251
|
Shimasaki S, Koga T, Shuto T, Suico MA, Sato T, Watanabe K, Morino-Koga S, Taura M, Okada S, Mori K, Kai H. Endoplasmic reticulum stress increases the expression and function of toll-like receptor-2 in epithelial cells. Biochem Biophys Res Commun 2010; 402:235-40. [PMID: 20933500 DOI: 10.1016/j.bbrc.2010.09.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
|
252
|
Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. THE JOURNAL OF IMMUNOLOGY 2010; 185:7067-76. [PMID: 21041732 DOI: 10.4049/jimmunol.1001137] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several TLR agonists are effective in tumor immunotherapy, but their early innate mechanisms of action, particularly those of TLR2 agonists, are unclear. Mast cells are abundant surrounding solid tumors where they are often protumorigenic and enhance tumor angiogenesis. However, antitumor roles for mast cells have also been documented. The impact of mast cells may be dependent on their activation status and mediator release in different tumors. Using an orthotopic melanoma model in wild-type C57BL/6 and mast cell-deficient Kit(W-sh/W-sh) mice and a complementary Matrigel-tumor model in C57BL/6 mice, mast cells were shown to be crucial for TLR2 agonist (Pam(3)CSK(4))-induced tumor inhibition. Activation of TLR2 on mast cells reversed their well-documented protumorigenic role. Tumor growth inhibition after peritumoral administration of Pam(3)CSK(4) was restored in Kit(W-sh/W-sh) mice by local reconstitution with wild-type, but not TLR2-deficient, mast cells. Mast cells secrete multiple mediators after Pam(3)CSK(4) activation, and in vivo mast cell reconstitution studies also revealed that tumor growth inhibition required mast cell-derived IL-6, but not TNF. Mast cell-mediated anticancer properties were multifaceted. Direct antitumor effects in vitro and decreased angiogenesis and recruitment of NK and T cells in vivo were observed. TLR2-activated mast cells also inhibited the growth of lung cancer cells in vivo. Unlike other immune cells, mast cells are relatively radioresistant making them attractive candidates for combined treatment modalities. This study has important implications for the design of immunotherapeutic strategies and reveals, to our knowledge, a novel mechanism of action for TLR2 agonists in vivo.
Collapse
|
253
|
Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics. Proc Natl Acad Sci U S A 2010; 107:20021-6. [PMID: 21030678 DOI: 10.1073/pnas.1008261107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.
Collapse
|
254
|
Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2010; 2:2428-66. [PMID: 22069560 PMCID: PMC3153165 DOI: 10.3390/toxins2102428] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/23/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023] Open
Abstract
Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
Collapse
|
255
|
Gdynia G, Keith M, Kopitz J, Bergmann M, Fassl A, Weber ANR, George J, Kees T, Zentgraf HW, Wiestler OD, Schirmacher P, Roth W. Danger signaling protein HMGB1 induces a distinct form of cell death accompanied by formation of giant mitochondria. Cancer Res 2010; 70:8558-68. [PMID: 20959471 DOI: 10.1158/0008-5472.can-10-0204] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells dying by necrosis release the high-mobility group box 1 (HMGB1) protein, which has immunostimulatory effects. However, little is known about the direct actions of extracellular HMGB1 protein on cancer cells. Here, we show that recombinant human HMGB1 (rhHMGB1) exerts strong cytotoxic effects on malignant tumor cells. The rhHMGB1-induced cytotoxicity depends on the presence of mitochondria and leads to fast depletion of mitochondrial DNA, severe damage of the mitochondrial proteome by toxic malondialdehyde adducts, and formation of giant mitochondria. The formation of giant mitochondria is independent of direct nuclear signaling events, because giant mitochondria are also observed in cytoplasts lacking nuclei. Further, the reactive oxygen species scavenger N-acetylcysteine as well as c-Jun NH(2)-terminal kinase blockade inhibited the cytotoxic effect of rhHMGB1. Importantly, glioblastoma cells, but not normal astrocytes, were highly susceptible to rhHMGB1-induced cell death. Systemic treatment with rhHMGB1 results in significant growth inhibition of xenografted tumors in vivo. In summary, rhHMGB1 induces a distinct form of cell death in cancer cells, which differs from the known forms of apoptosis, autophagy, and senescence, possibly representing an important novel mechanism of specialized necrosis. Further, our findings suggest that rhHMGB1 may offer therapeutic applications in treatment of patients with malignant brain tumors.
Collapse
Affiliation(s)
- Georg Gdynia
- German Cancer Research Center, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Kroeger KM, Muhammad AKMG, Baker GJ, Assi H, Wibowo MK, Xiong W, Yagiz K, Candolfi M, Lowenstein PR, Castro MG. Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. DISCOVERY MEDICINE 2010; 10:293-304. [PMID: 21034670 PMCID: PMC3059086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly primary brain tumor in adults, with a median survival of ~12-18 months post-diagnosis. Despite recent advances in conventional therapeutic approaches, only modest improvements in median survival have been achieved; GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are desperately needed. Our group and others are pursuing virotherapy and gene therapy strategies for the treatment of GBM. In this review, we will discuss various virotherapy and gene therapy approaches for GBM currently under pre-clinical and clinical evaluation including direct or conditional cytotoxic, and/or immunostimulatory approaches. We also discuss cutting-edge technologies for drug/gene delivery and targeting brain tumors, including the use of stem cells as delivery platforms, the use of targeted immunotoxins, and the therapeutic potential of using GBM microvesicles to deliver therapeutic siRNAs or virotherapies. Finally, various animal models available to test novel GBM therapies are discussed.
