4291/wjgp.v3.i1.27] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.
Collapse
|
261
|
Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. ACTA ACUST UNITED AC 2012; 209:139-55. [PMID: 22231304 PMCID: PMC3260867 DOI: 10.1084/jem.20101387] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood monocytes differentiate into distinct colonic macrophage or dendritic cell subsets depending on the presence or absence of inflammation Dendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80hiCX3CR1hi (CD11b+CD103−) cells account for 80% of mouse colonic lamina propria MHC-IIhi cells. Both CD11c+ and CD11c− cells within this population were identified as MPs based on multiple criteria, including an MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs based on phenotypic and functional analysis and comprise three separate CD11chi cell populations: CD103+CX3CR1−CD11b− DCs, CD103+CX3CR1−CD11b+ DCs, and CD103−CX3CR1intCD11b+ DCs. In noninflammatory conditions, Ly6Chi monocytes (MOs) differentiated primarily into CD11c+ but not CD11c− MPs. In contrast, during colitis, Ly6Chi MOs massively invaded the colon and differentiated into proinflammatory CD103−CX3CR1intCD11b+ DCs, which produced high levels of IL-12, IL-23, iNOS, and TNF. These findings demonstrate the dual capacity of Ly6Chi blood MOs to differentiate into either regulatory MPs or inflammatory DCs in the colon and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.
Collapse
Affiliation(s)
- Aymeric Rivollier
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
262
|
Xue X, Feng T, Yao S, Wolf KJ, Liu CG, Liu X, Elson CO, Cong Y. Microbiota downregulates dendritic cell expression of miR-10a, which targets IL-12/IL-23p40. THE JOURNAL OF IMMUNOLOGY 2011; 187:5879-86. [PMID: 22068236 DOI: 10.4049/jimmunol.1100535] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Commensal flora plays important roles in the regulation of the gene expression involved in many intestinal functions and the maintenance of immune homeostasis, as well as in the pathogenesis of inflammatory bowel diseases. The microRNAs (miRNAs), a class of small, noncoding RNAs, act as key regulators in many biological processes. The miRNAs are highly conserved among species and appear to play important roles in both innate and adaptive immunity, as they can control the differentiation of various immune cells, as well as their functions. However, it is still largely unknown how microbiota regulates miRNA expression, thereby contributing to intestinal homeostasis and pathogenesis of inflammatory bowel disease. In our current study, we found that microbiota negatively regulated intestinal miR-10a expression, because the intestines, as well as intestinal epithelial cells and dendritic cells of specific pathogen-free mice, expressed much lower levels of miR-10a compared with those in germ-free mice. Commensal bacteria downregulated dendritic cell miR-10a expression via TLR-TLR ligand interactions through a MyD88-dependent pathway. We identified IL-12/IL-23p40, a key molecule for innate immune responses to commensal bacteria, as a target of miR-10a. The ectopic expression of the miR-10a precursor inhibited, whereas the miR-10a inhibitor promoted, the expression of IL-12/IL-23p40 in dendritic cells. Mice with colitis expressing higher levels of IL-12/IL-23p40 exhibited lower levels of intestinal miR-10a compared with control mice. Collectively, our data demonstrated that microbiota negatively regulates host miR-10a expression, which may contribute to the maintenance of intestinal homeostasis by targeting IL-12/IL-23p40 expression.
Collapse
Affiliation(s)
- Xiaochang Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma M, Manfredi AA, Rovere-Querini P. Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2651-9. [PMID: 21924227 PMCID: PMC3204092 DOI: 10.1016/j.ajpath.2011.07.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/15/2011] [Accepted: 07/13/2011] [Indexed: 11/19/2022]
Abstract
Endometriosis affects women of reproductive age, causing infertility and pain. Although immune cells are recruited in endometriotic lesions, their role is unclear. Tie2-expressing macrophages (TEMs) have nonredundant functions in promoting angiogenesis and growth of experimental tumors. Here we show that human TEMs infiltrate areas surrounding newly formed endometriotic blood vessels. We set up an ad hoc mouse model in which TEMs, and not Tie2-expressing endothelial cells, are targeted. We transplanted in wild-type recipients bone marrow cells expressing a suicide gene (Herpes simplex virus type 1 thymidine kinase) under the Tie2 promoter/enhancer. TEMs infiltrated endometriotic lesions. TEM depletion by ganciclovir administration arrested the growth of established lesions, without toxicity. Lesion architecture was disrupted, with: i) loss of glandular organization, ii) reduced neovascularization, and iii) activation of caspase 3 in CD31(+) endothelial cells. Thus, TEMs are important for maintaining the viability of newly formed vessels and represent a potential therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Annalisa Capobianco
- Autoimmunity and Vascular Inflammation Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Abstract
Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals. They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals. In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis. We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing. Finally, we briefly discuss the characterization of macrophage heterogeneity in humans.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
265
|
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011. [PMID: 21997792 DOI: 10.1038/nri3073.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals. They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals. In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis. We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing. Finally, we briefly discuss the characterization of macrophage heterogeneity in humans.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
266
|
Jang SW, Cho MK, Park MK, Kang SA, Na BK, Ahn SC, Kim DH, Yu HS. Parasitic helminth cystatin inhibits DSS-induced intestinal inflammation via IL-10(+)F4/80(+) macrophage recruitment. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:245-54. [PMID: 22072824 PMCID: PMC3210841 DOI: 10.3347/kjp.2011.49.3.245] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/17/2011] [Accepted: 08/30/2011] [Indexed: 12/04/2022]
Abstract
Many immune down-regulatory molecules have been isolated from parasites, including cystatin (cystain protease inhibitor). In a previous study, we isolated and characterized Type I cystatin (CsStefin-1) of the liver fluke, Clonorchis sinensis. To investigate whether the CsStefin-1 might be a new host immune modulator, we induced intestinal inflammation in mice by dextran sodium sulfate (DSS) and treated them with recombinant CsStefin-1 (rCsStefin-1). The disease activity index (DAI) increased in DSS only-treated mice. In contrast, the DAI value was significantly reduced in rCsStefin-1-treated mice than DSS only-treated mice. In addition, the colon length of DSS only-treated mice was shorter than that of rCsStefin-1 treated mice. The secretion levels of IFN-γ and TNF-α in the spleen and mesenteric lymph nodes (MLNs) were significantly increased by DSS treatment, but the level of TNF-α in MLNs was significantly decreased by rCsStefin-1 treatment. IL-10 production in both spleen and MLNs was significantly increased, and IL-10+F4/80+ macrophage cells were significantly increased in the spleen and MLNs of rCsStefin-1 treated mice after DSS treatment. In conclusion, rCsStefin-1 could reduce the intestinal inflammation occurring after DSS treatment, these effects might be related with recruitment of IL-10 secreting macrophages.
