251
|
Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. Activation of AMP-activated protein kinase by 3,3'-Diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One 2012; 7:e47186. [PMID: 23056607 PMCID: PMC3467201 DOI: 10.1371/journal.pone.0047186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/13/2012] [Indexed: 12/26/2022] Open
Abstract
There is a large body of scientific evidence suggesting that 3,3'-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required.
Collapse
Affiliation(s)
- Di Chen
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Sanjeev Banerjee
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Qiuzhi C. Cui
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Dejuan Kong
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (QPD); (FHS)
| | - Q. Ping Dou
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (QPD); (FHS)
| |
Collapse
|
252
|
Puhr M, Hoefer J, Schäfer G, Erb HHH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2188-201. [PMID: 23041061 DOI: 10.1016/j.ajpath.2012.08.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 08/16/2012] [Indexed: 12/24/2022]
Abstract
Docetaxel is a standard chemotherapy for patients with metastatic prostate cancer. However, the response is rather limited and not all of the patients benefit from this treatment. To uncover key mechanisms of docetaxel insensitivity in prostate cancer, we have established docetaxel-resistant sublines. In this study, we report that docetaxel-resistant cells underwent an epithelial-to-mesenchymal transition during the selection process, leading to diminished E-cadherin levels and up-regulation of mesenchymal markers. Screening for key regulators of an epithelial phenotype revealed a significantly reduced expression of microRNA (miR)-200c and miR-205 in docetaxel-resistant cells. Transfection of either microRNA (miRNA) resulted in re-expression of E-cadherin. Functional assays confirmed reduced adhesive and increased invasive and migratory abilities. Furthermore, we detected an increased subpopulation with stem cell-like properties in resistant cells. Tissue microarray analysis revealed a reduced E-cadherin expression in tumors after neoadjuvant chemotherapy. Low E-cadherin levels could be linked to tumor relapse. The present study uncovers epithelial-to-mesenchymal transition as a hallmark of docetaxel resistance. Therefore, we suggest that this mechanism is at least in part responsible for chemotherapy failure, with implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Martin Puhr
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35,Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Prabhu VV, Allen JE, Hong B, Zhang S, Cheng H, El-Deiry WS. Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opin Ther Targets 2012; 16:1161-74. [PMID: 22998602 DOI: 10.1517/14728222.2012.726985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer stem cells (CSCs) are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance and therapeutic resistance. Restoring wild-type (WT) p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target CSCs. AREAS COVERED This review covers the therapeutic approaches to restore the function of WT p53, cancer and normal stem cell biology in relation to p53 and the downstream effects of p53 on CSCs. EXPERT OPINION The restoration of WT p53 function by targeting p53 directly, its interacting proteins or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and CSCs based on the current evidence linking p53 signaling with these populations.
Collapse
Affiliation(s)
- Varun V Prabhu
- Penn State Hershey Cancer Institute, Penn State College of Medicine, Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), 500 University Drive, Room T4423, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
254
|
Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 2012; 7:e45045. [PMID: 23024790 PMCID: PMC3443231 DOI: 10.1371/journal.pone.0045045] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/11/2012] [Indexed: 12/18/2022] Open
Abstract