Collapse
Affiliation(s)
- Kurt M Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Larocque D, Sanderson NSR, Bergeron J, Curtin JF, Girton J, Wibowo M, Bondale N, Kroeger KM, Yang J, Lacayo LM, Reyes KC, Farrokhi C, Pechnick RN, Castro MG, Lowenstein PR. Exogenous fms-like tyrosine kinase 3 ligand overrides brain immune privilege and facilitates recognition of a neo-antigen without causing autoimmune neuropathology. Proc Natl Acad Sci U S A 2010; 107:14443-8. [PMID: 20660723 PMCID: PMC2922551 DOI: 10.1073/pnas.0913496107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Soluble antigens diffuse out of the brain and can thus stimulate a systemic immune response, whereas particulate antigens (from infectious agents or tumor cells) remain within brain tissue, thus failing to stimulate a systemic immune response. Immune privilege describes how the immune system responds to particulate antigens localized selectively within the brain parenchyma. We believe this immune privilege is caused by the absence of antigen presenting dendritic cells from the brain. We tested the prediction that expression of fms-like tyrosine kinase ligand 3 (Flt3L) in the brain will recruit dendritic cells and induce a systemic immune response against exogenous influenza hemagglutinin in BALB/c mice. Coexpression of Flt3L with HA in the brain parenchyma induced a robust systemic anti-HA immune response, and a small response against myelin basic protein and proteolipid protein epitopes. Depletion of CD4(+)CD25+ regulatory T cells (Tregs) enhanced both responses. To investigate the autoimmune impact of these immune responses, we characterized the neuropathological and behavioral consequences of intraparenchymal injections of Flt3L and HA in BALB/c and C57BL/6 mice. T cell infiltration in the forebrain was time and strain dependent, and increased in animals treated with Flt3L and depleted of Tregs; however, we failed to detect widespread defects in myelination throughout the forebrain or spinal cord. Results of behavioral tests were all normal. These results demonstrate that Flt3L overcomes the brain's immune privilege, and supports the clinical development of Flt3L as an adjuvant to stimulate clinically effective immune responses against brain neo-antigens, for example, those associated with brain tumors.
Collapse
Affiliation(s)
- Daniel Larocque
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Nicholas S. R. Sanderson
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Josée Bergeron
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - James F. Curtin
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Joe Girton
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Mia Wibowo
- Gene Therapeutics Research Institute
- Cedars-Sinai Biomedical Sciences Graduate Program, and
| | - Niyati Bondale
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Jieping Yang
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
| | - Liliana M. Lacayo
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Kevin C. Reyes
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Catherine Farrokhi
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Robert N. Pechnick
- Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
- Brain Research Institute, and
| | - Maria G. Castro
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Brain Research Institute, and
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute
- Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine
- Brain Research Institute, and
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
258
|
Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 2010; 59:791-808. [PMID: 20593217 DOI: 10.1007/s00011-010-0208-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/06/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022] Open
Abstract
Due to the rapid increase of new information on the multiple roles of Toll-like receptors (TLRs), this paper reviews several main properties of TLRs and their ligands and signaling pathways. The investigation of pathogen infections in knockout mice suggests that specific TLRs play a key role in the activation of immune responses. Although the investigation of TLR biology is just beginning, a number of important findings are emerging. This review focuses on the following seven aspects of this emerging field: (a) a history of TLR and ligand studies; (b) the molecular basis of recognition by TLRs: TLR structures, pathogen-associated molecular pattern binding sites, TLR locations and functional responses; (c) cell types in TLR expression; (d) an overview of TLRs and their ligands: expression and ligands of cell-surface TLRs and of intracellular TLRs; (e) TLR-signaling pathways; (f) discussion: TLRs control of innate and adaptive systems; the trafficking of intracellular TLRs to endolysosomes; investigation of TLRs in regulating microRNA; investigation of crystal structure of TLRs with ligand binding; incidence of infectious diseases associated with single nucleotide polymorphisms (SNPs) in TLR genes; risk of cancer related to SNPs in TLR genes; TLR-ligand mediated anti-cancer effects; and TLR-ligand induced chronic inflammation and tumorigenesis; and (g) conclusions.
Collapse
Affiliation(s)
- Z L Chang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
259
|
Xiong W, Candolfi M, Liu C, Muhammad AKMG, Yagiz K, Puntel M, Moore PF, Avalos J, Young JD, Khan D, Donelson R, Pluhar GE, Ohlfest JR, Wawrowsky K, Lowenstein PR, Castro MG. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial. PLoS One 2010; 5:e11074. [PMID: 20552015 PMCID: PMC2884015 DOI: 10.1371/journal.pone.0011074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. METHODOLOGY/PRINCIPAL FINDINGS Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. CONCLUSIONS/SIGNIFICANCE These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.