Collapse
Affiliation(s)
- Sung Won Jang
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan 626-813, Korea
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Yannam GR, Gutti T, Poluektova LY. IL-23 in infections, inflammation, autoimmunity and cancer: possible role in HIV-1 and AIDS. J Neuroimmune Pharmacol 2011; 7:95-112. [PMID: 21947740 DOI: 10.1007/s11481-011-9315-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 09/11/2011] [Indexed: 12/30/2022]
Abstract
The growing family of interleukin (IL)-12-like cytokines produced by activated macrophages and dendritic cells became the important players in the control of infections, development of inflammation, autoimmunity and cancer. However, the role of one of them-heterodimer IL-23, which consists of IL12p40 and the unique p19 subunit in HIV-1 infection pathogenesis and progression to AIDS, represent special interest. We overviewed findings of IL-23 involvement in control of peripheral bacterial pathogens and opportunistic infection, central nervous system (CNS) viral infections and autoimmune disorders, and tumorogenesis, which potentially could be applicable to HIV-1 and AIDS.
Collapse
Affiliation(s)
- Govardhana Rao Yannam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
268
|
Harrison OJ, Maloy KJ. Innate immune activation in intestinal homeostasis. J Innate Immun 2011; 3:585-93. [PMID: 21912101 PMCID: PMC3224517 DOI: 10.1159/000330913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022] Open
Abstract
Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
269
|
Hubbard VM, Cadwell K. Viruses, autophagy genes, and Crohn's disease. Viruses 2011; 3:1281-311. [PMID: 21994779 PMCID: PMC3185787 DOI: 10.3390/v3071281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023] Open
Abstract
The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.
Collapse
Affiliation(s)
| | - Ken Cadwell
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-263-8891; Fax: +1-212-263-5711
| |
Collapse
|
270
|
Harris KM. Monocytes differentiated with GM-CSF and IL-15 initiate Th17 and Th1 responses that are contact-dependent and mediated by IL-15. J Leukoc Biol 2011; 90:727-34. [PMID: 21724805 DOI: 10.1189/jlb.0311132] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Distinct types of DCs are generated from monocytes using GM-CSF with IL-4 (IL4-DC) or IL-15 (IL15-DC). IL15-DCs are potent inducers of antigen-specific CD8(+) T cells, display a phenotype similar to CD14(+) cells commonly described in chronically inflamed tissues, and produce high levels of IL-1β and IL-15 in response to TLR4 stimulation. As these cytokines promote Th17 responses, which are also associated with inflammatory diseases, I hypothesized that TLR-primed IL15-DCs favor Th17 activation over IL4-DCs. Compared with IL4-DCs, IL15-DCs stimulated with TLR agonists secreted significantly higher concentrations of the Th17-promoting factors, IL-1β, IL-6, IL-23, and CCL20, and lower levels of the Th1 cytokine, IL-12. In addition, IL15-DCs and not IL4-DCs up-regulated IL-15 on the cell surface in response to TLR agonists. IL15-DCs primed with TLR3 or TLR4 agonists triggered Th17 (IL-17, IL-22, and/or IFN-γ) and Th1 (IFN-γ) responses, whereas IL4-DCs primed with the same TLR agonists activated Th1 (IFN-γ) responses. Secretion of IL-17 and IFN-γ required contact with TLR-primed IL15-DC, and IFN-γ production was mediated by membrane-bound IL-15. These findings identify key differences in monocyte-derived DCs, which impact adaptive immunity, and provide primary evidence that IL-15 promotes Th17 and Th1 responses by skewing monocytes into IL15-DC.
Collapse
Affiliation(s)
- Kristina M Harris
- Pathology Department, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
271
|
Glubb DM, Gearry RB, Barclay ML, Roberts RL, Pearson J, Keenan JI, McKenzie J, Bentley RW. NOD2 and ATG16L1 polymorphisms affect monocyte responses in Crohn’s disease. World J Gastroenterol 2011; 17:2829-37. [PMID: 21734790 PMCID: PMC3120942 DOI: 10.3748/wjg.v17.i23.2829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess whether polymorphisms in NOD2 and ATG16L1 affect cytokine responses and mycobacterium avium subspecies paratuberculosis (MAP) survival in monocytes from Crohn’s disease (CD) patients.
METHODS: Monocytes were isolated from peripheral blood of CD patients of known genotype for common single nucleotide polymorphisms of NOD2 and ATG16L1. Monocytes were challenged with MAP and bacterial persistence assessed at subsequent time-points. Cytokine responses were assayed using a Milliplex multi-analyte profiling assay for 13 cytokines.
