251
|
Abstract
Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis.
Collapse
|
252
|
van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 2011; 21:708-21. [PMID: 21962903 DOI: 10.1016/j.devcel.2011.08.019] [Citation(s) in RCA: 658] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/10/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for lysosome-related organelle (LRO) biogenesis. PMEL-a component of melanocyte LROs (melanosomes)-is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis.
Collapse
|
253
|
Batista BS, Eng WS, Pilobello KT, Hendricks-Muñoz KD, Mahal LK. Identification of a conserved glycan signature for microvesicles. J Proteome Res 2011; 10:4624-33. [PMID: 21859146 DOI: 10.1021/pr200434y] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression, and the spread of infectious agents. The biological functions of these small vesicles are dependent on their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together, our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting.
Collapse
Affiliation(s)
- Bianca S Batista
- Institute for Cellular and Molecular Biology, The University of Texas at Austin , 1 University Station, Austin, Texas 78712-0159, United States
| | | | | | | | | |
Collapse
|
254
|
Shen B, Fang Y, Wu N, Gould SJ. Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. J Biol Chem 2011; 286:44162-44176. [PMID: 21865156 DOI: 10.1074/jbc.m111.274803] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biogenesis of the posterior pole is critical to directed cell migration and other polarity-dependent processes. We show here that proteins are targeted to the posterior pole on the basis of higher order oligomerization and plasma membrane binding, the same elements that target proteins to exosomes/microvesicles (EMVs), HIV, and other retrovirus particles. We also demonstrate that the polarization of the EMV protein-sorting pathway can occur in morphologically non-polarized cells, defines the site of uropod formation, is induced by increased expression of EMV cargo proteins, and is evolutionarily conserved between humans and the protozoan Dictyostelium discoideum. Based on these results, we propose a mechanism of posterior pole biogenesis in which elevated levels of EMV cargoes (i) polarize the EMV protein-sorting pathway, (ii) generate a nascent posterior pole, and (iii) prime cells for signal-induced biogenesis of a uropod. This model also offers a mechanistic explanation for the polarized budding of EMVs and retroviruses, including HIV.
Collapse
Affiliation(s)
- Beiyi Shen
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yi Fang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ning Wu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
255
|
Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 2011; 85:9749-66. [PMID: 21813604 DOI: 10.1128/jvi.00743-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.
Collapse
|
256
|
Endocytosis and signaling. Curr Opin Cell Biol 2011; 23:393-403. [DOI: 10.1016/j.ceb.2011.03.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/08/2011] [Accepted: 03/11/2011] [Indexed: 11/19/2022]
|
257
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
258
|
Ariza ME, Williams MV. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J Invest Dermatol 2011; 131:2419-27. [PMID: 21776007 DOI: 10.1038/jid.2011.217] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Psoriasis is a chronic inflammatory immune disease of the skin characterized by a complex interplay between multiple risk genes and their interactions with environmental factors. Recent haplotype analyses have suggested that deoxyuridine triphosphate nucleotidohydrolase (dUTPase) encoded by a human endogenous retrovirus K (HERV-K) may be a candidate gene for the psoriasis susceptibility 1 locus. However, no functional studies have been conducted to determine the role of HERV-K dUTPase in psoriasis. For this purpose, we constructed an HERV-K dUTPase wild-type sequence, as well as specific mutations reflecting the genotype characteristic of high- and low-risk haplotypes, purified the recombinant proteins, and evaluated whether they could modulate innate and/or adaptive immune responses. In this study, we demonstrate that wild-type and mutant HERV-K dUTPase proteins induce the activation of NF-κB through Toll-like receptor 2, independent of enzymatic activity. Proteome array studies revealed that treatment of human primary cells with wild-type and mutant HERV-K dUTPase proteins triggered the secretion of T(H)1 and T(H)17 cytokines involved in the formation of psoriatic plaques, including IL-12p40, IL-23, IL-17, tumor necrosis factor-α, IL-8, and CCL20, in dendritic/Langerhans-like cells and to a lesser extent in keratinocytes. These data support HERV-K dUTPase as a potential contributor to psoriasis pathophysiology.
Collapse
Affiliation(s)
- Maria-Eugenia Ariza
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.