Clinical experience of histone deacetylase inhibitors (HDACIs) in patients with solid tumors has been disappointing; however, the molecular mechanism of treatment failure is not known. Therefore, we sought to investigate the molecular mechanism of treatment failure of HDACIs in the present study. We found that HDACIs Trichostatin A (TSA) and Suberoylanilide hydroxamic acid (SAHA) could induce epithelial-to-mesenchymal transition (EMT) phenotype in prostate cancer (PCa) cells, which was associated with changes in cellular morphology consistent with increased expression of transcription factors ZEB1, ZEB2 and Slug, and mesenchymal markers such as vimentin, N-cadherin and Fibronectin. CHIP assay showed acetylation of histone 3 on proximal promoters of selected genes, which was in part responsible for increased expression of EMT markers. Moreover, TSA treatment led to further increase in the expression of Sox2 and Nanog in PCa cells with EMT phenotype, which was associated with cancer stem-like cell (CSLC) characteristics consistent with increased cell motility. Our results suggest that HDACIs alone would lead to tumor aggressiveness, and thus strategies for reverting EMT-phenotype to mesenchymal-to-epithelial transition (MET) phenotype or the reversal of CSLC characteristics prior to the use of HDACIs would be beneficial to realize the value of HDACIs for the treatment of solid tumors especially PCa.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
255
|
HUANG SHUAI, GUO WEI, TANG YUBO, REN DONG, ZOU XUENONG, PENG XINSHENG. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 2012; 28:1831-7. [DOI: 10.3892/or.2012.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/21/2012] [Indexed: 11/05/2022] Open
|
256
|
Shimoda M, Sugiura T, Imajyo I, Ishii K, Chigita S, Seki K, Kobayashi Y, Shirasuna K. The T-box transcription factor Brachyury regulates epithelial-mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells. BMC Cancer 2012; 12:377. [PMID: 22931165 PMCID: PMC3492149 DOI: 10.1186/1471-2407-12-377] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/20/2012] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The high frequencies of recurrence and distant metastasis of adenoid cystic carcinoma (AdCC) emphasize the need to better understand the biological factors associated with these outcomes. To analyze the mechanisms of AdCC metastasis, we established the green fluorescence protein (GFP)-transfected subline ACCS-GFP from the AdCC parental cell line and the metastatic ACCS-M GFP line from an in vivo metastasis model. METHODS Using these cell lines, we investigated the involvement of the epithelial-mesenchymal transition (EMT) and cancer stem cell (CSCs) in AdCC metastasis by real-time RT-PCR for EMT related genes and stem cell markers. Characteristics of CSCs were also analyzed by sphere-forming ability and tumorigenicity. Short hairpin RNA (shRNA) silencing of target gene was also performed. RESULTS ACCS-M GFP demonstrated characteristics of EMT and additionally displayed sphere-forming ability and high expression of EMT-related genes (Snail, Twist1, Twist2, Slug, zinc finger E-box binding homeobox 1 and 2 [Zeb1 and Zeb2], glycogen synthase kinase 3 beta [Gsk3β and transforming growth factor beta 2 [Tgf-β2]), stem cell markers (Nodal, Lefty, Oct-4, Pax6, Rex1, and Nanog), and differentiation markers (sex determining region Y [Sox2], Brachyury, and alpha fetoprotein [Afp]). These observations suggest that ACCS-M GFP shows the characteristics of CSCs and CSCs may be involved in the EMT of AdCC. Surprisingly, shRNA silencing of the T-box transcription factor Brachyury (also a differentiation marker) resulted in downregulation of the EMT and stem cell markers. In addition, sphere-forming ability, EMT characteristics, and tumorigenicity were simultaneously lost. Brachyury expression in clinical samples of AdCC was extremely high and closely related to EMT. This finding suggests that regulation of EMT by Brachyury in clinical AdCC may parallel that observed in vitro in this study. CONCLUSIONS The use of a single cell line is a limitation of this study. However, parallel data from in vitro and clinical samples suggest the possibility that EMT is directly linked to CSCs and that Brachyury is a regulator of EMT and CSCs.
Collapse
Affiliation(s)
- Miyuki Shimoda
- Division of Maxillofacial Diagnostic and Surgical Sciences, Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Parray A, Siddique HR, Nanda S, Konety BR, Saleem M. Castration-resistant prostate cancer: potential targets and therapies. Biologics 2012; 6:267-76. [PMID: 22956858 PMCID: PMC3430091 DOI: 10.2147/btt.s23954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease.