RESULTS: Monocytes heterozygous for a NOD2 polymorphism (R702W, P268S, or 1007fs) were more permissive for growth of MAP (P = 0.045) than those without. There was no effect of NOD2 genotype on subsequent cytokine expression. The T300A polymorphism of ATG16L1 did not affect growth of MAP in our model (P = 0.175), but did increase expression of cytokines interleukin (IL)-10 (P = 0.047) and IL-6 (P = 0.019).
CONCLUSION: CD-associated polymorphisms affected the elimination of MAP from ex vivo monocytes (NOD2), or expression of certain cytokines (ATG16L1), implying independent but contributory roles in the pathogenesis of CD.
Collapse
|
272
|
Abstract
Intestinal homeostasis depends on complex interactions between the microbiota, the intestinal epithelium and the host immune system. Diverse regulatory mechanisms cooperate to maintain intestinal homeostasis, and a breakdown in these pathways may precipitate the chronic inflammatory pathology found in inflammatory bowel disease. It is now evident that immune effector modules that drive intestinal inflammation are conserved across innate and adaptive leukocytes and can be controlled by host regulatory cells. Recent evidence suggests that several factors may tip the balance between homeostasis and intestinal inflammation, presenting future challenges for the development of new therapies for inflammatory bowel disease.
Collapse
|
273
|
Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, Geem D, Madan R, Karp CL, Pulendran B. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. THE JOURNAL OF IMMUNOLOGY 2011; 187:733-47. [PMID: 21666057 DOI: 10.4049/jimmunol.1002701] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.
Collapse
|
274
|
Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 2011. [PMID: 21469118 DOI: 10.1002/eji.201041135.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mϕs promote tissue injury or repair depending on their activation status and the local cytokine milieu. It remains unclear whether the immunosuppressive effects of transforming growth factor β (TGF-β) serve a nonredundant role in Mϕ function in vivo. We generated Mϕ-specific transgenic mice that express a truncated TGF-β receptor II under control of the CD68 promoter (CD68TGF-βDNRII) and subjected these mice to the dextran sodium sulfate (DSS) model of colitis. CD68TGF-βDNRII mice have an impaired ability to resolve colitic inflammation as demonstrated by increased lethality, granulocytic inflammation, and delayed goblet cell regeneration compared with transgene negative littermates. CD68TGF-βDNRII mice produce significantly less IL-10, but have increased levels of IgE and numbers of IL-33+ Mϕs than controls. These data are consistent with associations between ulcerative colitis and increased IL-33 production in humans and suggest that TGF-β may promote the suppression of intestinal inflammation, at least in part, through direct effects on Mϕ function.
Collapse
Affiliation(s)
- Reena Rani
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
275
|
Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 2011; 41:2000-9. [PMID: 21469118 DOI: 10.1002/eji.201041135] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/26/2011] [Accepted: 03/31/2011] [Indexed: 12/28/2022]
Abstract
Mϕs promote tissue injury or repair depending on their activation status and the local cytokine milieu. It remains unclear whether the immunosuppressive effects of transforming growth factor β (TGF-β) serve a nonredundant role in Mϕ function in vivo. We generated Mϕ-specific transgenic mice that express a truncated TGF-β receptor II under control of the CD68 promoter (CD68TGF-βDNRII) and subjected these mice to the dextran sodium sulfate (DSS) model of colitis. CD68TGF-βDNRII mice have an impaired ability to resolve colitic inflammation as demonstrated by increased lethality, granulocytic inflammation, and delayed goblet cell regeneration compared with transgene negative littermates. CD68TGF-βDNRII mice produce significantly less IL-10, but have increased levels of IgE and numbers of IL-33+ Mϕs than controls. These data are consistent with associations between ulcerative colitis and increased IL-33 production in humans and suggest that TGF-β may promote the suppression of intestinal inflammation, at least in part, through direct effects on Mϕ function.
Collapse
Affiliation(s)
- Reena Rani
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
276
|
Schonkeren D, van der Hoorn ML, Khedoe P, Swings G, van Beelen E, Claas F, van Kooten C, de Heer E, Scherjon S. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:709-17. [PMID: 21281803 DOI: 10.1016/j.ajpath.2010.10.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/08/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Maternal immune tolerance of the semiallogeneic fetus is a complex phenomenon. Macrophages are an abundant cell population in the human decidua, and changes in distribution or phenotype may be involved in the development of preeclampsia. The aim of this study was to assess the distribution and phenotype of macrophages in preterm preeclamptic, preterm control, and term control placentas. Placentas of preterm preeclamptic (n = 6), preterm control (n = 5), and term control pregnancies (n = 6) were sequentially immunohistochemically stained for CD14, CD163, DC SIGN, and IL-10. The distributions of CD14(+), CD163(+), DC SIGN(+), IL-10(+), CD163(+)/CD14(+), DC SIGN(+)/CD14(+), and Flt-1/CD14(+) cells were determined by double staining and by digital image analysis of sequential photomicrographs. CD14 and CD163 expression increased significantly in preterm preeclamptic decidua basalis compared with preterm control pregnancies (P = 0.0006 and P = 0.034, respectively). IL-10 expression was significantly lower in the decidua parietalis of preterm preeclamptic pregnancies compared with preterm control pregnancies (P = 0.03). The CD163/CD14 ratio was significantly lower in the decidua basalis (P = 0.0293) and the DC SIGN/CD14 ratio was significantly higher in the decidua basalis (P < 0.0001) and parietalis (P < 0.0001) of preterm preeclamptic pregnancies compared with preterm control pregnancies. CD14(+) macrophages did express Flt-1. Alterations in distribution and phenotype of macrophages in the decidua of preterm preeclamptic pregnancies compared with control pregnancies may contribute to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Dorrith Schonkeren
- Department of Obstetrics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Smith AM, Qualls JE, O'Brien K, Balouzian L, Johnson PF, Schultz-Cherry S, Smale ST, Murray PJ. A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J Biol Chem 2011; 286:23582-90. [PMID: 21566115 DOI: 10.1074/jbc.m111.249235] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deregulated IL-12 and IL-23 production from activated myeloid lineage cells is a key driver of numerous T cell-dependent autoimmune and inflammatory diseases. IL-12 and IL-23 share a common p40 subunit encoded by Il12b, which is negatively regulated at the transcriptional level by the STAT3 (signal transducer and activator of transcription 3)-activating anti-inflammatory cytokine IL-10. We found that IL-10 targets an enhancer 10 kb upstream of the Il12b transcriptional start site. Within the enhancer, a single 10-bp site is required for the inhibitory effects of IL-10 and is bound by NFIL3 (nuclear factor, interleukin 3-regulated), a B-ZIP transcription factor. Myeloid cells lacking NFIL3 produce excessive IL-12p40 and increased IL-12p70. Thus, the STAT3-dependent expression of NFIL3 is a key component of a negative feedback pathway in myeloid cells that suppresses proinflammatory responses.