| | | |
Collapse
|
259
|
Bobrie A, Colombo M, Raposo G, Théry C. Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic 2011; 12:1659-68. [DOI: 10.1111/j.1600-0854.2011.01225.x] [Citation(s) in RCA: 747] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
260
|
Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem 2011; 286:14383-95. [PMID: 21300796 PMCID: PMC3077638 DOI: 10.1074/jbc.m110.208660] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/25/2011] [Indexed: 12/14/2022] Open
Abstract
Animal cells secrete small vesicles, otherwise known as exosomes and microvesicles (EMVs). A short, N-terminal acylation tag can target a highly oligomeric cytoplasmic protein, TyA, into secreted vesicles (Fang, Y., Wu, N., Gan, X., Yan, W., Morell, J. C., and Gould, S. J. (2007) PLoS Biol. 5, 1267-1283). However, it is not clear whether this is true for other membrane anchors or other highly oligomeric, cytoplasmic proteins. We show here that a variety of plasma membrane anchors can target TyA-GFP to sites of vesicle budding and into EMVs, including: (i) a myristoylation tag; (ii) a phosphatidylinositol-(4,5)-bisphosphate (PIP(2))-binding domain; (iii), a phosphatidylinositol-(3,4,5)-trisphosphate-binding domain; (iv) a prenylation/palmitoylation tag, and (v) a type-1 plasma membrane protein, CD43. However, the relative budding efficiency induced by these plasma membrane anchors varied over a 10-fold range, from 100% of control (AcylTyA-GFP) for the myristoylation tag and PIP(2)-binding domain, to one-third or less for the others, respectively. Targeting TyA-GFP to endosome membranes by fusion to a phosphatidylinositol 3-phosphate-binding domain induced only a slight budding of TyA-GFP, ∼2% of control, and no budding was observed when TyA-GFP was targeted to Golgi membranes via a phosphatidylinositol 4-phosphate-binding domain. We also found that a plasma membrane anchor can target two other highly oligomeric, cytoplasmic proteins to EMVs. These observations support the hypothesis that plasma membrane anchors can target highly oligomeric, cytoplasmic proteins to EMVs. Our data also provide additional parallels between EMV biogenesis and retrovirus budding, as the anchors that induced the greatest budding of TyA-GFP are the same as those that mediate retrovirus budding.
Collapse
Affiliation(s)
- Beiyi Shen
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ning Wu
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jr-Ming Yang
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stephen J. Gould
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
261
|
Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81:1171-82. [PMID: 21371441 DOI: 10.1016/j.bcp.2011.02.011] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022]
Abstract
Cell secretion is a general process involved in various biological responses. Exosomes are part of this process and have gained considerable scientific interest in the past five years. Several steps through investigations across the last 20 years can explain this interest. First characterized during reticulocyte maturation, they were next evidenced as a key player in the immune response and cancer immunotherapy. More recently they were reported as vectors of mRNAs, miRNAs and also lipid mediators able to act on target cells. They are the only type of vesicles released from an intracellular compartment from cells in viable conditions. They appear as a vectorized signaling system operating from inside a donor cell towards either the periphery, the cytosol, or possibly to the nucleus of target cells. Exosomes from normal cells trigger positive effects, whereas those from pathological ones, such as tumor cells or infected ones may trigger non-positive health effects. Therefore regulating the biogenesis and secretion of exosomes appear as a pharmacological challenge to intervene in various pathophysiologies. Exosome biogenesis and molecular content, interaction with target cells, utilisation as biomarkers, and functional effects in various pathophysiologies are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse, CHU Purpan, Toulouse, France.
| | | | | | | |
Collapse
|
262
|
Gan X, Gould SJ. Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell 2011; 22:817-30. [PMID: 21248205 PMCID: PMC3057706 DOI: 10.1091/mbc.e10-07-0625] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We identify and characterize an inhibitory budding signal that acts dominantly to block the budding of otherwise budding-competent proteins, both viral and nonviral, and impairs the budding of several classic, budding-deficient HIV mutants. These findings expand our understanding of EMV biogenesis and resolve a number of previously paradoxical observations regarding the budding of HIV. Animal cells bud exosomes and microvesicles (EMVs) from endosome and plasma membranes. The combination of higher-order oligomerization and plasma membrane binding is a positive budding signal that targets diverse proteins into EMVs and retrovirus particles. Here we describe an inhibitory budding signal (IBS) from the human immunodeficiency virus (HIV) Gag protein. This IBS was identified in the spacer peptide 2 (SP2) domain of Gag, is activated by C-terminal exposure of SP2, and mediates the severe budding defect of p6-deficient and PTAP-deficient strains of HIV. This IBS also impairs the budding of CD63 and several other viral and nonviral EMV proteins. The IBS does not prevent cargo delivery to the plasma membrane, a major site of EMV and virus budding. However, the IBS does inhibit an interaction between EMV cargo proteins and VPS4B, a component of the endosomal sorting complexes required for transport (ESCRT) machinery. Taken together, these results demonstrate that inhibitory signals can block protein and virus budding, raise the possibility that the ESCRT machinery plays a role in EMV biogenesis, and shed new light on the role of the p6 domain and PTAP motif in the biogenesis of HIV particles.