Collapse
Affiliation(s)
- Aijaz Parray
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Hifzur R Siddique
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Sanjeev Nanda
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Internal Medicine, Mayo Clinic Health Systems, Austin, TX
| | | | - Mohammad Saleem
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Urology, University of Minnesota, Minneapolis
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
258
|
Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 2012; 16:1041-54. [DOI: 10.1517/14728222.2012.714774] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
259
|
Lu L, Katsaros D, Mayne ST, Risch HA, Benedetto C, Canuto EM, Yu H. Functional study of risk loci of stem cell-associated gene lin-28B and associations with disease survival outcomes in epithelial ovarian cancer. Carcinogenesis 2012; 33:2119-25. [PMID: 22822098 DOI: 10.1093/carcin/bgs243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several single-nucleotide polymorphisms (SNPs) of the stem cell-associated gene lin-28B have been identified in association with ovarian cancer and ovarian cancer-related risk factors. However, whether these SNPs are functional or might be potential biomarkers for ovarian cancer prognosis remains unknown. The purposes of this study were to investigate the functional relevance of the identified lin-28B SNPs, as well as the associations of genotype and phenotype with epithelial ovarian cancer (EOC) survival. We analyzed five SNPs and mRNA levels of lin-28B in 211 primary EOC tissues using Taqman(®) SNP genotyping assays and SYBR green-based real-time PCR, respectively. The RNA secondary structures at the region of a genome-wide association-identified intronic rs314276 were analyzed theoretically with mfold and experimentally with circular dichroism spectroscopy. We found that rs314276 was a cis-acting expression quantitative trait locus (eQTL) in both additive and dominant models, while rs7759938 and rs314277 were significant or of borderline significance in dominant models only. The rs314276 variant significantly affects RNA secondary structure. No SNPs alone were associated with patient survival. However, we found that among patients initially responding to chemotherapy, those with higher lin-28B expression had higher mortality risk (hazard ratio =3.27, 95% confidence interval: 1.63-6.56) and relapse risk (hazard ratio = 2.53, 95% confidence interval: 1.41-4.54) than those with lower expression, and these associations remained in multivariate analyses. These results suggest that rs314276 alters RNA secondary structure and thereby influences gene expression, and that lin-28B is a cancer stem cell-associated marker, which may be a pharmaceutical target in the management of EOC.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Epidemiology and Public Health, Yale Cancer Center, Yale University School of Medicine New Haven, CT 06520-8034, USA.
| | | | | | | | | | | | | |
Collapse
|
260
|
Feng B, Wang R, Chen LB. Review of miR-200b and cancer chemosensitivity. Biomed Pharmacother 2012; 66:397-402. [PMID: 22795796 DOI: 10.1016/j.biopha.2012.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/10/2012] [Indexed: 01/09/2023] Open
Abstract
Chemoresistance remains a major obstacle to successful cancer treatment and leads to poor prognosis of the patients, yet the underlying mechanisms have not been fully understood. MicroRNAs (miRNAs) are non-coding small RNAs of 19-22 nucleotides which could negatively regulate gene expressions mainly through 3'-untranslated region (3'UTR) binding of target mRNAs. MiR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429) is a cluster of miRNAs highly correlated with epithelial-mesenchymal transition (EMT), wherein miR-200b is identified as a critical regulator of tumor invasion, metastasis, and chemosensitivity. Recent advances of miR-200b dysregulation in tumor chemoresistance were summarized. Possible mechanisms and reversion strategies were also addressed.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | | | | |
Collapse
|
261
|
Harada KI, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial-mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int 2012; 110:E1131-7. [DOI: 10.1111/j.1464-410x.2012.11297.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
262
|
Das S, Becker BN, Hoffmann FM, Mertz JE. Reversal of transforming growth factor-β induced epithelial-to-mesenchymal transition and the ZEB proteins. FIBROGENESIS & TISSUE REPAIR 2012; 5:S28. [PMID: 23259633 PMCID: PMC3368790 DOI: 10.1186/1755-1536-5-s1-s28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The dynamic process of epithelial-to-mesenchymal transition (EMT) is a causal event in kidney fibrosis. This cellular phenotypic transition involves activation of transcriptional responses and remodeling of cellular structures to change cellular function. The molecular mechanisms that directly contribute to the re-establishment of the epithelial phenotype are poorly understood. Results Here, we discuss recent studies from our group and other laboratories identifying signaling pathways leading to the reversal of EMT in fibrotic models. We also present evidence that transcriptional factors such as the ZEB proteins are important regulators for reversal of EMT. Conclusion These studies provide insights into cellular plasticity and possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shreyasi Das