Collapse
Affiliation(s)
- Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Kim YG, Kamada N, Shaw MH, Warner N, Chen GY, Franchi L, Núñez G. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 2011; 34:769-80. [PMID: 21565531 DOI: 10.1016/j.immuni.2011.04.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 02/16/2011] [Indexed: 12/14/2022]
Abstract
The intracellular sensor Nod2 is activated in response to bacteria, and the impairment of this response is linked to Crohn's disease. However, the function of Nod2 in host defense remains poorly understood. We found that Nod2-/- mice exhibited impaired intestinal clearance of Citrobacter rodentium, an enteric bacterium that models human infection by pathogenic Escherichia coli. The increased bacterial burden was preceded by reduced CCL2 chemokine production, inflammatory monocyte recruitment, and Th1 cell responses in the intestine. Colonic stromal cells, but not epithelial cells or resident CD11b+ phagocytic cells, produced CCL2 in response to C. rodentium in a Nod2-dependent manner. Unlike resident phagocytic cells, inflammatory monocytes produced IL-12, a cytokine that induces adaptive immunity required for pathogen clearance. Adoptive transfer of Ly6C(hi) monocytes restored the clearance of the pathogen in infected Ccr2-/- mice. Thus, Nod2 mediates CCL2-CCR2-dependent recruitment of inflammatory monocytes, which is important in promoting bacterial eradication in the intestine.
Collapse
Affiliation(s)
- Yun-Gi Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
279
|
Arsenescu R, Arsenescu V, Zhong J, Nasser M, Melinte R, Dingle RWC, Swanson H, de Villiers WJ. Role of the xenobiotic receptor in inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:1149-62. [PMID: 20878756 PMCID: PMC3013235 DOI: 10.1002/ibd.21463] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/26/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gene-environment interplay modulates inflammatory bowel diseases (IBD). Dioxin-like compounds can activate the aryl hydrocarbon receptor (AhR) and alter macrophage function as well as T-cell polarization. We hypothesized that attenuation of the AhR signaling pathway will ameliorate colitis in a murine model of IBD. METHODS Dextran sulfate sodium (DSS) colitis was induced in C57BL/6 AhR null mice (AhR(-/-) ), heterozygous mice (AhR(-/+) ), and their wildtype (WT) littermates. Clinical and morphopathological parameters were used to compare the groups. PATIENTS AhR pathway activation was analyzed in biopsy specimens from 25 IBD patients and 15 healthy controls. RESULTS AhR(-/-) mice died before the end of the treatment. However, AhR(-/+) mice exhibited decreased disease activity compared to WT mice. The AhR(-/+) mice expressed less proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) (6.1- versus 15.7-fold increase) and IL17 (23.7- versus 67.9-fold increase) and increased antiinflammatory IL-10 (2.3-fold increase) compared with the AhR(+/+) mice in the colon. Colonic macrophage infiltration was attenuated in the AhR(-/+) group. AhR and its downstream targets were significantly upregulated in IBD patients versus control (CYP1A1 -19.9, and IL8- 10-fold increase). CONCLUSIONS Attenuation of the AhR receptor expression resulted in a protective effect during DSS-induced colitis, while the absence of AhR exacerbated the disease. Abnormal AhR pathway activation in the intestinal mucosa of IBD patients may promote chronic inflammation. Modulation of AhR signaling pathway via the diet, cessation of smoking, or administration of AhR antagonists could be viable strategies for the treatment of IBD.
Collapse
Affiliation(s)
- Razvan Arsenescu
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536
| | - Violeta Arsenescu
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Jian Zhong
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536
| | - Munira Nasser
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536
| | - Razvan Melinte
- Department of Surgery – University Hospital Tg. Mures – Romania
| | - RW Cameron Dingle
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536
| | - Hollie Swanson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536
| | - Willem J. de Villiers
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
280
|
Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 2011; 140:1729-37. [PMID: 21530739 PMCID: PMC4007055 DOI: 10.1053/j.gastro.2011.02.012] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 12/22/2022]
Abstract
The intestinal immune system defends against pathogens and entry of excessive intestinal microbes; simultaneously, a state of immune tolerance to resident intestinal microbes must be maintained. Perturbation of this balance is associated with intestinal inflammation in various mouse models and is thought to predispose humans to inflammatory bowel disease (IBD). The innate immune system senses microbes; dendritic cells, macrophages, and epithelial cells produce an initial, rapid response. The immune system continuously monitors resident microbiota and utilizes constitutive antimicrobial mechanisms to maintain immune homeostasis. associations between IBD and genes that regulate microbial recognition and innate immune pathways, such as nucleotide oligomerization domain 2 (Nod2), genes that control autophagy (eg, ATG16L1, IRGM), and genes in the interleukin-23-T helper cell 17 pathway indicate the important roles of host-microbe interactions in regulating intestinal immune homeostasis. There is increasing evidence that intestinal microbes influence host immune development, immune responses, and susceptibility to human diseases such as IBD, diabetes mellitus, and obesity. Conversely, host factors can affect microbes, which in turn modulate disease susceptibility. We review the cell populations and mechanisms that mediate interactions between host defense and tolerance and how the dysregulation of host-microbe interactions leads to intestinal inflammation and IBD.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Medicine, Yale University, New Haven, Connecticut, USA.