Collapse
Affiliation(s)
- Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - A. K. M. Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peter F. Moore
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Julie Avalos
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - John D. Young
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Dorothy Khan
- Department of Comparative Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Randy Donelson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - G. Elizabeth Pluhar
- Department of Small Animal Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - John R. Ohlfest
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kolja Wawrowsky
- Department of Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
260
|
TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 2010; 29:2242-52. [PMID: 20526283 DOI: 10.1038/emboj.2010.94] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/09/2010] [Indexed: 02/07/2023] Open
Abstract
Skin cancers are the most commonly diagnosed cancers. Understanding what are the factors contributing to skin tumour development can be instrumental to identify preventive therapies. The myeloid differentiation primary response gene (MyD)88, the downstream adaptor protein of most Toll-like receptors (TLR), has been shown to be involved in several mouse tumourigenesis models. We show here that TLR4, but not TLR2 or TLR9, is upstream of MyD88 in skin tumourigenesis. TLR4 triggering is not dependent on lipopolysaccharide associated to skin-colonizing bacteria, but on the high mobility group box-1 protein (HMGB1), an endogenous ligand of TLR4. HMGB1 is released by necrotic keratinocytes and is required for the recruitment of inflammatory cells and for the initiation of inflammation. The expression of TLR4 on both bone marrow-derived and radioresistant cells is necessary for carcinogenesis. Consistently, a human tissue microarray analysis showed that melanoma and colon cancer display an over-expression of TLR4 and its downstream adaptor protein MyD88 within tumours. Together, our results suggest that the initial release of HMGB1 triggers a TLR4-dependent inflammatory response that leads to tumour development.
Collapse
|
261
|
Puntel M, Muhammad AKMG, Candolfi M, Salem A, Yagiz K, Farrokhi C, Kroeger KM, Xiong W, Curtin JF, Liu C, Bondale NS, Lerner J, Pechnick RN, Palmer D, Ng P, Lowenstein PR, Castro MG. A novel bicistronic high-capacity gutless adenovirus vector that drives constitutive expression of herpes simplex virus type 1 thymidine kinase and tet-inducible expression of Flt3L for glioma therapeutics. J Virol 2010; 84:6007-17. [PMID: 20375153 PMCID: PMC2876634 DOI: 10.1128/jvi.00398-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/29/2010] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - A. K. M. G. Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alireza Salem
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Catherine Farrokhi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - James F. Curtin
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Niyati S. Bondale
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jonathan Lerner
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert N. Pechnick
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Donna Palmer
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Philip Ng
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Bldg., Room 5090, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, California, The Brain Research Institute, University of California, Los Angeles, California, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
262
|
Vital AL, Tabernero MD, Castrillo A, Rebelo O, Tão H, Gomes F, Nieto AB, Resende Oliveira C, Lopes MC, Orfao A. Gene expression profiles of human glioblastomas are associated with both tumor cytogenetics and histopathology. Neuro Oncol 2010; 12:991-1003. [PMID: 20484145 DOI: 10.1093/neuonc/noq050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the increasing knowledge about the genetic alterations and molecular pathways involved in gliomas, few studies have investigated the association between the gene expression profiles (GEP) and both cytogenetics and histopathology of gliomas. Here, we analyzed the GEP (U133Plus2.0 chip) of 40 gliomas (35 astrocytic tumors, 3 oligodendrogliomas, and 2 mixed tumors) and their association with tumor cytogenetics and histopathology. Unsupervised and supervised analyses showed significantly different GEP in low- vs high-grade gliomas, the most discriminating genes including genes involved in the regulation of cell proliferation, apoptosis, DNA repair, and signal transduction. In turn, among glioblastoma multiforme (GBM), 3 subgroups of tumors were identified according to their GEP, which were closely associated with the cytogenetic profile of their ancestral tumor cell clones: (i) EGFR amplification, (ii) isolated trisomy 7, and (iii) more complex karyotypes. In summary, our results show a clear association between the GEP of gliomas and tumor histopathology; additionally, among grade IV astrocytoma, GEP are significantly associated with the cytogenetic profile of the ancestral tumor cell clone. Further studies in larger series of patients are necessary to confirm our observations.
Collapse
Affiliation(s)
- Ana Luísa Vital
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Glioma cell death: cell-cell interactions and signalling networks. Mol Neurobiol 2010; 42:89-96. [PMID: 20443079 DOI: 10.1007/s12035-010-8135-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 01/03/2023]
Abstract
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidizing agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells.