Collapse
Affiliation(s)
- Xin Gan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
263
|
Bardens A, Döring T, Stieler J, Prange R. Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner. Cell Microbiol 2010; 13:602-19. [PMID: 21129143 PMCID: PMC7162389 DOI: 10.1111/j.1462-5822.2010.01557.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) is an enveloped DNA virus that exploits the endosomal sorting complexes required for transport (ESCRT) pathway for budding. In addition to infectious particles, HBV‐replicating cells release non‐enveloped (nucleo)capsids, but their functional implication and pathways of release are unclear. Here, we focused on the molecular mechanisms and found that the sole expression of the HBV core protein is sufficient for capsid release. Unexpectedly, released capsids are devoid of a detectable membrane bilayer, implicating a non‐vesicular exocytosis process. Unlike virions, naked capsid budding does not require the ESCRT machinery. Rather, we identified Alix, a multifunctional protein with key roles in membrane biology, as a regulator of capsid budding. Ectopic overexpression of Alix enhanced capsid egress, while its depletion inhibited capsid release. Notably, the loss of Alix did not impair HBV production, furthermore indicating that virions and capsids use diverse export routes. By mapping of Alix domains responsible for its capsid release‐mediating activity, its Bro1 domain was found to be required and sufficient. Alix binds to core via its Bro1 domain and retained its activity even if its ESCRT‐III binding site is disrupted. Together, the boomerang‐shaped Bro1 domain of Alix appears to escort capsids without ESCRT.
Collapse
Affiliation(s)
- Andreas Bardens
- Department of Medical Microbiology and Hygiene,University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
264
|
Izquierdo-Useros N, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J. Exosomes and retroviruses: the chicken or the egg? Cell Microbiol 2010; 13:10-7. [PMID: 21054740 DOI: 10.1111/j.1462-5822.2010.01542.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retroviruses appropriate pre-existing cellular machineries to propagate. In the last decade, impressive similarities have been observed in the generation and dissemination in the host cells of retroviruses and small cellular vesicles known as exosomes. These cellular vesicles are thought to facilitate intercellular communication processes and mediate immune functions. However, their link to the retroviral life cycle has given rise to distinct hypotheses and puzzling dilemmas. Are exosomes the antecessors of retroviruses or do retroviruses merely exploit the same cellular machinery designated for exosome biosynthesis? Here, we address these fascinating evolutionary questions by reviewing recent discoveries and analysing the controversies surrounding them.
Collapse
|
265
|
Döring T, Gotthardt K, Stieler J, Prange R. γ2-Adaptin is functioning in the late endosomal sorting pathway and interacts with ESCRT-I and -III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1252-64. [DOI: 10.1016/j.bbamcr.2010.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/06/2010] [Accepted: 08/02/2010] [Indexed: 11/29/2022]
|
266
|
Llewellyn GN, Hogue IB, Grover JR, Ono A. Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells. PLoS Pathog 2010; 6:e1001167. [PMID: 21060818 PMCID: PMC2965768 DOI: 10.1371/journal.ppat.1001167] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/28/2010] [Indexed: 12/20/2022] Open
Abstract
T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs. CD4+ T cells are natural targets of HIV-1. Efficient spread of HIV-1 from infected T cells to uninfected T cells is thought to occur via cell-cell contact structures. One of these structures is a virological synapse where both viral and cellular proteins have been shown to localize specifically. However, the steps leading to the formation of a virological synapse remain unknown. It has been observed that T cells adopt a polarized morphology in lymph nodes where cell-to-cell virus transmission is likely to occur frequently. In this study, we show that in polarized T cells, the primary viral structural protein Gag accumulates to the plasma membrane of a rear end structure called a uropod. We found that Gag multimerization, driven by its nucleocapsid domain, is essential for Gag localization to uropods and that HIV-1-laden uropods mediate contact with target cells and can become part of the virological synapse. Our findings elucidated a series of molecular events leading to formation of HIV-1-transferring cell contacts and support a model in which the uropod acts as a preformed platform that constitutes a virological synapse after cell-cell contact.
Collapse
Affiliation(s)
- G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ian B. Hogue
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jonathan R. Grover
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
267
|
Park IW, He JJ. HIV-1 is budded from CD4+ T lymphocytes independently of exosomes. Virol J 2010; 7:234. [PMID: 20846372 PMCID: PMC2945958 DOI: 10.1186/1743-422x-7-234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/16/2010] [Indexed: 01/29/2023] Open
Abstract
The convergence of HIV-1 budding and exosome biogenesis at late endosomal compartments called multivesicular bodies has fueled the debate on whether HIV-1 is budded from its target cells and transmitted in the form of exosomes. The point of contention appears to primarily derive from the types of target cells in question and lack of a well-defined protocol to separate exosomes from HIV-1. In this study, we adapted and established a simplified protocol to define the relationship between HIV-1 production and exosome biogenesis. Importantly, we took advantage of the newly established protocol to unequivocally show that HIV-1 was produced from CD4+ T lymphocytes Jurkat cells independently of exosomes. Thus, this study not only presents a simplified way to obtain highly purified HIV-1 virions for identification of host proteins packaged into virions, but also provides a technical platform that can be employed to define the relationship between exosome biogenesis and budding of HIV-1 or other viruses and its contributions to viral pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