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University, New
Haven, Connecticut,Howard Hughes Medical Institute, Yale University,
New Haven, Connecticut
| |
Collapse
|
281
|
Feng T, Qin H, Wang L, Benveniste EN, Elson CO, Cong Y. Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. THE JOURNAL OF IMMUNOLOGY 2011; 186:6313-8. [PMID: 21531892 DOI: 10.4049/jimmunol.1001454] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both Th1 and Th17 cells have been implicated in the pathogenesis of inflammatory bowel disease and experimental colitis. However, the complex relationship between Th1 and Th17 cells and their relative contributions to the pathogenesis of inflammatory bowel disease have not been completely analyzed. Although it has been recently shown that Th17 cells can convert into Th1 cells, the underlying in vivo mechanisms and the role of Th1 cells converted from Th17 cells in the pathogenesis of colitis are still largely unknown. In this study, we report that Th17 cells from CBir1 TCR transgenic mice, which are specific for an immunodominant microbiota Ag, are more potent than Th1 cells in the induction of colitis, as Th17 cells induced severe colitis, whereas Th1 cells induced mild colitis when transferred into TCRβxδ(-/-) mice. High levels of IL-12 and IL-23 and substantial numbers of IFN-γ(+) Th1 cells emerged in the colons of Th17 cell recipients. Administration of anti-IL-17 mAb abrogated Th17 cell-induced colitis development, blocked colonic IL-12 and IL-23 production, and inhibited IFN-γ(+) Th1 cell induction. IL-17 promoted dendritic cell production of IL-12 and IL-23. Furthermore, conditioned media from colonic tissues of colitic Th17 cell recipients induced IFN-γ production by Th17 cells, which was inhibited by blockade of IL-12 and IL-23. Collectively, these data indicate that Th17 cells convert to Th1 cells through IL-17 induction of mucosal innate IL-12 and IL-23 production.
Collapse
Affiliation(s)
- Ting Feng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | | | | | | | |
Collapse
|
282
|
Macrophage-produced IL-12p70 mediates hemorrhage-induced damage in a complement-dependent manner. Shock 2011; 35:134-40. [PMID: 20577145 DOI: 10.1097/shk.0b013e3181ed8ec9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hemorrhage and hemorrhagic shock instigate intestinal damage and inflammation. Multiple components of the innate immune response, including complement and neutrophil infiltration, are implicated in this pathology. To investigate the interaction of complement activation and other components of the innate immune response during hemorrhage, we treated mice after hemorrhage with CR2-fH, a targeted inhibitor of the alternative complement pathway and assessed intestinal damage and inflammation 2 h after hemorrhage. In wild-type mice, CR2-fH attenuated hemorrhage-induced, midjejunal damage and inflammation as determined by decreased mucosal damage, macrophage infiltration, leukotriene B4, IL-12p40, and TNF-[alpha] production. The critical nature of intestinal macrophage infiltration and activation in the response to hemorrhage was further determined using mice pretreated with clodronate-containing liposomes. The absence of either macrophages or IL-12p70 attenuated intestinal damage. These data suggest that complement activation and macrophage infiltration with IL-12p70 production are critical to hemorrhage-induced midjejunal damage and inflammation.
Collapse
|
283
|
Stappenbeck TS, Rioux JD, Mizoguchi A, Saitoh T, Huett A, Darfeuille-Michaud A, Wileman T, Mizushima N, Carding S, Akira S, Parkes M, Xavier RJ. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 2011; 7:355-74. [PMID: 20729636 PMCID: PMC3842289 DOI: 10.4161/auto.7.2.13074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/17/2010] [Indexed: 12/13/2022] Open
Abstract
Crohn disease (CD) is a chronic and debilitating inflammatory condition of the gastrointestinal tract. Prevalence in Western populations is 100-150/100,000 and somewhat higher in Ashkenazi Jews. Peak incidence is in early adult life, although any age can be affected and a majority of affected individuals progress to relapsing and chronic disease. Medical treatments rely significantly on empirical corticosteroid therapy and immunosuppression, and intestinal resectional surgery is frequently required. Thus, 80% of patients with CD come to surgery for refractory disease or complications. It is hoped that an improved understanding of pathogenic mechanisms, for example by studying the genetic basis of CD and other forms of inflammatory bowel diseases (IBD), will lead to improved therapies and possibly preventative strategies in individuals identified as being at risk.