Collapse
|
264
|
Yang D, Tewary P, de la Rosa G, Wei F, Oppenheim JJ. The alarmin functions of high-mobility group proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:157-63. [PMID: 20123077 DOI: 10.1016/j.bbagrm.2009.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/03/2009] [Indexed: 11/27/2022]
Abstract
High-mobility group (HMG) proteins are non-histone nuclear proteins that bind nucleosomes and regulate chromosome architecture and gene transcription. Over the past decade, numerous studies have established that some HMG proteins can be released extracellularly and demonstrate distinct extracellular biological activities. Here, we will give a brief overview of HMG proteins and highlight their participation in innate/inflammatory and adaptive immune responses. They have the activities of alarmins, which are endogenous mediators that are rapidly released in response to danger signals initiated by infection and/or tissue damage and are capable of activating innate and adaptive immunity by promoting the recruitment and activation of antigen-presenting cells (APCs).
Collapse
Affiliation(s)
- De Yang
- Basic Science Program, SAIC-Frederick, Inc., Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
265
|
Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1 and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:131-40. [PMID: 20123075 DOI: 10.1016/j.bbagrm.2009.11.014] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/16/2009] [Indexed: 12/26/2022]
Abstract
High-mobility group box 1 protein (HMGB1), a chromatin associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is an evolutionarily ancient and critical regulator of cell death and survival. Overexpression of HMGB1 is associated with each of the hallmarks of cancer including unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death (apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, inflammation, tissue invasion and metastasis. Our studies and those of our colleagues suggest that HMGB1 is central to cancer (abnormal wound healing) and many of the findings in normal wound healing as well. Here, we focus on the role of HMGB1 in cancer, the mechanisms by which it contributes to carcinogenesis, and therapeutic strategies based on targeting HMGB1.
Collapse
Affiliation(s)
- Daolin Tang
- The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
266
|
Yang J, Sanderson N, Wawrowsky K, Puntel M, Castro M, Lowenstein P. Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo. Proc Natl Acad Sci U S A 2010; 107:4716-21. [PMID: 20133734 PMCID: PMC2842057 DOI: 10.1073/pnas.0911587107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyze the in vivo structure of antigen-specific immunological synapses during an effective immune response, we established brain tumors expressing the surrogate tumor antigen ovalbumin and labeled antigen-specific anti-glioma T cells using specific tetramers. Using these techniques, we determined that a significant number of antigen-specific T cells were localized to the brain tumor and surrounding brain tissue and a large percentage could be induced to express IFNgamma when exposed to the specific ovalbumin-derived peptide epitope SIINFEKL. Detailed morphological analysis of T cells immunoreactive for tetramers in direct physical contact with tumor cells expressing ovalbumin indicated that the interface between T cells and target tumor cells displayed various morphologies, including Kupfer-type immunological synapses. Quantitative analysis of adjacent confocal optical sections was performed to determine if the higher frequency of antigen-specific antiglioma T cells present in animals that developed an effective antitumor immune response could be correlated with a specific immunological synaptic morphology. Detailed in vivo quantitative analysis failed to detect an increased proportion of immunological synapses displaying the characteristic Kupfer-type morphology in animals mounting a strong and effective antitumor immune response as compared with those experiencing a clinically ineffective response. We conclude that an effective cytolytic immune response is not dependent on an increased frequency of Kupfer-type immunological synapses between T cells and tumor cells.
Collapse
Affiliation(s)
- J. Yang
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - N.S.R. Sanderson
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - K. Wawrowsky
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - M. Puntel
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - M.G. Castro
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| | - P.R. Lowenstein
- Board of Governors’ Gene Therapeutics Research Institute, Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Departments of Medicine, and
- Molecular and Medical Pharmacology, and
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024
| |
Collapse
|
267
|
Abstract
The mammalian TLRs serve as key sensors of PAMPs, such as bacterial LPS, lipopeptides, and flagellins, which are present in microbial cells but not host cells. TLRs have therefore been considered to play a central role in the discrimination between "self" and "non-self". However, since the discovery of their microbial ligands, many studies have provided evidence that host-derived molecules may also stimulate TLR2- or TLR4-dependent signaling. To date, more than 20 of these endogenous TLR ligands have been proposed, which have tended to fall into the categories of released intracellular proteins, ECM components, oxidatively modified lipids, and other soluble mediators. This review aims to summarize the evidence supporting the intrinsic TLR-stimulating capacity of each of these proposed endogenous ligands with a particular emphasis on the measures taken to exclude contaminating LPS and lipopeptides from experimental systems. The emerging evidence that many of these molecules may be more accurately described as PAMP-binding molecules (PBMs) or PAMP-sensitizing molecules (PSMs), rather than genuine ligands of TLR2 or TLR4, is also summarized. The relevance of this possibility to the pathogenesis of chronic inflammatory diseases, tumor surveillance, and autoimmunity is discussed.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Cardiovascular Sciences, Glenfield General Hospital, University of Leicester, Leicester, UK, LE3 9QP.