268
|
Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. ACTA ACUST UNITED AC 2010; 190:1079-91. [PMID: 20837771 PMCID: PMC3101591 DOI: 10.1083/jcb.201002049] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD82 and CD9 are tetraspanin membrane proteins that can function as suppressors of tumor metastasis. Expression of CD9 and CD82 in transfected cells strongly suppresses β-catenin-mediated Wnt signaling activity and induces a significant decrease in β-catenin protein levels. Inhibition of Wnt/β-catenin signaling is independent of glycogen synthase kinase-3β and of the proteasome- and lysosome-mediated protein degradation pathways. CD82 and CD9 expression induces β-catenin export via exosomes, which is blocked by a sphingomyelinase inhibitor, GW4869. CD82 fails to induce exosome release of β-catenin in cells that express low levels of E-cadherin. Exosome release from dendritic cells generated from CD9 knockout mice is reduced compared with that from wild-type dendritic cells. These results suggest that CD82 and CD9 down-regulate the Wnt signaling pathway through the exosomal discharge of β-catenin. Thus, exosomal packaging and release of cytosolic proteins can modulate the activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Arthit Chairoungdua
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
269
|
Giri PK, Kruh NA, Dobos KM, Schorey JS. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics 2010; 10:3190-202. [PMID: 20662102 PMCID: PMC3664454 DOI: 10.1002/pmic.200900840] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/04/2010] [Accepted: 06/15/2010] [Indexed: 12/17/2022]
Abstract
Exosomes are small 30-100 nm membrane vesicles released from hematopoietic and nonhematopoietic cells and function to promote intercellular communication. They are generated through fusion of multivesicular bodies with the plasma membrane and release of interluminal vesicles. Previous studies from our laboratory demonstrated that macrophages infected with Mycobacterium release exosomes that promote activation of both innate and acquired immune responses; however, the components present in exosomes inducing these host responses were not defined. This study used LC-MS/MS to identify 41 mycobacterial proteins present in exosomes released from M. tuberculosis-infected J774 cells. Many of these proteins have been characterized as highly immunogenic. Further, since most of the mycobacterial proteins identified are actively secreted, we hypothesized that macrophages treated with M. tuberculosis culture filtrate proteins (CFPs) would release exosomes containing mycobacterial proteins. We found 29 M. tuberculosis proteins in exosomes released from CFP-treated J774 cells, the majority of which were also present in exosomes isolated from M. tuberculosis-infected cells. The exosomes from CFP-treated J774 cells could promote macrophage and dendritic cell activation as well as activation of naïve T cells in vivo. These results suggest that exosomes containing M. tuberculosis antigens may be alternative approach to developing a tuberculosis vaccine.
Collapse
Affiliation(s)
- Pramod K. Giri
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Present address:
Department of Microbiology & Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Nicole A. Kruh
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jeff S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
270
|
Vidal M. Exosomes in erythropoiesis. Transfus Clin Biol 2010; 17:131-7. [PMID: 20655786 DOI: 10.1016/j.tracli.2010.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/24/2010] [Indexed: 01/21/2023]
Abstract
Multivesicular endosomes contain membrane vesicles which can be released into the extracellular environment as exosomes. This review describes the role of exosome secretion in the remodeling of the red cell plasma membrane during the last stage of erythropoietic differentiation. Herein, we propose that the exosome biogenesis involves several mechanisms of protein sorting and leads to partial or complete loss of membrane activities, in some cases in a regulated way.
Collapse
Affiliation(s)
- M Vidal
- UMR 5235 CNRS (DIMNP), université Montpellier II - cc 107, place E.-Bataillon, 34095 Montpellier cedex 05, France.
| |
Collapse
|
271
|
Strauss K, Goebel C, Runz H, Möbius W, Weiss S, Feussner I, Simons M, Schneider A. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease. J Biol Chem 2010; 285:26279-88. [PMID: 20554533 DOI: 10.1074/jbc.m110.134775] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with cholesterol or U18666A, which induces late endosomal cholesterol accumulation. Up-regulation of exosomal cholesterol release was also observed after siRNA-mediated knockdown of NPC1 and in fibroblasts derived from NPC1 patients and could be reversed by expression of wild-type NPC1. We provide evidence that exosomal cholesterol secretion depends on the presence of flotillin. Our findings indicate that exosomal release of cholesterol may serve as a cellular mechanism to partially bypass the traffic block that results in the toxic lysosomal cholesterol accumulation in Niemann-Pick type C1 disease. Furthermore, we suggest that secretion of cholesterol by exosomes contributes to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Katrin Strauss
- Max-Planck-Institute for Experimental Medicine, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J Virol 2010; 84:6590-7. [PMID: 20427536 DOI: 10.1128/jvi.00035-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed Z(WT)) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, Z(WT) became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.
