251
|
Zhou X, Brenner MK. Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Exp Hematol 2016; 44:1013-1019. [PMID: 27473568 PMCID: PMC5083205 DOI: 10.1016/j.exphem.2016.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Abstract
Adoptive transfer of T cells can be an effective anticancer treatment. However, uncontrolled or unpredictable immediate or persistent toxic effects are a source of concern. The ability to conditionally eliminate aberrant cells in vivo is therefore becoming a critical step for the successful translation of this approach to the clinic. We review the evolution of safety systems, focusing on a suicide switch that can be expressed stably and efficiently in human T cells without impairing phenotype, function, or antigen specificity. This system is based on the fusion of human caspase-9 to a modified human FK-binding protein, allowing conditional dimerization in the presence of an otherwise bio-inert small molecule drug. When exposed to the synthetic dimerizing drug, the inducible caspase-9 becomes activated, resulting in the rapid apoptosis of cells expressing this construct. We have illustrated the clinical feasibility and efficacy of this approach after haploidentical hematopoietic stem cell transplant. Here we review the benefits and limitations of the approach.
Collapse
Affiliation(s)
- Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX; USA
| |
Collapse
|
252
|
Kyte JA, Gaudernack G, Faane A, Lislerud K, Inderberg EM, Brunsvig P, Aamdal S, Kvalheim G, Wälchli S, Pule M. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncoimmunology 2016; 5:e1249090. [PMID: 28123886 DOI: 10.1080/2162402x.2016.1249090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4+ Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4+ and CD8+ T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Faane
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Kari Lislerud
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | | | - Paal Brunsvig
- Clinical Trial Unit, Department of Oncology, Oslo University Hospital , Oslo, Norway
| | - Steinar Aamdal
- Faculty of Medicine, University of Oslo, Oslo, Norway; Clinical Trial Unit, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Sébastien Wälchli
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, UCL Cancer Institute, University College London , London, UK
| |
Collapse
|
253
|
Paszkiewicz PJ, Fräßle SP, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, Sadelain M, Liu L, Jensen MC, Riddell SR, Busch DH. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest 2016; 126:4262-4272. [PMID: 27760047 DOI: 10.1172/jci84813] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/08/2016] [Indexed: 12/12/2022] Open
Abstract
The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.
Collapse
|
254
|
Gross G, Eshhar Z. Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. Annu Rev Pharmacol Toxicol 2016; 56:59-83. [PMID: 26738472 DOI: 10.1146/annurev-pharmtox-010814-124844] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A chimeric antigen receptor (CAR) is a recombinant fusion protein combining an antibody-derived targeting fragment with signaling domains capable of activating T cells. Recent early-phase clinical trials have demonstrated the remarkable ability of CAR-modified T cells to eliminate B cell malignancies. This review describes the choice of target antigens and CAR manipulations to maximize antitumor specificity. Benefits and current limitations of CAR-modified T cells are discussed, with a special focus on the distribution of tumor antigens on normal tissues and the risk of on-target, off-tumor toxicities in the clinical setting. We present current methodologies for pre-evaluating these risks and review the strategies for counteracting potential off-tumor effects. Successful implementation of these approaches will improve the safety and efficacy of CAR T cell therapy and extend the range of cancer patients who may be treated.
Collapse
Affiliation(s)
- Gideon Gross
- Laboratory of Immunology, MIGAL, Galilee Research Institute, Kiryat Shmona 11016, Israel; .,Department of Biotechnology, Tel-Hai College, Upper Galilee 12210, Israel.,Center of Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Zelig Eshhar
- Center of Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
255
|
Chimeric Antigen Receptor T-Cells: New Approaches to Improve Their Efficacy and Reduce Toxicity. Cancer J 2016; 21:475-9. [PMID: 26588679 DOI: 10.1097/ppo.0000000000000155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The durable remission of B-cell leukemia and lymphoma following chimeric antigen receptor (CAR) T-cell therapy has brought this new form of adoptive immunotherapy to center stage with the expectation that CAR T-cell therapy may provide similar efficacy in other hematologic and solid cancers. Herein, we review recent advances in the areas of CAR design that improve CAR T-cell proliferation, engraftment, and efficacy, as well as clinical application strategies that are designed to improve clinical efficacy while reducing the risk of toxicity and broaden patient access to this promising form of cancer immunotherapy.