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan N Becker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792, USA
| | - F Michael Hoffmann
- Laboratory of Genetics, University of Wisconsin School of Medicine and Public Health, 425-G Henry Mall, Madison, Wisconsin 53706, USA ; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave, Madison, Wisconsin 53706, USA
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Ave, Madison, Wisconsin 53706, USA
| |
Collapse
|
263
|
Soubani O, Ali AS, Logna F, Ali S, Philip PA, Sarkar FH. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer. Carcinogenesis 2012; 33:1563-71. [PMID: 22637745 DOI: 10.1093/carcin/bgs189] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is often activated and expressed in tumor cells with significant invasive properties, and is associated with poor prognosis of patients. This could partly be due to deregulated expression of microRNAs (miRNAs) which regulates the expression of MT1-MMP and PTEN (phosphatase and tensin homolog) contributing to tumor invasion and metastasis. We initially compared the expression profile of miR-200 family, PTEN and MT1-MMP expression in six pancreatic cancer (PC) cell lines by qRT-PCR and western blot analysis. We found loss of expression of miR-200a, b and c in chemo-resistant PC cell lines, which was correlated with loss of PTEN and over-expression of MT1-MMP. Based on our initial findings, we chose BxPC-3, MIAPaCa-2 and MIAPaCa-2-GR cells for further mechanistic studies We assessed the effect of two separate novel agents CDF (a synthetic analog of curcumin) and BR-DIM (a natural agent) on PC cells. The expression of miR-200 family and PTEN was significantly re-expressed whereas the expression of MT1-MMP was down-regulated by CDF and BR-DIM treatment. Forced over-expression or silencing of miR-200c, followed by either CDF or BR-DIM treatment of MIAPaCa-2 cells, altered the morphology of cells, wound-healing capacity, colony formation and the expression of MT1-MMP and PTEN. These results provide strong experimental evidence showing that the loss of miR-200 family and PTEN expression and increased level of MT1-MMP leads to aggressive behavior of PC cells, which could be attenuated through re-expression of miR-200c by CDF and/or BR-DIM treatment, suggesting that these agents could be useful for PC treatment.
Collapse
Affiliation(s)
- Omar Soubani
- Department of Pathology, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
264
|
Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O, Hwang C, Gupta N, Chitale D, Sakr WA, Menon M, Sarkar FH. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012; 7:e33729. [PMID: 22442719 PMCID: PMC3307758 DOI: 10.1371/journal.pone.0033729] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/16/2012] [Indexed: 11/22/2022] Open
Abstract
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3′UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3′-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Elisabeth Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael L. Cher
- Department of Urology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Isaac Powell
- Department of Urology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Lance Heilbrun
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Seema Sethi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Oudai Hassan
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Clara Hwang
- Department of Oncology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Wael A. Sakr
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mani Menon
- Department of Urology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
265
|
Chang WW, Hu FW, Yu CC, Wang HH, Feng HP, Lan C, Tsai LL, Chang YC. Quercetin in elimination of tumor initiating stem-like and mesenchymal transformation property in head and neck cancer. Head Neck 2012; 35:413-9. [PMID: 22422628 DOI: 10.1002/hed.22982] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previously, we enriched a subpopulation of head and neck cancer-derived tumor initiating cells (HNC-TICs) presented high tumorigenic, chemo-radioresistant, and coupled with epithelial-mesenchymal transition (EMT) properties. The purpose of this study was to investigate the therapeutic effect and molecular mechanisms of quercetin on HNC-TICs. METHOD ALDH1 activity of head and neck cancer cells with quercetin treatment was assessed by the Aldefluor assay flow cytometry analysis. Self-renewal, invasiveness, and EMT capability of HNC-TICs with different doses of quercetin was presented. RESULTS We first observed that the treatment of quercetin significantly downregulated the ALDH1 activity of head and neck cancer cells in a dose-dependent manner (p < .05). Moreover, quercetin reduced self-renewal property and stemness signatures expression in head and neck cancer-derived sphere cells. The migration ability of head and neck cancer-derived sphere cells was lessened under quercetin treatment partially due to the decreased productions of Twist, N-cadherin, and vimentin. CONCLUSION Quercetin suppressing HNC-TICs characteristics may therefore be valuable therapeutics clinically in combination with standard treatment modalities.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Tu SM, Lin SH. Prostate cancer stem cells. Clin Genitourin Cancer 2012; 10:69-76. [PMID: 22421313 DOI: 10.1016/j.clgc.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/27/2011] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, TX 77030-3721, USA.