Collapse
Affiliation(s)
- Thaddeus S. Stappenbeck
- Departments of Pathology and Immunology; Washington University School of Medicine; St. Louis, MO USA
| | - John D. Rioux
- Université de Montréal; Montréal, Québec Canada
- Montreal Heart Institute; Montréal, Québec Canada
| | - Atsushi Mizoguchi
- Center for the Study of Inflammatory Bowel Disease; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
- Department of Pathology; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | - Tatsuya Saitoh
- Laboratory of Host Defense; WPI Immunology Frontier Research Center; Osaka University; Suita, Osaka Japan
- Department of Host Defense Osaka; Japan
| | - Alan Huett
- Center for the Study of Inflammatory Bowel Disease; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | | | - Tom Wileman
- Infection and Immunity; School of Medicine; Faculty of Health; University of East Anglia; East Anglia, Norfolk UK
| | - Noboru Mizushima
- Department of Physiology and Cell Biology at Tokyo Medical and Dental University; Bunkyo-ku, Tokyo Japan
| | | | - Shizuo Akira
- Laboratory of Host Defense; WPI Immunology Frontier Research Center; Osaka University; Suita, Osaka Japan
- Department of Host Defense Osaka; Japan
| | - Miles Parkes
- IBD Research Group; Addenbrooke’s Hospital; University of Cambridge; Cambridge UK
| | - Ramnik J. Xavier
- Center for the Study of Inflammatory Bowel Disease; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| |
Collapse
|
284
|
Stappenbeck TS, Rioux JD, Mizoguchi A, Saitoh T, Huett A, Darfeuille-Michaud A, Wileman T, Mizushima N, Carding S, Akira S, Parkes M, Xavier RJ. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 2011. [PMID: 20729636 DOI: 10.4161/auto.7.4.13074] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crohn disease (CD) is a chronic and debilitating inflammatory condition of the gastrointestinal tract. Prevalence in Western populations is 100-150/100,000 and somewhat higher in Ashkenazi Jews. Peak incidence is in early adult life, although any age can be affected and a majority of affected individuals progress to relapsing and chronic disease. Medical treatments rely significantly on empirical corticosteroid therapy and immunosuppression, and intestinal resectional surgery is frequently required. Thus, 80% of patients with CD come to surgery for refractory disease or complications. It is hoped that an improved understanding of pathogenic mechanisms, for example by studying the genetic basis of CD and other forms of inflammatory bowel diseases (IBD), will lead to improved therapies and possibly preventative strategies in individuals identified as being at risk.
Collapse
Affiliation(s)
- Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Sheikh SZ, Hegazi RA, Kobayashi T, Onyiah JC, Russo SM, Matsuoka K, Sepulveda AR, Li F, Otterbein LE, Plevy SE. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:5506-13. [PMID: 21444764 DOI: 10.4049/jimmunol.1002433] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cigarette smoking is a significant environmental factor in the human inflammatory bowel diseases, remarkably, conferring protection in ulcerative colitis. We previously demonstrated that a prominent component of cigarette smoke, CO, suppresses Th17-mediated experimental colitis in IL-10(-/-) mice through a heme oxygenase (HO)-1-dependent pathway. In this study, homeostatic and therapeutic effects of CO and HO-1 were determined in chronic colonic inflammation in TCR-α-deficient ((-/-)) mice, in which colitis is mediated by Th2 cytokines, similar to the cytokine milieu described in human ulcerative colitis. TCRα(-/-) mice exposed to CO or treated with the pharmacologic HO-1 inducer cobalt protoporphyrin demonstrated amelioration of active colitis. CO and cobalt protoporphyrin suppressed colonic IL-1β, TNF, and IL-4 production, whereas IL-10 protein secretion was increased. CO induced IL-10 expression in macrophages and in vivo through an HO-1-dependent pathway. Bacterial products regulate HO-1 expression in macrophages through MyD88- and IL-10-dependent pathways. CO exposure and pharmacologic HO-1 induction in vivo resulted in increased expression of HO-1 and IL-10 in CD11b(+) lamina propria mononuclear cells. Moreover, induction of the IL-10 family member IL-22 was demonstrated in CD11b(-) lamina propria mononuclear cells. In conclusion, CO and HO-1 induction ameliorated active colitis in TCRα(-/-) mice, and therapeutic effects correlated with induction of IL-10. This study provides further evidence that HO-1 mediates an important homeostatic pathway with pleiotropic anti-inflammatory effects in different experimental models of colitis and that targeting HO-1, therefore, is a potential therapeutic strategy in human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Shehzad Z Sheikh
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, Hisamatsu T, Hansen JJ, Doty KR, Pope SD, Smale ST, Hibi T, Rothman PB, Kashiwada M, Plevy SE. NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:4649-55. [PMID: 21383239 DOI: 10.4049/jimmunol.1003888] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulation of innate inflammatory responses against the enteric microbiota is essential for the maintenance of intestinal homeostasis. Key participants in innate defenses are macrophages. In these studies, the basic leucine zipper protein, NFIL3, is identified as a regulatory transcription factor in macrophages, controlling IL-12 p40 production induced by bacterial products and the enteric microbiota. Exposure to commensal bacteria and bacterial products induced NFIL3 in cultured macrophages and in vivo. The Il12b promoter has a putative DNA-binding element for NFIL3. Basal and LPS-activated NFIL3 binding to this site was confirmed by chromatin immunoprecipitation. LPS-induced Il12b promoter activity was inhibited by NFIL3 expression and augmented by NFIL3-short hairpin RNA in an Il12b-bacterial artificial chromosome-GFP reporter macrophage line. Il12b inhibition by NFIL3 does not require IL-10 expression, but a C-terminal minimal repression domain is necessary. Furthermore, colonic CD11b(+) lamina propria mononuclear cells from Nfil3(-/-) mice spontaneously expressed Il12b mRNA. Importantly, lower expression of NFIL3 was observed in CD14(+) lamina propria mononuclear cells from Crohn's disease and ulcerative colitis patients compared with control subjects. Likewise, no induction of Nfil3 was observed in colons of colitis-prone Il10(-/-) mice transitioned from germ-free to a conventional microbiota. In conclusion, these experiments characterize NFIL3 as an Il12b transcriptional inhibitor. Interactions of macrophages with the enteric microbiota induce NFIL3 to limit their inflammatory capacity. Furthermore, altered intestinal NFIL3 expression may have implications for the pathogenesis of experimental and human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Gastrointestinal Biology and Diseases, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Stoll ML. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin Exp Rheumatol 2011; 29:322-30. [PMID: 21269576 PMCID: PMC3266164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/05/2010] [Indexed: 05/30/2023]
Abstract
The immune system can be divided into the innate and adaptive arms. Historically, most of the research into the pathogenesis of spondyloarthritis (SpA) and other types of chronic arthritis focused on the adaptive immune system. Recently, the pendulum has shifted, and much current work in SpA focuses on innate immunity. Herein, I summarise evidence demonstrating that both the innate and the adaptive arms of the immune system are involved in the pathogenesis of SpA, propose a mechanism in which both arms interact to maintain chronic arthritis, and discuss potential research directions.