Collapse
|
273
|
Understanding wiring and volume transmission. ACTA ACUST UNITED AC 2010; 64:137-59. [PMID: 20347870 DOI: 10.1016/j.brainresrev.2010.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
The proposal on the existence of two main modes of intercellular communication in the central nervous system (CNS) was introduced in 1986 and called wiring transmission (WT) and volume transmission (VT). The major criterion for this classification was the different characteristics of the communication channel with physical boundaries well delimited in the case of WT (axons and their synapses; gap junctions) but not in the case of VT (the extracellular fluid filled tortuous channels of the extracellular space and the cerebrospinal fluid filled ventricular space and sub-arachnoidal space). The basic dichotomic classification of intercellular communication in the brain is still considered valid, but recent evidence on the existence of unsuspected specialized structures for intercellular communication, such as microvesicles (exosomes and shedding vesicles) and tunnelling nanotubes, calls for a refinement of the original classification model. The proposed updating is based on criteria which are deduced not only from these new findings but also from concepts offered by informatics to classify the communication networks in the CNS. These criteria allowed the identification also of new sub-classes of WT and VT, namely the "tunnelling nanotube type of WT" and the "Roamer type of VT." In this novel type of VT microvesicles are safe vesicular carriers for targeted intercellular communication of proteins, mtDNA and RNA in the CNS flowing in the extracellular fluid along energy gradients to reach target cells. In the tunnelling nanotubes proteins, mtDNA and RNA can migrate as well as entire organelles such as mitochondria. Although the existence and the role of these new types of intercellular communication in the CNS are still a matter of investigation and remain to be fully demonstrated, the potential importance of these novel types of WT and VT for brain function in health and disease is discussed.
Collapse
|
274
|
Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 2010; 6:e1000740. [PMID: 20360840 PMCID: PMC2845607 DOI: 10.1371/journal.ppat.1000740] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gómez
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Francesc E. Borràs
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa Foundation, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
275
|
Abstract
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin-enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV-1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV-1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post-assembly events, i.e., inhibition of virus release by a raft-associated protein BST-2/tetherin and cell-to-cell HIV-1 transmission at virological synapses.
Collapse
|
276
|
Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles? Cardiovasc Psychiatry Neurol 2009; 2009:383086. [PMID: 20029619 PMCID: PMC2790149 DOI: 10.1155/2009/383086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/15/2009] [Indexed: 02/03/2023] Open
Abstract
Neurons, glial, cells, and brain tumor cells tissues release small vesicles (secretory exosomes and microvesicles), which may represent a novel mechanism by which neuronal activity could influence angiogenesis within the embryonic and mature brain. If CNS-derived vesicles can enter the bloodstream as well, they may communicate with endothelial cells in the peripheral circulation and with cells concerned with immune surveillance.
Collapse
|
277
|
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21:575-81. [PMID: 19442504 DOI: 10.1016/j.ceb.2009.03.007] [Citation(s) in RCA: 1713] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 12/12/2022]
Abstract
Cells release different types of vesicular carriers of membrane and cytosolic components into the extracellular space. These vesicles are generated within the endosomal system or at the plasma membrane. Among the various kinds of secreted membrane vesicles, exosomes are vesicles with a diameter of 40-100 nm that are secreted upon fusion of multivesicular endosomes with the cell surface. Exosomes transfer not only membrane components but also nucleic acid between different cells, emphasizing their role in intercellular communication. This ability is likely to underlie the different physiological and pathological events, in which exosomes from different cell origins have been implicated. Only recently light have been shed on the subcellular compartments and mechanisms involved in their biogenesis and secretion opening new avenues to understand their functions.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.
| | | |
Collapse
|
278
|
Zhao WL, Zhang F, Feng D, Wu J, Chen S, Sui SF. A novel sorting strategy of trichosanthin for hijacking human immunodeficiency virus type 1. Biochem Biophys Res Commun 2009; 384:347-51. [PMID: 19409877 DOI: 10.1016/j.bbrc.2009.04.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 11/30/2022]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein that plays dual role of plant toxin and anti-viral peptide. The sorting mechanism of such an exogenous protein is in long pursuit. Here, we examined TCS trafficking in cells expressing the HIV-1 scaffold protein Gag, and we found that TCS preferentially targets the Gag budding sites at plasma membrane or late endosomes depending on cell types. Lipid raft membrane but not the Gag protein mediates the association of TCS with viral components. After Gag budding, TCS is then released in association with the virus-like particles to generate TCS-enriched virions. The resulting TCS-enriched HIV-1 exhibits severely impaired infectivity. Overall, the observations indicate the existence of a unique and elaborate sorting strategy for hijacking HIV-1.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | |
Collapse
|
279
|
Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez G, Dubyak GR. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. THE JOURNAL OF IMMUNOLOGY 2009; 182:5052-62. [PMID: 19342685 DOI: 10.4049/jimmunol.0802968] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently reported that P2X7 receptor (P2X7R)-induced activation of caspase-1 inflammasomes is accompanied by release of MHC class II (MHC-II) protein into extracellular compartments during brief stimulation of murine macrophages with ATP. Here we demonstrate that MHC-II containing membranes released from macrophages or dendritic cells (DCs) in response to P2X7R stimulation comprise two pools of vesicles with distinct biogenesis: one pool comprises 100- to 600-nm microvesicles derived from direct budding of the plasma membrane, while the second pool is composed of 50- to 80-nm exosomes released from multivesicular bodies. ATP-stimulated release of MHC-II in these membrane fractions is observed within 15 min and results in the export of approximately 15% of the total MHC-II pool within 90 min. ATP did not stimulate MHC-II release in macrophages from P2X7R knockout mice. The inflammasome regulatory proteins, ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain) and NLRP3 (NLR family, pyrin domain containing 3), which are essential for caspase-1 activation, were also required for the P2X7R-regulated release of the exosome but not the microvesicle MHC-II pool. Treatment of bone marrow-derived macrophages with YVAD-cmk, a peptide inhibitor of caspase-1, also abrogated P2X7R-dependent MHC-II secretion. Surprisingly, however, MHC-II release in response to ATP was intact in caspase-1(-/-) macrophages. The inhibitory actions of YVAD-cmk were mimicked by the pan-caspase inhibitor zVAD-fmk and the serine protease inhibitor TPCK, but not the caspase-3 inhibitor DEVD-cho. These data suggest that the ASC/NLRP3 inflammasome complexes assembled in response to P2X7R activation involve protease effector(s) in addition to caspase-1, and that these proteases may play important roles in regulating the membrane trafficking pathways that control biogenesis and release of MHC-II-containing exosomes.