| | | |
Collapse
|
267
|
Hassan O, Ahmad A, Sethi S, Sarkar FH. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol 2012; 5:9. [PMID: 22417299 PMCID: PMC3313897 DOI: 10.1186/1756-8722-5-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in several important biological processes through regulation of genes post-transcriptionally. Carcinogenesis is one of the key biological processes where miRNAs play important role in the regulation of genes. The miRNAs elicit their effects by binding to the 3' untranslated region (3'UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNA, depending on the degree of complementary base pairing. To-date more than 1,000 miRNAs are postulated to exist, although the field is moving rapidly. Currently, miRNAs are becoming the center of interest in a number of research areas, particularly in oncology, as documented by exponential growth in publications in the last decade. These studies have shown that miRNAs are deregulated in a wide variety of human cancers. Thus, it is reasonable to ask the question whether further understanding on the role of miRNAs could be useful for diagnosis, prognosis and predicting therapeutic response for prostate cancer (PCa). Therefore, in this review article, we will discuss the potential roles of different miRNAs in PCa in order to provide up-to-date information, which is expected to stimulate further research in the field for realizing the benefit of miRNA-targeted therapeutic approach for the treatment of metastatic castrate resistant prostate cancer (mCRPC) in the near future because there is no curative treatment for mCRPC at the moment.
Collapse
Affiliation(s)
- Oudai Hassan
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | |
Collapse
|
268
|
Howe EN, Cochrane DR, Richer JK. The miR-200 and miR-221/222 microRNA families: opposing effects on epithelial identity. J Mammary Gland Biol Neoplasia 2012; 17:65-77. [PMID: 22350980 PMCID: PMC4561555 DOI: 10.1007/s10911-012-9244-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/29/2012] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is a complex process during which cells undergo genetic and epigenetic alterations. These changes can lead tumor cells to acquire characteristics that enable movement from the primary site of origin when conditions become unfavorable. Such characteristics include gain of front-rear polarity, increased migration/invasion, and resistance to anoikis, which facilitate tumor survival during metastasis. An epithelial to mesenchymal transition (EMT) constitutes one way that cancer cells can gain traits that promote tumor progression and metastasis. Two microRNA (miRNA) families, the miR-200 and miR-221 families, play crucial opposing roles that affect the differentiation state of breast cancers. These two families are differentially expressed between the luminal A subtype of breast cancer as compared to the less well-differentiated triple negative breast cancers (TNBCs) that exhibit markers indicative of an EMT. The miR-200 family promotes a well-differentiated epithelial phenotype, while high miR-221/222 results in a poorly differentiated, mesenchymal-like phenotype. This review focuses on the mechanisms (specific proven targets) by which these two miRNA families exert opposing effects on cellular plasticity during breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Erin N. Howe
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dawn R. Cochrane
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer K. Richer
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
269
|
Mimeault M, Johansson SL, Batra SK. Pathobiological implications of the expression of EGFR, pAkt, NF-κB and MIC-1 in prostate cancer stem cells and their progenies. PLoS One 2012; 7:e31919. [PMID: 22384099 PMCID: PMC3285632 DOI: 10.1371/journal.pone.0031919] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/20/2012] [Indexed: 02/07/2023] Open
Abstract
The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt, nuclear factor-kappaB (NF-κB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-κB p65 and MIC-1 proteins were significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of CD133− PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of therapeutic interest, the targeting of EGFR, pAkt, NF-κB or MIC-1 was also effective at suppressing the basal and EGF-promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-κB and/or MIC-1 may represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and lethal disease states.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MM); (SKB)
| | - Sonny L. Johansson
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MM); (SKB)
| |
Collapse
|
270
|
Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 2012; 81:103-122. [PMID: 21546262 DOI: 10.1016/j.critrevonc.2011.03.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/11/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Drug resistance remains a major problem in the treatment of cancer patients for both conventional chemotherapeutic and novel biological agents. Intrinsic or acquired resistance can be caused by a range of mechanisms, including increased drug elimination, decreased drug uptake, drug inactivation and alterations of drug targets. Recent data showed that other than by genetic (mutation, amplification) and epigenetic (DNA hypermethylation, histone post-translational modification) changes, drug resistance mechanisms might also be regulated by microRNAs (miRNAs). In this review we provide an overview on the role of miRNAs in anticancer drug resistance, reporting the main studies on alterations in cell survival and/or apoptosis pathways, as well as in drug targets and determinants of drug metabolism, mediated by deregulation of miRNA expression. The current status of pharmacogenetic studies on miRNA and their possible role in cancer stem cell drug resistance are also discussed. Finally, we integrated the preclinical data with clinical evidences, in lung and pancreatic cancers, showing how the study of miRNAs could help to predict resistance of individual tumours to different anticancer drugs, and guide the oncologists in the selection of rationally based tailor-made treatments.