Collapse
|
256
|
Abstract
The immune system evolved to distinguish non-self from self to protect the organism. As cancer is derived from our own cells, immune responses to dysregulated cell growth present a unique challenge. This is compounded by mechanisms of immune evasion and immunosuppression that develop in the tumour microenvironment. The modern genetic toolbox enables the adoptive transfer of engineered T cells to create enhanced anticancer immune functions where natural cancer-specific immune responses have failed. Genetically engineered T cells, so-called 'living drugs', represent a new paradigm in anticancer therapy. Recent clinical trials using T cells engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) have produced stunning results in patients with relapsed or refractory haematological malignancies. In this Review we describe some of the most recent and promising advances in engineered T cell therapy with a particular emphasis on what the next generation of T cell therapy is likely to entail.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Cytokines/metabolism
- Forecasting
- Gene Editing
- Gene Transfer Techniques
- Genetic Engineering
- HLA Antigens/immunology
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Syndrome
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| |
Collapse
|
257
|
Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, Singh S, Song Y, Gwiazda K, Sahni J, Jarjour J, Astrakhan A, Wagner TA, Scharenberg AM, Rawlings DJ. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 2016; 7:307ra156. [PMID: 26424571 DOI: 10.1126/scitranslmed.aac5530] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties.
Collapse
Affiliation(s)
- Blythe D Sather
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gabrielle Curinga
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yumei Song
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kamila Gwiazda
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jaya Sahni
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | | | - Thor A Wagner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA. Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA. Department of Pediatrics, University of Washington, Seattle, WA 98101, USA. Department of Immunology, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
258
|
CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res 2016; 2016:5474602. [PMID: 27298832 PMCID: PMC4889848 DOI: 10.1155/2016/5474602] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.
Collapse
|
259
|
Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 2016; 23:615-26. [PMID: 27092941 DOI: 10.1038/gt.2016.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.
Collapse
Affiliation(s)
- K Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - E L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Einholz
- Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - K Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - B Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - D von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - K Scheckenbach
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - M Wagenmann
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - D Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C M Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - A E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - C Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - H Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
260
|
Toxicity and management in CAR T-cell therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16011. [PMID: 27626062 PMCID: PMC5008265 DOI: 10.1038/mto.2016.11] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
Abstract
T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR). Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, “on target/off tumor” recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.
Collapse
|
261
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
262
|
A Traceless Selection: Counter-selection System That Allows Efficient Generation of Transposon and CRISPR-modified T-cell Products. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e298. [PMID: 27003756 PMCID: PMC5014455 DOI: 10.1038/mtna.2016.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Recent years have seen major breakthroughs in genome-engineering systems, such as transposon-mediated gene delivery systems and CRISPR-Cas9-mediated genome-editing tools. In these systems, transient expression of auxiliary genes is responsible for permanent genomic modification. For both systems, it would be valuable to select for cells that are likely to undergo stable genome modification. Importantly, in particular for clinical applications of genome-engineered cell products, it will also be of importance to remove those cells that, due to random vector integration, display an unwanted stable expression of the auxiliary gene. Here, we develop a traceless selection system that on the one hand allows efficient enrichment of modified cells, and on the other hand can be used to select against cells that retain expression of the auxiliary gene. The value of this system to produce highly enriched-auxiliary gene-free cell products is demonstrated.
Collapse
|
263
|
Abken H. Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy 2016; 7:535-44. [PMID: 26065478 DOI: 10.2217/imt.15.15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent spectacular success in the adoptive cell therapy of leukemia and lymphoma with chimeric antigen receptor (CAR)-modified T cells raised the expectations that this therapy may be efficacious in a wide range of cancer entities. The expectations are based on the predefined specificity of CAR T cells by an antibody-derived binding domain that acts independently of the natural T-cell receptor, recognizes targets independently of presentation by the major histocompatibility complex and allows targeting toward virtually any cell surface antigen. We here discuss that targeting CAR T cells toward solid tumors faces certain circumstances critical for the therapeutic success. Targeting tumor stroma and taking advantage of TRUCK cells, in other words, CAR T cells with inducible release of a transgenic payload, are some strategies envisaged to overcome current limitations in the near future.