Collapse
Affiliation(s)
- Yan Qu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44120, USA
| | | | | | | | | | | | | |
Collapse
|
280
|
Coppieters K, Barral AM, Juedes A, Wolfe T, Rodrigo E, Théry C, Amigorena S, von Herrath MG. No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:2213-20. [PMID: 19201875 DOI: 10.4049/jimmunol.0802578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells in culture, but are also present in serum. They contain a wide array of protein ligands on their surface, which has led to the hypothesis that they might mediate intercellular communication. Indeed, data support that exosomes can transfer Ags to dendritic cells (DC), and, interestingly, that these DC can subsequently induce T cell priming or tolerance. We have investigated whether this concept can be expanded to antiviral immunity. We isolated exosomes from supernatant of cultured bone marrow-derived DC (BMDC) that were infected with lymphocytic choriomeningitis virus (LCMV) or loaded with an immunodominant LCMV peptide, and characterized them by flow cytometry upon binding to beads. We then incubated the exosome preparations with BMDC and looked at their potential to activate LCMV gp33-specific naive and memory CD8 T cells. We found that exosomes do not significantly contribute to CD8 T cell cross-priming in vitro. Additionally, exosomes derived from in vitro-infected BMDC did not exhibit significant in vivo priming activity, as evidenced by the lack of protection following exosome vaccination. Thus, DC-derived exosomes do not appear to contribute significantly to CTL priming during acute LCMV infection.
Collapse
Affiliation(s)
- Ken Coppieters
- Immune Regulation Laboratory DI-3, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Liu Y, Shah SV, Xiang X, Wang J, Deng ZB, Liu C, Zhang L, Wu J, Edmonds T, Jambor C, Kappes JC, Zhang HG. COP9-associated CSN5 regulates exosomal protein deubiquitination and sorting. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1415-25. [PMID: 19246649 DOI: 10.2353/ajpath.2009.080861] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitinated endosomal proteins that are deposited into the lumens of multivesicular bodies are either sorted for lysosomal-mediated degradation or secreted as exosomes into the extracellular milieu. The mechanisms that underlie the sorting of cellular cargo proteins are currently unknown. In this study, we show that the COP9 signalosome (CSN)-associated protein CSN5 quantitatively regulated proteins that were sorted into exosomes. Western blot analysis of exosomal proteins indicated that small interfering (si)RNA knockdown of CSN5 results in increased levels of both ubiquitinated and non-ubiquitinated exosomal proteins, including heat shock protein 70, in comparison with exosomes isolated from the supernatants of 293 cells transfected with scrambled siRNA. Furthermore, 293 cells transfected with JAB1/MPN/Mov34 metalloenzyme domain-deleted CSN5 produced exosomes with higher levels of ubiquitinated heat shock protein 70, which did not affect non-ubiquitinated heat shock protein 70 levels. The loss of COP9-associated deubiquitin activity of CSN5 also led to the enhancement of HIV Gag that was sorted into exosomes as well as the promotion of HIV-1 release, suggesting that COP9-associated CSN5 regulates the sorting of a number of exosomal proteins in both a CSN5 JAB1/MPN/Mov34 metalloenzyme domain-dependent and -independent manner. We propose that COP9-associated CSN5 regulates exosomal protein sorting in both a deubiquitinating activity-dependent and -independent manner, which is contrary to the current idea of ubiquitin-dependent sorting of proteins to exosomes.
Collapse
Affiliation(s)
- Yuelong Liu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Human immunodeficiency virus type-1 gag and host vesicular trafficking pathways. Curr Top Microbiol Immunol 2009; 339:67-84. [PMID: 20012524 DOI: 10.1007/978-3-642-02175-6_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Gag protein of HIV-1 directs the particle assembly process. Gag recruits components of the cellular vesicular trafficking machinery in order to traverse the cytoplasm of the cell and reach the particle assembly site. The plasma membrane is the primary site of particle assembly in most cell types, while in macrophages an unusual intracellular membrane-bound compartment bearing markers of late endosomes and the plasma membrane is the predominant assembly site. Plasma membrane specificity of assembly may be directed by components of lipid rafts and the cytoplasmic leaflet component PI(4,5)P(2). Recent work has highlighted the role of adaptor protein complexes, protein sorting and recycling pathways, components of the multivesicular body, and cellular motor proteins in facilitating HIV assembly and budding. This review presents an overview of the relevant vesicular trafficking pathways and describes the individual components implicated in interactions with Gag.