| |
Collapse
|
268
|
Study of the efficacy, biodistribution, and safety profile of therapeutic gutless adenovirus vectors as a prelude to a phase I clinical trial for glioblastoma. Clin Pharmacol Ther 2010; 88:204-13. [PMID: 20164833 DOI: 10.1038/clpt.2009.260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive primary brain tumor in humans. Systemic immunity against gene therapy vectors has been shown to hamper therapeutic efficacy; however, helper-dependent high-capacity adenovirus (HC-Ad) vectors elicit sustained transgene expression, even in the presence of systemic anti-adenoviral immunity. We engineered HC-Ads encoding the conditional cytotoxic herpes simplex type 1 thymidine kinase (TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Flt3L). Flt3L expression is under the control of the regulatable Tet-ON system. In anticipation of a phase I clinical trial for GBM, we assessed the therapeutic efficacy, biodistribution, and clinical and neurotoxicity with escalating doses of HC-Ad-TetOn-Flt3L + HC-Ad-TK in rats. Intratumoral administration of these therapeutic HC-Ads in rats bearing large intracranial GBMs led to long-term survival in approximately 70% of the animals and development of antiglioma immunological memory without signs of neuropathology or systemic toxicity. Systemic anti-adenoviral immunity did not affect therapeutic efficacy. These data support the idea that it would be useful to develop HC-Ad vectors further as a therapeutic gene-delivery platform to implement GBM phase I clinical trials.
Collapse
|
269
|
Liu G, Zhang L, Zhao Y. Modulation of immune responses through direct activation of Toll-like receptors to T cells. Clin Exp Immunol 2010; 160:168-75. [PMID: 20128825 DOI: 10.1111/j.1365-2249.2010.04091.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Toll-like receptors (TLRs), which are a family of pattern recognition receptors (PRRs), are involved critically in the generation and regulation of innate immunity as well as initiation of subsequent adaptive immune responses. However, recent research results showed that different subsets of T cells express certain types of TLRs during development and activation stages. Importantly, TLRs participate in the direct regulation of adaptive immune response, possibly as co-stimulatory molecules. In this review we summarize recent studies about the novel regulation of TLRs on the homeostasis and immunity of different T cell subtypes including CD4+CD25+T regulatory cells (Treg) and interleukin (IL)-17-producing CD4+T cells (T helper type 17). The direct involvement of TLRs in T cell-mediated immunity prompted us to reconsider the role of TLRs in the occurrence of autoimmune diseases, infectious diseases and graft rejection. The important effects of TLRs in T cell-intrinsic components also prompt us to explore novel vaccine adjuvants for modifying desired immune responses in an efficient way.
Collapse
Affiliation(s)
- G Liu
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
270
|
Candolfi M, Kroeger KM, Muhammad AKMG, Yagiz K, Farrokhi C, Pechnick RN, Lowenstein PR, Castro MG. Gene therapy for brain cancer: combination therapies provide enhanced efficacy and safety. Curr Gene Ther 2010; 9:409-21. [PMID: 19860655 DOI: 10.2174/156652309789753301] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Toll-like receptor 2 and facial motoneuron survival after facial nerve axotomy. Neurosci Lett 2010; 471:10-4. [PMID: 20056129 DOI: 10.1016/j.neulet.2009.12.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that CD4(+) Th2 lymphocytes are required to rescue facial motoneuron (FMN) survival after facial nerve axotomy through interaction with peripheral antigen presenting cells, as well as CNS resident microglia. Furthermore, the innate immune molecule, toll-like receptor 2 (TLR2), has been implicated in the development of Th2-type immune responses and can be activated by intracellular components released by dead or dying cells. The role of TLR2 in the FMN response to axotomy was explored in this study, using a model of facial nerve axotomy at the stylomastoid foramen in the mouse, in which blood-brain-barrier (BBB) permeability does not occur. After facial nerve axotomy, TLR2 mRNA was significantly upregulated in the facial motor nucleus and co-immunofluorescence localized TLR2 to CD68(+) microglia, but not GFAP(+) astrocytes. Using TLR2-deficient (TLR2(-/-)) mice, it was determined that TLR2 does not affect FMN survival levels after axotomy. These data contribute to understanding the role of innate immunity after FMN death and may be relevant to motoneuron diseases, such as amyotrophic lateral sclerosis (ALS).
Collapse
|
272
|
Barnay-Verdier S, Maréchal V, Borde C. [HMGB1: a link between innate and adaptive immunity]. ACTA ACUST UNITED AC 2009; 2009:59-68. [PMID: 32288806 PMCID: PMC7140282 DOI: 10.1016/s1773-035x(09)70310-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/21/2009] [Indexed: 12/25/2022]
Abstract
La protéine HMGB1 (high mobility group box 1) a été originalement identifiée comme une protéine nucléaire capable de se fixer à l’ADN. Elle est considérée comme un facteur architectural de la chromatine. Des travaux récents ont pu montrer qu’HMGB1 pouvait être également présente dans le milieu extracellulaire et ont permis de caractériser les processus cellulaires qui conduisent à la libération de la protéine. HMGB1 peut se retrouver dans le milieu extracellulaire de deux façons : (1) lors d’une sécrétion active par les cellules de l’inflammation ; (2) lors d’une libération passive et rapide lorsque les cellules meurent par nécrose. Dans ces conditions, la protéine HMGB1 est capable d’agir comme un médiateur soluble impliqué dans la coordination de divers mécanismes cellulaires. HMGB1 joue un rôle crucial dans l’amplification de la réponse inflammatoire, dans l’établissement de la réponse immunitaire et dans la réparation tissulaire. Cependant, la protéine HMGB1 dans le milieu extracellulaire serait également capable d’agir comme une cytokine pro-inflammatoire et contribuerait ainsi à la pathogenèse de différentes maladies qu’elles soient d’origine inflammatoire ou infectieuse.