Collapse
Affiliation(s)
- Hinrich Abken
- Clinic I Internal Medicine, Tumor Genetics, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Robert-Koch-Str. 21, D-50931 Cologne, Germany
| |
Collapse
|
264
|
Juillerat A, Marechal A, Filhol JM, Valton J, Duclert A, Poirot L, Duchateau P. Design of chimeric antigen receptors with integrated controllable transient functions. Sci Rep 2016; 6:18950. [PMID: 26750734 PMCID: PMC4707440 DOI: 10.1038/srep18950] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/01/2015] [Indexed: 12/24/2022] Open
Abstract
The ability to control T cells engineered to permanently express chimeric antigen receptors (CARs) is a key feature to improve safety. Here, we describe the development of a new CAR architecture with an integrated switch-on system that permits to control the CAR T-cell function. This system offers the advantage of a transient CAR T-cell for safety while letting open the possibility of multiple cytotoxicity cycles using a small molecule drug.
Collapse
Affiliation(s)
| | | | | | - Julien Valton
- Cellectis Inc, 430E, 29th street, NYC, NY 10016, USA
| | | | | | | |
Collapse
|
265
|
Kasenda B, Kühnl A, Chau I. Beginning of a novel frontier: T-cell-directed immune manipulation in lymphomas. Expert Rev Hematol 2016; 9:123-35. [DOI: 10.1586/17474086.2016.1122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
266
|
Abstract
Adoptive T cell transfer for cancer, chronic infection, and autoimmunity is an emerging field that shows promise in recent trials. Using the principles of synthetic biology, advances in cell culture and genetic engineering have made it possible to generate human T cells that display desired specificities and enhanced functionalities compared with the natural immune system. The prospects for widespread availability of engineered T cells have changed dramatically, given the recent entry of the pharmaceutical industry to this arena. Here, we discuss some of the challenges--such as regulatory, cost, and manufacturing--and opportunities, including personalized gene-modified T cells, that face the field of adoptive cellular therapy.
Collapse
Affiliation(s)
- Carl H June
- Center for Cellular Immunotherapies and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA.
| | - Stanley R Riddell
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA.
| | - Ton N Schumacher
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands.
| |
Collapse
|
267
|
Whilding LM, Maher J. CAR T-cell immunotherapy: The path from the by-road to the freeway? Mol Oncol 2015; 9:1994-2018. [PMID: 26563646 PMCID: PMC5528729 DOI: 10.1016/j.molonc.2015.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors are genetically encoded artificial fusion molecules that can re-program the specificity of peripheral blood polyclonal T-cells against a selected cell surface target. Unparallelled clinical efficacy has recently been demonstrated using this approach to treat patients with refractory B-cell malignancy. However, the approach is technically challenging and can elicit severe toxicity in patients. Moreover, solid tumours have largely proven refractory to this approach. In this review, we describe the important structural features of CARs and how this may influence function. Emerging clinical experience is summarized in both solid tumours and haematological malignancies. Finally, we consider the particular challenges imposed by solid tumours to the successful development of CAR T-cell immunotherapy, together with a number of innovative strategies that have been developed in an effort to reverse the balance in favour of therapeutic benefit.
Collapse
Affiliation(s)
- Lynsey M Whilding
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet Hospital, Royal Free London NHS Foundation Trust, Barnet, Hertfordshire, EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
268
|
Karpanen T, Olweus J. T-cell receptor gene therapy--ready to go viral? Mol Oncol 2015; 9:2019-42. [PMID: 26548533 DOI: 10.1016/j.molonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes can be redirected to recognize a tumor target and harnessed to combat cancer by genetic introduction of T-cell receptors of a defined specificity. This approach has recently mediated encouraging clinical responses in patients with cancers previously regarded as incurable. However, despite the great promise, T-cell receptor gene therapy still faces a multitude of obstacles. Identification of epitopes that enable effective targeting of all the cells in a heterogeneous tumor while sparing normal tissues remains perhaps the most demanding challenge. Experience from clinical trials has revealed the dangers associated with T-cell receptor gene therapy and highlighted the need for reliable preclinical methods to identify potentially hazardous recognition of both intended and unintended epitopes in healthy tissues. Procedures for manufacturing large and highly potent T-cell populations can be optimized to enhance their antitumor efficacy. Here, we review the current knowledge gained from preclinical models and clinical trials using adoptive transfer of T-cell receptor-engineered T lymphocytes, discuss the major challenges involved and highlight potential strategies to increase the safety and efficacy to make T-cell receptor gene therapy a standard-of-care for large patient groups.