Collapse
Affiliation(s)
- M L Stoll
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390-9063, USA.
| |
Collapse
|
288
|
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4:31-42. [PMID: 20962772 PMCID: PMC3821935 DOI: 10.1038/mi.2010.66] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stromal) transforming growth factor-β (TGF-β) dysregulation of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monocytes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes.
Collapse
Affiliation(s)
- PD Smith
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - LE Smythies
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - R Shen
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - T Greenwell-Wild
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - M Gliozzi
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - SM Wahl
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| |
Collapse
|
289
|
Abstract
There are great interest and demand for the development of vaccines to prevent and treat diverse microbial infections. Mucosal vaccines elicit immune protection by stimulating the production of antibodies at mucosal surfaces and systemic districts. Being positioned in close proximity to a large community of commensal microbes, the mucosal immune system deploys a heterogeneous population of cells and a complex regulatory network to maintain the balance between surveillance and tolerance. A successful mucosal vaccine relies on leveraging the functions of these immune cells and regulatory components. We review the important cellular interactions and molecular pathways underlying the induction and regulation of mucosal antibody responses and discuss their implications on mucosal vaccination.
Collapse
|
290
|
Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One 2010; 5:e15398. [PMID: 21085698 PMCID: PMC2976761 DOI: 10.1371/journal.pone.0015398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni.
Collapse
Affiliation(s)
- Lindsey A. Edwards
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Kiran Nistala
- Rheumatology, Institute of Child Health, London, United Kingdom
| | - Dominic C. Mills
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Holly N. Stephenson
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Matthias Zilbauer
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
- Paediatric Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Brendan W. Wren
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Keith J. Lindley
- Autoimmunity and Surgery Units, Institute of Child Health, London, United Kingdom
| | | | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| |
Collapse
|
291
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight macrophages as central mediators of intestinal immune homeostasis and inflammation. RECENT FINDINGS We review recent developments elucidating distinct phenotypic adaptations in intestinal macrophages that determine their functional role in a microbe-rich environment. The involvement of intestinal macrophages in the pathogenesis of inflammatory bowel disease is also discussed. SUMMARY Intestinal macrophages represent the largest pool of tissue macrophages in the human body and a critical interface with the enteric microbiota. In normal physiology, luminal microbes breach the intestinal epithelial barrier and gain access to the lamina propria. Bacteria are efficiently phagocytosed by macrophages strategically located underneath the epithelium. The importance of functional adaptations of macrophages to perform their role in this unique environment is best illustrated by failure of these mechanisms during the development of chronic inflammatory bowel diseases. Compared with monocytes or macrophages from any other organ, intestinal macrophages express different phenotypic markers, efficiently eradicate intracellular bacteria, but do not mount potent inflammatory responses. Converging human genetic and functional findings suggest that dysregulation of macrophage-specific immune responses against an otherwise harmless enteric microbiota are key factors in the pathogenesis of inflammatory bowel disease.
Collapse
|
292
|
Winter SE, Keestra AM, Tsolis RM, Bäumler AJ. The blessings and curses of intestinal inflammation. Cell Host Microbe 2010; 8:36-43. [PMID: 20638640 DOI: 10.1016/j.chom.2010.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/10/2010] [Accepted: 06/07/2010] [Indexed: 12/19/2022]
Abstract
The intestinal immune system has to strike a delicate balance between initiating inflammatory responses against invading bacterial pathogens and avoiding their induction against microbiota colonizing the lumen. Adequate inflammatory responses against bacterial invasion result in the lumenal secretion of antimicrobial peptides, as well as the release of cytokines in tissue that recruit and activate phagocytes. However, pathogens have evolved to utilize these environmental changes in the inflamed intestine to promote colonization. This review focuses on the costs and benefits of intestinal inflammation and the fine interplay between the host, its microbiota, and enteric pathogens.
Collapse
Affiliation(s)
- Sebastian E Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
293
|
Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, Halary F. Pivotal advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells. J Leukoc Biol 2010; 89:329-42. [PMID: 20940323 PMCID: PMC7166666 DOI: 10.1189/jlb.0710386] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in the capture and internalization of pathogens, including human CMV. Several transcripts have been identified, some of which code for putative soluble proteins. However, little is known about the regulation and the functional properties of such putative sDC-SIGN variants. To better understand how sDC-SIGN could be involved in CMV infection, we set out to characterize biochemical and functional properties of rDC-SIGN as well as naturally occurring sDC-SIGN. We first developed a specific, quantitative ELISA and then used it to detect the presence sDC-SIGN in in vitro-generated DC culture supernatants as cell-free secreted tetramers. Next, in correlation with their inflammatory status, we demonstrated the presence of sDC-SIGN in several human body fluids, including serum, joint fluids, and BALs. CMV infection of human tissues was also shown to promote sDC-SIGN release. Based on the analysis of the cytokine/chemokine content of sDC-SIGN culture supernatants, we identified IFN-γ and CXCL8/IL-8 as inducers of sDC-SIGN production by MoDC. Finally, we demonstrated that sDC-SIGN was able to interact with CMV gB under native conditions, leading to a significant increase in MoDC CMV infection. Overall, our results confirm that sDC-SIGN, like its well-known, counterpart mDC-SIGN, may play a pivotal role in CMV-mediated pathogenesis.