Collapse
Affiliation(s)
- Stéphanie Barnay-Verdier
- Centre de recherches biomédicales des Cordeliers - INSERM, Université Pierre-et-Marie-Curie - Université Paris Descartes, 15, rue de l'Ecole-de-Médecine, 75270 Paris cedex 06
| | - Vincent Maréchal
- Centre de recherches biomédicales des Cordeliers - INSERM, Université Pierre-et-Marie-Curie - Université Paris Descartes, 15, rue de l'Ecole-de-Médecine, 75270 Paris cedex 06
| | - Chloé Borde
- Centre de recherches biomédicales des Cordeliers - INSERM, Université Pierre-et-Marie-Curie - Université Paris Descartes, 15, rue de l'Ecole-de-Médecine, 75270 Paris cedex 06
| |
Collapse
|
273
|
Schildkopf P, Frey B, Mantel F, Ott OJ, Weiss EM, Sieber R, Janko C, Sauer R, Fietkau R, Gaipl US. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells. Biochem Biophys Res Commun 2009; 391:1014-20. [PMID: 19968962 DOI: 10.1016/j.bbrc.2009.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 11/29/2022]
Abstract
Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, also characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 degrees C for 1h) and X-ray (5 or 10Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.
Collapse
Affiliation(s)
- Petra Schildkopf
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Grauer OM, Wesseling P, Adema GJ. Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 2009; 19:674-93. [PMID: 19744040 DOI: 10.1111/j.1750-3639.2009.00315.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite aggressive multimodal treatment approaches, the prognosis for patients with diffuse gliomas remains disappointing. Glioma cells often extensively infiltrate in the surrounding brain parenchyma, a phenomenon that helps them to escape surgical removal, radiation exposure and chemotherapy. Moreover, conventional therapy is often associated with considerable local and systemic side effects. Therefore, the development of novel therapeutic approaches is essential to improve the outcome of these patients. Immunotherapy offers the opportunity to specifically target residual radio-and chemoresistant tumor cells without damaging healthy neighboring brain tissue. Significant progress has been made in recent years both in understanding the mechanisms of immune regulation in the central nervous system (CNS) as well as tumor-induced and host-mediated immunosuppression elicited by gliomas. In this review, after discussing the special requirements needed for the initiation and control of immune responses in the CNS, we focus on immunological phenomena observed in glioma patients, discuss different immunological approaches to attack glioma-associated target structures and touch on further strategies to improve the efficacy of immunotherapy of gliomas.
Collapse
Affiliation(s)
- Oliver M Grauer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
275
|
Candolfi M, Yagiz K, Foulad D, Alzadeh GE, Tesarfreund M, Muhammad AKMG, Puntel M, Kroeger KM, Liu C, Lee S, Curtin JF, King GD, Lerner J, Sato K, Mineharu Y, Xiong W, Lowenstein PR, Castro MG. Release of HMGB1 in response to proapoptotic glioma killing strategies: efficacy and neurotoxicity. Clin Cancer Res 2009; 15:4401-14. [PMID: 19570774 DOI: 10.1158/1078-0432.ccr-09-0155] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In preparation for a phase I clinical trial using a combined cytotoxic/immunotherapeutic strategy with adenoviruses (Ad) expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor-killing agent in relation to efficacy and safety when compared with other proapoptotic approaches. EXPERIMENTAL DESIGN The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the proapoptotic cytokines [tumor necrosis factor-alpha, tumor necrosis factor-related apoptosis-inducing factor (TRAIL), and Fas ligand (FasL)], alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. RESULTS In rats bearing large GBMs (day 9), the combination of Ad-Flt3L with Ad-FasL did not improve survival over FasL alone, whereas Ad-Flt3L combined with Ad-TK+GCV led to 70% long-term survival. Expression of FasL and TRAIL caused severe neuropathology, which was not encountered when we used Ad-TK+/-Ad-Flt3L. In vitro, all treatments elicited release of high mobility group box 1 protein (HMGB1) from dying tumor cells. In vivo, the highest levels of circulating HMGB1 were observed after treatment with Ad-TK+GCV+Ad-Flt3L; HMGB1 was necessary for the therapeutic efficacy of AdTK+GCV+Ad-Flt3L because its blockade with glycyrrhizin completely blocked tumor regression. We also showed the killing efficacy of Ad-TK+GCV in human GBM cell lines and GBM primary cultures, which also elicited release of HMGB1. CONCLUSIONS Our results indicate that Ad-TK+GCV+Ad-Flt3L exhibit the highest efficacy and safety profile among the several proapoptotic approaches tested. The results reported further support the implementation of this combined approach in a phase I clinical trial for GBM.