Collapse
Affiliation(s)
- Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
271
|
Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 2012; 109:2784-9. [PMID: 22308314 DOI: 10.1073/pnas.1018866109] [Citation(s) in RCA: 505] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antiangiogenic therapy has been thought to hold significant potential for the treatment of cancer. However, the efficacy of such treatments, especially in breast cancer patients, has been called into question, as recent clinical trials reveal only limited effectiveness of antiangiogenic agents in prolonging patient survival. New research using preclinical models further suggests that antiangiogenic agents actually increase invasive and metastatic properties of breast cancer cells. We demonstrate that by generating intratumoral hypoxia in human breast cancer xenografts, the antiangiogenic agents sunitinib and bevacizumab increase the population of cancer stem cells. In vitro studies revealed that hypoxia-driven stem/progenitor cell enrichment is primarily mediated by hypoxia-inducible factor 1α. We further show that the Akt/β-catenin cancer stem cell regulatory pathway is activated in breast cancer cells under hypoxic conditions in vitro and in sunitinib-treated mouse xenografts. These studies demonstrate that hypoxia-driven cancer stem cell stimulation limits the effectiveness of antiangiogenic agents, and suggest that to improve patient outcome, these agents might have to be combined with cancer stem cell-targeting drugs.
Collapse
|
272
|
Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci Rep 2012; 31:449-55. [PMID: 21919891 DOI: 10.1042/bsr20100114] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EMT (epithelial-mesenchymal transition), a major mechanism of cancer metastasis, is a process that generates cells with stem-like properties. These stem-like cells in tumours are described as cancer stem cells. The link between EMT and cancer stemness is well documented without detailed mechanistic proof. Bmi1 belongs to the PRC1 (polycomb repressive complex 1) maintaining self-renewal and stemness together with EZH2 (enhancer of zeste homologue 2), which is a component of PRC2. Bmi1 is frequently overexpressed in different types of human cancers. Recent demonstration of an EMT regulator, Twist1, directly regulating the expression of Bmi1 provides a mechanistic explanation of the relationship between EMT and cancer stemness. The functional interdependence between Twist1 and Bmi1 provides a fresh insight into the common mechanism mediating EMT and cancer stemness. This observation is also confirmed using head and neck cancer patient samples. These results provide a critical mechanism of Twist1-induced EMT and cancer stemness in cancer cells through chromatin remodelling. The role of hypoxia and microRNAs in regulating EMT and cancer stemness is also discussed.
Collapse
|
273
|
Synergistic effect of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Tumour Biol 2012; 33:967-78. [PMID: 22252524 PMCID: PMC3401500 DOI: 10.1007/s13277-012-0325-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/04/2012] [Indexed: 11/16/2022] Open
Abstract
Bone marrow metastases are formed in the late phases of prostate cancer disease. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are present in the microenvironment of the bone marrow and play a vital role in cell biology therein. The present study was to investigate the influence of SCF and G-CSF on stem-like properties in prostate cancer cell lines. Upon stimulation with SCF or G-CSF, higher levels of CD117, ABCG2, and CD44 were observed in PC-3 and DU145 cells examined by flow cytometry. Simultaneously, the expressions of Oct3/4 and Nanog were upregulated. Moreover, quantitative real-time PCR verified that the increased Nanog under the stimulations was mostly derived from NANOGP8. In parallel with the increasing expressions of these proteins, higher colony and sphere formation efficiencies were seen in these cells in response to the cytokine stimulations. Furthermore, a synergistic effect of SCF and G-CSF on colony and sphere formations and ABCG2 expression was disclosed. Our results indicate a favorable bone marrow niche for prostate cancer cells where higher levels of cell stemness are maintained at least partly by the cytokines SCF and G-CSF.