Collapse
Affiliation(s)
- Terhi Karpanen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet and K.G. Jebsen Center for Cancer Immunotherapy, University of Oslo, Ullernchausseen 70, N-0379 Oslo, Norway.
| |
Collapse
|
269
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
270
|
Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol 2015; 36:494-502. [PMID: 26169254 DOI: 10.1016/j.it.2015.06.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
Abstract
Despite being empirically designed based on a simple understanding of TCR signaling, T cells engineered with chimeric antigen receptors (CARs) have been remarkably successful in treating patients with advanced refractory B cell malignancies. However, many challenges remain in improving the safety and efficacy of this therapy and extending it toward the treatment of epithelial cancers. Other aspects of TCR signaling beyond those directly provided by CD3ζ and CD28 phosphorylation strongly influence a T cell's ability to differentiate and acquire full effector functions. Here, we discuss how the principles of TCR recognition, including spatial constraints, Kon/Koff rates, and synapse formation, along with in-depth analysis of CAR signaling might be applied to develop safer and more effective synthetic tumor targeting receptors.
Collapse
Affiliation(s)
- Shivani Srivastava
- Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| |
Collapse
|
271
|
A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy. Mol Ther 2015; 23:1507-18. [PMID: 26061646 PMCID: PMC4817890 DOI: 10.1038/mt.2015.104] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/27/2015] [Indexed: 02/07/2023] Open
Abstract
The adoptive transfer of chimeric antigen receptor (CAR) T cell represents a highly promising strategy to fight against multiple cancers. The clinical outcome of such therapies is intimately linked to the ability of effector cells to engraft, proliferate, and specifically kill tumor cells within patients. When allogeneic CAR T-cell infusion is considered, host versus graft and graft versus host reactions must be avoided to prevent rejection of adoptively transferred cells, host tissue damages and to elicit significant antitumoral outcome. This work proposes to address these three requirements through the development of multidrug-resistant T cell receptor αβ-deficient CAR T cells. We demonstrate that these engineered T cells displayed efficient antitumor activity and proliferated in the presence of purine and pyrimidine nucleoside analogues, currently used in clinic as preconditioning lymphodepleting regimens. The absence of TCRαβ at their cell surface along with their purine nucleotide analogues-resistance properties could prevent their alloreactivity and enable them to resist to lymphodepleting regimens that may be required to avoid their ablation via HvG reaction. By providing a basic framework to develop a universal T cell compatible with allogeneic adoptive transfer, this work is laying the foundation stone of the large-scale utilization of CAR T-cell immunotherapies.
Collapse
|
272
|
A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 2015; 126:983-92. [PMID: 26056165 DOI: 10.1182/blood-2015-02-629527] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 02/07/2023] Open
Abstract
Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms.
Collapse
|
273
|
Minagawa K, Zhou X, Mineishi S, Di Stasi A. Seatbelts in CAR therapy: How Safe Are CARS? Pharmaceuticals (Basel) 2015; 8:230-49. [PMID: 26110321 PMCID: PMC4491658 DOI: 10.3390/ph8020230] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022] Open
Abstract
T-cells genetically redirected with a chimeric antigen receptor (CAR) to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.