Collapse
Affiliation(s)
- N Plazolles
- CNRS, UMR 5234, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
294
|
Stanghellini V, Barbara G, Cremon C, Cogliandro R, Antonucci A, Gabusi V, Frisoni C, De Giorgio R, Grasso V, Serra M, Corinaldesi R. Gut microbiota and related diseases: clinical features. Intern Emerg Med 2010; 5 Suppl 1:S57-63. [PMID: 20865476 DOI: 10.1007/s11739-010-0451-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal microbiota is essential for gut homeostasis. Specifically, the microorganisms inhabiting the gut lumen interact with the intestinal immune system, supply key nutrients for the major components of the gut wall, and modulate energy metabolism. Host-microbiome interactions can be either beneficial or deleterious, driving gastrointestinal lymphoid tissue activities and shaping gut wall structures. This overview briefly focuses on the potential role played by abnormalities in gut microbiota and relative responses of the gastrointestinal tract in the determination of important pathological conditions such as the irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Vincenzo Stanghellini
- Department of Clinical Medicine, St. Orsola-Malpighi Hospital, University of Bologna, Building No. 5, Via Massarenti, 9, 40138, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Stolfi C, Caruso R, Franzè E, Sarra M, De Nitto D, Rizzo A, Pallone F, Monteleone G. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages. Immunology 2010; 132:66-77. [PMID: 20840631 DOI: 10.1111/j.1365-2567.2010.03340.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-γ. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Internal Medicine, University of Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Abstract
Differential alteration of Toll-like receptor (TLR) expression in inflammatory bowel disease (IBD) was first described 10 years ago. Since then, studies from many groups have led to the current concept that TLRs represent key mediators of innate host defense in the intestine, involved in maintaining mucosal as well as commensal homeostasis. Recent findings in diverse murine models of colitis have helped to reveal the mechanistic importance of TLR dysfunction in IBD pathogenesis. It has become evident that environment, genetics, and host immunity form a multidimensional and highly interactive regulatory triad that controls TLR function in the intestinal mucosa. Imbalanced relationships within this triad may promote aberrant TLR signaling, critically contributing to acute and chronic intestinal inflammatory processes in IBD colitis and associated cancer.
Collapse
Affiliation(s)
- Elke Cario
- Division of Gastroenterology & Hepatology, University Hospital of Essen, and Medical School, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
297
|
Abstract
Until recently, autoimmune diseases had been categorized as either Th1- or Th2-mediated diseases. However, the discovery of a novel subset of helper T cells producing interleukin (IL)-17, ie, Th17 cells, changed this paradigm. Currently, IL-17 and Th17 cells are implicated in many autoimmune diseases, such as rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel diseases. Such conclusions were initially drawn from observations in animal models of autoimmune diseases, and accumulating data from clinical research also support the involvement of IL-17 in human diseases as well. Reagents targeting Th17-related molecules have been under clinical investigation for some diseases but have not always been effective in controlling disease activity. Consistent with this, it has become evident that there are substantial differences in the development of Th17 cells and in the way they function in autoimmune diseases between humans and experimental animals. Thus, further investigation is needed before we can draw any conclusions about the importance of IL-17 and Th17 cells in human autoimmune diseases.
Collapse
Affiliation(s)
- Hisakata Yamada
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
298
|
Varol C, Zigmond E, Jung S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat Rev Immunol 2010; 10:415-26. [PMID: 20498668 DOI: 10.1038/nri2778] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal landscape comprises the host's own tissue and immune cells, as well as a diverse intestinal microbiota. Intricate regulatory mechanisms have evolved to maintain peaceful coexistence at this site, the breakdown of which can result in devastating inflammatory bowel diseases (IBDs). Mononuclear phagocytes promote both innate and adaptive immune responses in the gut and, as such, are essential for the maintenance of intestinal homeostasis. Here, we review the origins and functions of the mononuclear phagocytes found in the intestinal lamina propria, highlighting the problems that have arisen from their classification. Understanding these cells in their physiological context will be important for developing new therapies for IBDs.
Collapse
Affiliation(s)
- Chen Varol
- Gastroenterology and Hepatology Institute, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | | | | |
Collapse
|
299
|
Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol 2010; 10:578-87. [PMID: 20860919 DOI: 10.1016/j.coph.2010.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/11/2010] [Accepted: 05/16/2010] [Indexed: 12/19/2022]
Abstract
Spontaneous development of intestinal inflammation in many different kinds of genetically engineered mice as well as the presence of numerous susceptibility genes in humans suggests that inflammatory bowel disease (IBD) is mediated by more complicated mechanisms than previously predicted. The human genetic studies implicate some major pathways in the pathogenesis of IBD, including epithelial defense against commensal microbiota, the IL-23/Th17 axis, and immune regulation. Murine IBD models, which are genetically engineered to lack some susceptibility genes, have been generated, and have provided useful insights into the therapeutic potential of targeting the susceptibility genes directly or their downstream pathways indirectly for IBD. This review summarizes current information related to the function of IBD-associated genes as derived from genetically engineered mouse models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
300
|
|