Collapse
Affiliation(s)
- Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Department of Medicine and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Sloane JA, Blitz D, Margolin Z, Vartanian T. A clear and present danger: endogenous ligands of Toll-like receptors. Neuromolecular Med 2009; 12:149-63. [PMID: 19830599 DOI: 10.1007/s12017-009-8094-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/25/2009] [Indexed: 12/13/2022]
Abstract
Neurologic disease promoted by microbial pathogens, sterile injury, or neurodegeneration rapidly induces innate immunity in adjacent healthy tissue, which in turn contributes extensively to neurologic injury. With more recent focus on innate immune processes, it appears that necrotic, but not apoptotic, death mechanisms provoke inflammatory responses likely due to the release or production of endogenous ligands that activate resident immune cells of the central nervous system. These ligands comprise a diverse set of proteins, nucleic acids, and glycosaminoglycans, including heat shock proteins, HMGB1, RNA, DNA, hyaluronan, and heparin sulfate, that stimulate innate immune mechanisms largely through Toll-like receptors (TLRs). The blockade of interactions between endogenous ligands and TLRs may enable neuroprotective therapeutic strategies for a variety of neurologic diseases.
Collapse
Affiliation(s)
- Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Center for Life Sciences, 330 Brookline Ave, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
277
|
Kornblit B, Masmas T, Petersen SL, Madsen HO, Heilmann C, Schejbel L, Sengeløv H, Müller K, Garred P, Vindeløv L. Association of HMGB1 polymorphisms with outcome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2009; 16:239-52. [PMID: 19819342 DOI: 10.1016/j.bbmt.2009.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/03/2009] [Indexed: 12/18/2022]
Abstract
Several studies have demonstrated that genetic variation in cytokine genes can modulate the immune reactions after allogeneic hematopoietic cell transplantation (HCT). High mobility group box 1 protein (HMBG1) is a pleiotropic cytokine that functions as a pro-inflammatory signal, important for the activation of antigen presenting cells (APCs) and propagation of inflammation. HMGB1 is implicated in the pathophysiology of a variety of inflammatory diseases, and we have recently found the variation in the HMGB1 gene to be associated with mortality in patients with systemic inflammatory response syndrome. To assess the impact of the genetic variation in HMGB1 on outcome after allogeneic HCT, we genotyped 276 and 146 patient/donor pairs treated with allogeneic HCT for hematologic malignancies following myeloablative (MA) or nonmyeloablative (NMA) conditioning. Associations between genotypes and outcome were only observed in the cohort treated with MA conditioning. Patient homozygosity or heterozygosity for the-1377delA minor allele was associated with increased risk of relapse (hazard ratio [HR] 2.11, P = .02) and increased relapse related mortality (RRM) (P = .03). Furthermore, patient homozygosity for the 3814C > G minor allele was associated with increased overall survival (OS; HR 0.13, P = .04), progression free survival (PFS; HR 0.30, P = .05) and decreased probability of RRM (P = .03). Patient carriage of the 2351insT minor allele reduced the risk of grade II to IV acute graft-versus-host disease (aGVHD) (HR 0.60, P = .01), whereas donor homozygosity was associated with chronic GVHD (cGVHD) (HR 1.54, P = .01). Our findings suggest that the inherited variation in HMGB1 is associated with outcome after allogeneic HCT following MA conditioning. None of the polymorphisms were associated with treatment-related mortality (TRM).
Collapse
Affiliation(s)
- Brian Kornblit
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Ghulam Muhammad AKM, Candolfi M, King GD, Yagiz K, Foulad D, Mineharu Y, Kroeger KM, Treuer KA, Nichols WS, Sanderson NS, Yang J, Khayznikov M, Van Rooijen N, Lowenstein PR, Castro MG. Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 2009; 15:6113-27. [PMID: 19789315 DOI: 10.1158/1078-0432.ccr-09-1087] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. EXPERIMENTAL DESIGN We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1-thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. RESULTS This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme-specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8(+) T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. CONCLUSIONS Treatment with Ad-Flt3L + Ad-TK triggered systemic anti-glioblastoma multiforme cellular and humoral immune responses, and anti-glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust treatment efficacy lends further support to its implementation in a phase I clinical trial.