Collapse
Affiliation(s)
- Kentaro Minagawa
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Xiaoou Zhou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | - Shin Mineishi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
274
|
Greco R, Oliveira G, Stanghellini MTL, Vago L, Bondanza A, Peccatori J, Cieri N, Marktel S, Mastaglio S, Bordignon C, Bonini C, Ciceri F. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6:95. [PMID: 25999859 PMCID: PMC4419602 DOI: 10.3389/fphar.2015.00095] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/17/2015] [Indexed: 01/07/2023] Open
Abstract
While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Giacomo Oliveira
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Maria Teresa Lupo Stanghellini
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy ; Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Attilio Bondanza
- Leukemia Immunotherapy Unit, Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sara Mastaglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| |
Collapse
|
275
|
Veliça P, Zech M, Henson S, Holler A, Manzo T, Pike R, Santos E Sousa P, Zhang L, Heinz N, Schiedlmeier B, Pule M, Stauss H, Chakraverty R. Genetic Regulation of Fate Decisions in Therapeutic T Cells to Enhance Tumor Protection and Memory Formation. Cancer Res 2015; 75:2641-52. [PMID: 25904681 DOI: 10.1158/0008-5472.can-14-3283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/26/2015] [Indexed: 11/16/2022]
Abstract
A key challenge in the field of T-cell immunotherapy for cancer is creating a suitable platform for promoting differentiation of effector cells while at the same time enabling self-renewal needed for long-term memory. Although transfer of less differentiated memory T cells increases efficacy through greater expansion and persistence in vivo, the capacity of such cells to sustain effector functions within immunosuppressive tumor microenvironments may still be limiting. We have therefore directly compared the impact of effector versus memory differentiation of therapeutic T cells in tumor-bearing mice by introducing molecular switches that regulate cell fate decisions via mTOR. Ectopic expression of RAS homolog enriched in brain (RHEB) increased mTORC1 signaling, promoted a switch to aerobic glycolysis, and increased expansion of effector T cells. By rapidly infiltrating tumors, RHEB-transduced T cells significantly reduced the emergence of immunoedited escape variants. In contrast, expression of proline-rich Akt substrate of 40 kDa (PRAS40) inhibited mTORC1, promoted quiescence, and blocked tumor infiltration. Fate mapping studies following transient expression of PRAS40 demonstrated that mTORC1(low) T cells made no contribution to initial tumor control but instead survived to become memory cells proficient in generating recall immunity. Our data support the design of translational strategies for generating heterogeneous T-cell immunity against cancer, with the appropriate balance between promoting effector differentiation and self-renewal. Unlike pharmacologic inhibitors, the genetic approach described here allows for upregulation as well as inhibition of the mTORC1 pathway and is highly selective for the therapeutic T cells without affecting systemic mTORC1 functions.
Collapse
Affiliation(s)
- Pedro Veliça
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom. Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Mathias Zech
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Sian Henson
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angelika Holler
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Teresa Manzo
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom. Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rebecca Pike
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Pedro Santos E Sousa
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom. Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lei Zhang
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom. Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | | | | | - Martin Pule
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Hans Stauss
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Ronjon Chakraverty
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom. Institute of Immunity and Transplantation, University College London, London, United Kingdom.