Collapse
|
274
|
You S, Avidan O, Tariq A, Ahluwalia I, Stark PC, Kublin CL, Zoukhri D. Role of epithelial-mesenchymal transition in repair of the lacrimal gland after experimentally induced injury. Invest Ophthalmol Vis Sci 2012; 53:126-35. [PMID: 22025566 DOI: 10.1167/iovs.11-7893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Ongoing studies demonstrate that the murine lacrimal gland is capable of repair after experimentally induced injury. It was recently reported that repair of the lacrimal gland involved the mobilization of mesenchymal stem cells (MSCs). These cells expressed the type VI intermediate filament protein nestin whose expression was upregulated during the repair phase. The aim of the present study was to investigate the roles of vimentin, a type III intermediate filament protein and a marker of epithelial-mesenchymal transition (EMT) in repair of the lacrimal gland. METHODS Injury was induced by direct injection of interleukin (IL)-1 into the exorbital lacrimal gland. MSCs were prepared from injured glands using tissue explants. Expression of vimentin and the transcription factor Snai1, a master regulator of EMT, was determined by RT-PCR, Western blotting analysis, and immunofluorescence. RESULTS These data show that vimentin expression, at both the mRNA and the protein levels, was upregulated during the repair phase (2-3 days postinjury) and returned to the control level when repair ended. Temporal expression of Snai1 mirrored that of vimentin and was localized in cell nuclei. Cultured MSCs isolated from injured lacrimal glands expressed Snai1 and vimentin alongside nestin and alpha smooth muscle actin (another biomarker of EMT). There was a strong positive correlation between Snai1 expression and vimentin expression. CONCLUSIONS It was found that EMT is induced during repair of the lacrimal gland to generate MSCs to initiate repair, and that mesenchymal-epithelial transition is then activated to form acinar and ductal epithelial cells.
Collapse
Affiliation(s)
- Samantha You
- Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Wang L, Mezencev R, Bowen NJ, Matyunina LV, McDonald JF. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Mol Cell Biochem 2011; 363:257-68. [PMID: 22160925 DOI: 10.1007/s11010-011-1178-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/24/2011] [Indexed: 12/18/2022]
Abstract
Increasing evidence supports the existence of a subpopulation of cancer cells capable of self-renewal and differentiation into diverse cell lineages. These cancer stem-like or cancer-initiating cells (CICs) also demonstrate resistance to chemo- and radiotherapy and may function as a primary source of cancer recurrence. We report here on the isolation and in vitro propagation of multicellular ovarian cancer spheroids from a well-established ovarian cancer cell line (OVCAR-3). The spheroid-derived cells (SDCs) display self-renewal potential, the ability to produce differentiated progeny, and increased expression of genes previously associated with CICs. SDCs also demonstrate higher invasiveness, migration potential, and enhanced resistance to standard anticancer agents relative to parental OVCAR-3 cells. Furthermore, SDCs display up-regulation of genes associated with epithelial-to-mesenchymal transition (EMT), anticancer drug resistance and/or decreased susceptibility to apoptosis, as well as, down-regulation of genes typically associated with the epithelial cell phenotype and pro-apoptotic genes. Pathway and biological process enrichment analyses indicate significant differences between the SDCs and precursor OVCAR-3 cells in TGF-beta-dependent induction of EMT, regulation of lipid metabolism, NOTCH and Hedgehog signaling. Collectively, our results indicate that these SDCs will be a useful model for the study of ovarian CICs and for the development of novel CIC-targeted therapies.