Collapse
Affiliation(s)
- A K M Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Sato Y, Goto Y, Narita N, Hoon DS. Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2009; 2 Suppl 1:205-14. [PMID: 19685283 PMCID: PMC2756339 DOI: 10.1007/s12307-009-0022-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/07/2009] [Indexed: 12/22/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response and the subsequent induction of adaptive immune responses against microbial infection or tissue injury. Recent findings show that functional TLRs are expressed not only on immune cells but also on cancer cells. TLRs play an active role in carcinogenesis and tumor progression during chronic inflammation that involves the tumor microenvironment. Damage-associated molecular patterns (DAMPs) derived from injured normal epithelial cells and necrotic cancer cells appear to be present at significant levels in the tumor microenvironment, and their stimulation of specific TLRs can foster chronic inflammation. This review discusses how carcinogenesis, cancer progression, and site-specific metastasis are related to interactions between cancer cells, immune cells, and DAMPs through TLR activation in the tumor microenvironment.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404 USA
| | - Yasufumi Goto
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404 USA
| | - Norihiko Narita
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404 USA
| | - Dave S.B. Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John’s Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404 USA
| |
Collapse
|
280
|
Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS One 2009; 4:e6520. [PMID: 19654875 PMCID: PMC2716531 DOI: 10.1371/journal.pone.0006520] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/08/2009] [Indexed: 12/26/2022] Open
Abstract
Background Metastasis is the most pivotal cause of mortality in cancer patients. Immune tolerance plays a crucial role in tumor progression and metastasis. Methods and Findings In this study, we investigated the potential roles and mechanisms of TLR2 signaling on tumor metastasis in a mouse model of intravenously injected B16 melanoma cells. Multiple subtypes of TLRs were expressed on B16 cells and several human cancer cell lines; TLR2 mediated the invasive activity of these cells. High metastatic B16 cells released more heat shock protein 60 than poor metastatic B16-F1 cells. Importantly, heat shock protein 60 released by tumor cells caused a persistent activation of TLR2 and was critical in the constitutive activation of transcription factor Stat3, leading to the release of immunosuppressive cytokines and chemokines. Moreover, targeting TLR2 markedly reduced pulmonary metastases and increased the survival of B16-bearing mice by reversing B16 cells induced immunosuppressive microenvironment and restoring tumor-killing cells such as CD8+ T cells and M1 macrophages. Combining an anti-TLR2 antibody and a cytotoxic agent, gemcitabine, provided a further improvement in the survival of tumor-bearing mice. Conclusions and Significance Our results demonstrate that TLR2 is an attractive target against metastasis and that targeting immunosuppressive microenvironment using anti-TLR2 antibody is a novel therapeutic strategy for combating a life-threatening metastasis.
Collapse
|
281
|
Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D, Lim JB. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 2009; 7:38. [PMID: 19476625 PMCID: PMC2694170 DOI: 10.1186/1479-5876-7-38] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/28/2009] [Indexed: 12/13/2022] Open
Abstract
Background High mobility group box-1 (HMGB1) is a newly recognized factor regulating cancer cell tumorigenesis, expansion and invasion. We investigated the correlation between the serum HMGB1 levels and the clinical and pathologic features of gastric cancer and evaluated the validity of HMGB1 as a potential biomarker for the early diagnosis of gastric cancer. Methods A total of 227 subjects were classified into 5 disease groups according to the 'gastritis-dysplasia-carcinoma' sequence of gastric carcinogenesis and their serum levels of HMGB1 were analyzed by an enzyme-linked immunosorbent assay (ELISA) method. Clinical parameters, International Union Against Cancer (UICC) TNM stage, cancer size, differentiation or lymphatic invasion, vascular or perineural invasion and prognosis were used as analysis variables. Results The serum HMGB1 levels were significantly different among disease groups (ANOVA, p < 0.05) and HMGB1 levels tended to increase according to the progression of gastric carcinogenesis. Serum HMGB1 levels were significantly associated with depth of invasion, lymph node metastasis, tumor size, and poor prognosis (p < 0.05). However, HMGB1 levels were not associated with patient gender or age, differentiation of tumor cells, or lymphatic, vascular and perineural invasion, or the existence of distant metastasis in advanced cancer (p > 0.05). The sensitivity and specificity of serum HMGB1 was 71% and 67% (cut-off value of 5 ng/ml) for the diagnosis of early gastric cancer, and 70% and 64% (cut-off value of 4 ng/ml) for the diagnosis of high-risk lesions, respectively. These values were greater than those for carcinoembryonic antigen (CEA) (30–40% of sensitivity). Conclusion HMGB1 appears to be a useful serological biomarker for early diagnosis as well as evaluating the tumorigenesis, stage, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Hye Won Chung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
282
|
Pan HF, Wu GC, Li WP, Li XP, Ye DQ. High Mobility Group Box 1: a potential therapeutic target for systemic lupus erythematosus. Mol Biol Rep 2009; 37:1191-5. [PMID: 19247800 DOI: 10.1007/s11033-009-9485-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/19/2009] [Indexed: 11/26/2022]
Abstract
High Mobility Group Box 1 (HMGB1) is a nuclear protein participating in chromatin architecture and transcriptional regulation. Recently, there is increasing evidence that HMGB1 contributes to the pathogenesis of chronic inflammatory and autoimmune diseases due to its pro-inflammatory and immunostimulatory properties. Elevated expression of HMGB1 was found in the sera of patients and mice with systemic lupus erythematosus (SLE). In addition, it has been shown that HMGB1 may act as a proinflammatory mediator in antibody-induced kidney damage in SLE. All theses findings suggest that HMGB1 have important biological effects in autoimmunity that might be a promising therapeutic target for SLE. In this review, we will briefly discuss the biological features of HMGB1 and summarize recent advances on the role of HMGB1 in the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, People's Republic of China.
| | | | | | | | | |
Collapse
|