Collapse
|
283
|
Abstract
Tumours progress through a cascade of events that enable the formation of metastases. Some of the components that are required for this fatal process are well established. Tetraspanins, however, have only recently received attention as both metastasis suppressors and metastasis promoters. This late appreciation is probably due to their capacity to associate with various molecules, which they recruit into special membrane microdomains, and their abundant presence in tumour-derived small vesicles that aid intercellular communication. It is reasonable to assume that differences in the membrane and vesicular web components that associate with individual tetraspanins account for their differing abilities to promote and suppress metastasis.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
284
|
Abstract
Virus particle formation of HIV-1 is a multi-step process driven by a viral structural protein Gag. This process takes place at the plasma membrane in most cell types. However, the pathway that directs Gag to the plasma membrane has recently come under intense scrutiny because of its importance in production of progeny virions as well as virus transmission at cell-cell contacts. This review highlights recent advances in our current understanding of mechanisms that traffic and localize Gag to the plasma membrane. In addition, findings on Gag association with specific plasma membrane domains are discussed in light of potential roles in cell-to-cell transmission.
Collapse
|
285
|
Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 2008; 23:1541-57. [PMID: 19109410 DOI: 10.1096/fj.08-122184] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain tumors are horrific diseases with almost universally fatal outcomes; new therapeutics are desperately needed and will come from improved understandings of glioma biology. Exosomes are endosomally derived 30-100 nm membranous vesicles released from many cell types into the extracellular milieu; surprisingly, exosomes are virtually unstudied in neuro-oncology. These microvesicles were used as vaccines in other tumor settings, but their immunological significance is unevaluated in brain tumors. Our purpose here is to report the initial biochemical, proteomic, and immunological studies on murine brain tumor exosomes, following known procedures to isolate exosomes. Our findings show that these vesicles have biophysical characteristics and proteomic profiles similar to exosomes from other cell types but that brain tumor exosomes have unique features (e.g., very basic isoelectric points, expressing the mutated tumor antigen EGFRvIII and the putatively immunosuppressive cytokine TGF-beta). Administration of such exosomes into syngeneic animals produced both humoral and cellular immune responses in immunized hosts capable of rejecting subsequent tumor challenges but failed to prolong survival in established orthotopic models. Control animals received saline or cell lysate vaccines and showed no antitumor responses. Exosomes and microvesicles isolated from sera of patients with brain tumors also possess EGFR, EGFRvIII, and TGF-beta. We conclude that exosomes released from brain tumor cells are biochemically/biophysically like other exosomes and have immune-modulating properties. They can escape the blood-brain barrier, with potential systemic and distal signaling and immune consequences.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
286
|
Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 2008; 83:512-21. [PMID: 18987139 DOI: 10.1128/jvi.01658-08] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human cytidine deaminase APOBEC3G (A3G) is a part of a cellular defense system against human immunodeficiency virus type 1 (HIV-1) and other retroviruses. Antiretroviral activity of A3G can be severely blunted in the presence of the HIV-1 protein Vif. However, in some cells expressing the enzymatically active low-molecular-mass form of A3G, HIV-1 replication is restricted at preintegration steps, before accumulation of Vif. Here, we show that A3G can be secreted by cells in exosomes that confer resistance to both vif-defective and wild-type HIV-1 in exosome recipient cells. Our results also suggest that A3G is the major exosomal component responsible for the anti-HIV-1 activity of exosomes. However, enzymatic activity of encapsidated A3G does not correlate with the observed limited cytidine deamination in HIV-1 DNA, suggesting that A3G-laden exosomes restrict HIV-1 through a nonenzymatic mechanism. Real-time PCR quantitation demonstrated that A3G exosomes reduce accumulation of HIV-1 reverse transcription products and steady-state levels of HIV-1 Gag and Vif proteins. Our findings suggest that A3G exosomes could be developed into a novel class of anti-HIV-1 therapeutics.
Collapse
|
287
|
Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 2008; 113:2732-41. [PMID: 18945959 DOI: 10.1182/blood-2008-05-158642] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exosomes are secreted cellular vesicles that can be internalized by dendritic cells (DCs), contributing to antigen-specific naive CD4(+) T-cell activation. Here, we demonstrate that human immunodeficiency virus type 1 (HIV-1) can exploit this exosome antigen-dissemination pathway intrinsic to mature DCs (mDCs) for mediating trans-infection of T lymphocytes. Capture of HIV-1, HIV-1 Gag-enhanced green fluorescent protein (eGFP) viral-like particles (VLPs), and exosomes by DCs was up-regulated upon maturation, resulting in localization within a CD81(+) compartment. Uptake of VLPs or exosomes could be inhibited by a challenge with either particle, suggesting that the expression of common determinant(s) on VLP or exosome surface is necessary for internalization by mDCs. Capture by mDCs was insensitive to proteolysis but blocked when virus, VLPs, or exosomes were produced from cells treated with sphingolipid biosynthesis inhibitors that modulate the lipid composition of the budding particles. Finally, VLPs and exosomes captured by mDCs were transmitted to T lymphocytes in an envelope glycoprotein-independent manner, underscoring a new potential viral dissemination pathway.