| |
Collapse
|
276
|
Badar A, Kiru L, Kalber TL, Jathoul A, Straathof K, Årstad E, Lythgoe MF, Pule M. Fluorescence-guided development of a tricistronic vector encoding bimodal optical and nuclear genetic reporters for in vivo cellular imaging. EJNMMI Res 2015; 5:18. [PMID: 25853023 PMCID: PMC4385325 DOI: 10.1186/s13550-015-0097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/10/2015] [Indexed: 01/26/2023] Open
Abstract
Background In vivo imaging using genetic reporters is a central supporting tool in the development of cell and gene therapies affording us the ability to selectively track the therapeutic indefinitely. Previous studies have demonstrated the utility of the human norepinephrine transporter (hNET) as a positron emission tomography/single photon emission computed tomography (PET/SPECT) genetic reporter for in vivo cellular imaging. Here, our aim was to extend on this work and construct a tricistronic vector with dual optical (firefly luciferase) and nuclear (hNET) in vivo imaging and ex vivo histochemical capabilities. Guiding this development, we describe how a fluorescent substrate for hNET, 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+), can be used to optimise vector design and serve as an in vitro functional screen. Methods Vectors were designed to co-express a bright red-shifted firefly luciferase (FLuc), hNET and a small marker gene RQR8. Genes were co-expressed using 2A peptide linkage, and vectors were transduced into a T cell line, SupT1. Two vectors were constructed with different gene orientations; FLuc.2A.RQR8.2A.hNET and hNET.2A.FLuc.2A.RQR8. hNET function was assessed using ASP+-guided flow cytometry. In vivo cellular conspicuity was confirmed using sequential bioluminescence imaging (BLI) and SPECT imaging of transduced SupT1 cells injected into the flanks of mice. Results SupT1/FLuc.2A.RQR8.2A.hNET cells resulted in >4-fold higher ASP+ uptake compared to SupT1/hNET.2A.FLuc.2A.RQR8, suggesting that 2A orientation effected hNET function. SupT1/FLuc.2A.RQR8.2A.hNET cells were readily visualised with both BLI and SPECT, demonstrating high signal to noise at 24 h post 123I-meta-iodobenzylguanidine (MIBG) administration. Conclusions In this study, a pre-clinical tricistronic vector with flow cytometry, BLI, SPECT and histochemical capabilities was constructed, which can be widely applied in cell tracking studies supporting the development of cell therapies. The study further demonstrates that hNET function in engineered cells can be assessed using ASP+-guided flow cytometry in place of costly radiosubstrate methodologies. This fluorogenic approach is unique to the hNET PET/SPECT reporter and may prove valuable when screening large numbers of cell lines or vector/mutant constructs. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0097-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam Badar
- Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Louise Kiru
- Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK ; UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Tammy L Kalber
- Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Amit Jathoul
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Karin Straathof
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Erik Årstad
- Department of Chemistry and Institute of Nuclear Medicine, University College London, 235 Euston Road (T-5), London, NW1 2BU UK
| | - Mark F Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging (CABI), University College London, 72 Huntley Street, London, WC1E 6DD UK
| | - Martin Pule
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD UK
| |
Collapse
|
277
|
Ghorashian S, Pule M, Amrolia P. CD19 chimeric antigen receptor T cell therapy for haematological malignancies. Br J Haematol 2015; 169:463-78. [PMID: 25753571 DOI: 10.1111/bjh.13340] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cells can be redirected to recognize tumour antigens by genetic modification to express a chimeric antigen receptor (CAR). These consist of antibody-derived antigen-binding regions linked to T cell signalling elements. CD19 is an ideal target because it is expressed on most B cell malignancies as well as normal B cells but not on other cell types, restricting any 'on target, off tumour' toxicity to B cell depletion. Recent clinical studies involving CD19 CAR-directed T cells have shown unprecedented responses in a range of B cell malignancies, even in patients with chemorefractory relapse. Durable responses have been achieved, although the persistence of modified T cells may be limited. This therapy is not without toxicity, however. Cytokine release syndrome and neurotoxicity appear to be frequent but are treatable and reversible. CAR T cell therapy holds the promise of a tailored cellular therapy, which can form memory and be adapted to the tumour microenvironment. This review will provide a perspective on the currently available data, as well as on future developments in the field.
Collapse
Affiliation(s)
- Sara Ghorashian
- Molecular and Cellular Immunology Unit, Institute of Child Health, University College London, London, UK
| | | | | |
Collapse
|
278
|
Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol 2014; 5:254. [PMID: 25505885 PMCID: PMC4245885 DOI: 10.3389/fphar.2014.00254] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/31/2014] [Indexed: 01/02/2023] Open
Abstract
Adoptive T-cell therapy can involve donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte expanded ex-vivo, or more recently the use of T cell receptor or chimeric antigen receptor redirected T cells. However, cellular therapies can pose significant risks, including graft-vs.-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The “ideal” suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of “all” and “only” the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase and inducible-caspase-9.
Collapse
Affiliation(s)
- Benjamin S Jones
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lawrence S Lamb
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Frederick Goldman
- Division of Hematology Oncology, Department of Pediatrics, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Antonio Di Stasi
- Bone Marrow Transplantation and Cellular Therapy Unit, Division of Hematology-Oncology, Department of Medicine, The University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
279
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|