Collapse
|
288
|
The ubiquitin-proteasome system in spongiform degenerative disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:700-12. [PMID: 18790052 PMCID: PMC2612938 DOI: 10.1016/j.bbadis.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer’s disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan’s spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin–proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin–protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.
Collapse
|
289
|
Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 180:4299-307. [PMID: 18322243 DOI: 10.4049/jimmunol.180.6.4299] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal. In this study, we have shown that Hsp70 integrates into artificial lipid bilayer openings of ion conductance pathways. In addition, this protein was found inserted into the plasma membrane of cells after stress. Hsp70 was released into the extracellular environment in a membrane-associated form, sharing the characteristics of this protein in the plasma membrane. Extracellular membranes containing Hsp70 were at least 260-fold more effective than free recombinant protein in inducing TNF-alpha production as an indicator of macrophage activation. These observations suggest that Hsp70 translocates into the plasma membrane after stress and is released within membranous structures from intact cells, which could act as a danger signal to activate the immune system.
Collapse
Affiliation(s)
- Virginia L Vega
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 2008; 18:199-209. [PMID: 18396047 DOI: 10.1016/j.tcb.2008.03.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
Abstract
Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30-100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen presentation and tumor metastasis, and in transmitting infectious agents. However, little is known about the biogenesis and function of exosomes in polarized cells. In this review, we discuss new evidence suggesting that exosomes participate in the transport of morphogens and RNA, and thus influence cell polarity and developmental patterning of tissues.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
291
|
Abstract
Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non‐hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell‐to‐cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
292
|
The role of exosomes in the processing of proteins associated with neurodegenerative diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:323-32. [DOI: 10.1007/s00249-007-0246-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 01/21/2023]
|
293
|
Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2007; 2:35. [PMID: 18053135 PMCID: PMC2219957 DOI: 10.1186/1745-6150-2-35] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/30/2007] [Indexed: 11/10/2022] Open
Abstract
Background Many cell types have been reported to secrete small vesicles called exosomes, that are derived from multivesicular bodies and that can also form from endocytic-like lipid raft domains of the plasma membrane. Secretory exosomes contain a characteristic composition of proteins, and a recent report indicates that mast cell exosomes harbor a variety of mRNAs and microRNAs as well. Exosomes express cell recognition molecules on their surface that facilitate their selective targeting and uptake into recipient cells. Results In this review, I suggest that exosomal secretion of proteins and RNAs may be a fundamental mode of communication within the nervous system, supplementing the known mechanisms of anterograde and retrograde signaling across synapses. In one specific scenario, exosomes are proposed to bud from the lipid raft region of the postsynaptic membrane adjacent to the postsynaptic density, in a manner that is stimulated by stimuli that elicit long-term potentiation. The exosomes would then transfer newly synthesized synaptic proteins (such as CAM kinase II alpha) and synaptic RNAs to the presynaptic terminal, where they would contribute to synaptic plasticity. Conclusion The model is consistent with the known cellular and molecular features of synaptic neurobiology and makes a number of predictions that can be tested in vitro and in vivo. Open peer review Reviewed by Etienne Joly, Gaspar Jekely, Juergen Brosius and Eugene Koonin. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Neil R Smalheiser
- University of Illinois-Chicago, UIC Psychiatric Institute MC912, 1601 W, Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
294
|
Irie T, Nagata N, Yoshida T, Sakaguchi T. Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles. Virology 2007; 371:108-20. [PMID: 18028977 DOI: 10.1016/j.virol.2007.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/02/2007] [Accepted: 09/14/2007] [Indexed: 11/28/2022]
Abstract
Sendai virus (SeV) is unique in that one of the viral accessory proteins, C, enhances budding of virus-like particles (VLPs) formed by SeV matrix protein M by physically interacting with Alix/AIP1. C protein itself does not have the ability to form VLPs, while M protein provides viral budding force, like other enveloped viruses. Here we show that SeV C protein recruits Alix/AIP1 to the plasma membrane (PM) to facilitate VLP budding. SeV M-VLP budding is sensitive to overexpression of a dominant-negative (DN) form of VPS4A only in the presence of the C proteins, which is able to recruit Alix/AIP1 to the PM. Our results indicate that SeV M and C proteins play separate roles in the budding process: M protein drives budding and C protein enhances the efficiency of the utilization of cellular MVB sorting machinery for efficient VLP budding.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8551, Japan.
| | | | | | | |
Collapse
|