Collapse
Affiliation(s)
- Lijuan Wang
- Ovarian Cancer Institute and School of Biology, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332-0363, USA
| | | | | | | | | |
Collapse
|
276
|
Bullock MD, Sayan AE, Packham GK, Mirnezami AH. MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 2011; 104:3-12. [DOI: 10.1111/boc.201100115] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
|
277
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011. [PMID: 21503965 DOI: 10.1002/jcb.23150.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Ali AS, Ali S, Ahmad A, Bao B, Philip PA, Sarkar FH. Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obes Rev 2011; 12:1050-62. [PMID: 21767342 DOI: 10.1111/j.1467-789x.2011.00906.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinicians are routinely challenged in their management of cancer patients because of the complexities of obesity and diabetes that are often found as comorbid conditions. Although attention has been given to optimizing treatment planning for these patients, less attention has been given to manage their obesity and diabetes. This suggests that newer, comprehensive approaches must be developed for the treatment of cancer patients as a 'whole' rather than as a single disease. While the specific pathologies of each are unique, years of research have indicated intimate molecular links between these chronic diseases. The contribution of sedentary lifestyles and poor dietary habits is recognized; however, the precise molecular links are still not well-explored. In addition, emerging evidence suggests the important role of microRNAs (miRNAs) in the development and progression of several diseases, yet their roles in linking obesity, diabetes and cancer are only now beginning to be recognized. It is hoped that miRNAs will serve as novel biomarkers and molecular targets for cancer therapy in patients with comorbid conditions. In this review, we discuss the current understanding of the pathobiology of obesity, diabetes and cancer, and document molecular roles of miRNAs linking cancer with obesity and diabetes.
Collapse
Affiliation(s)
- A S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
279
|
CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer. PLoS One 2011; 6:e28053. [PMID: 22140506 PMCID: PMC3225383 DOI: 10.1371/journal.pone.0028053] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Head and Neck squamous cell carcinoma (HNSCC) is a human lethal cancer with clinical, pathological, phenotypical and biological heterogeneity. Caner initiating cells (CICs), which are responsible for tumor growth and coupled with gain of epithelial-mesenchymal transition (EMT), have been identified. Previously, we enriched a subpopulation of head and neck cancer initiating cells (HN-CICs) with up-regulation of CD133 and enhancement of EMT. Others demonstrate that Src kinase interacts with and phosphorylates the cytoplasmic domain of CD133. However, the physiological function of CD133/Src signaling in HNSCCs has not been uncovered. METHODOLOGY/PRINCIPAL FINDING Herein, we determined the critical role of CD133/Src axis modulating stemness, EMT and tumorigenicity of HNSCC and HN-CICs. Initially, down-regulation of CD133 significantly reduced the self-renewal ability and expression of stemness genes, and promoted the differentiation and apoptotic capability of HN-CICs. Additionally, knockdown of CD133 in HN-CICs also lessened both in vitro malignant properties including cell migration/cell invasiveness/anchorage independent growth, and in vivo tumor growth by nude mice xenotransplantation assay. In opposite, overexpression of CD133 enhanced the stemness properties and tumorigenic ability of HNSCCs. Lastly, up-regulation of CD133 increased phosphorylation of Src coupled with EMT transformation in HNSCCs, on the contrary, silence of CD133 or treatment of Src inhibitor inversely abrogated above phenotypic effects, which were induced by CD133 up-regulation in HNSCCs or HN-CICs. CONCLUSION/SIGNIFICANCE Our results suggested that CD133/Src signaling is a regulatory switch to gain of EMT and of stemness properties in HNSCC. Finally, CD133/Src axis might be a potential therapeutic target for HNSCC by eliminating HN-CICs.
Collapse
|
280
|
Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011; 11:849-64. [PMID: 22113163 PMCID: PMC4314215 DOI: 10.1038/nrc3166] [Citation(s) in RCA: 793] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In normal cells multiple microRNAs (miRNAs) converge to maintain a proper balance of various processes, including proliferation, differentiation and cell death. miRNA dysregulation can have profound cellular consequences, especially because individual miRNAs can bind to and regulate multiple mRNAs. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a quest to understand the pathways that are regulated by these miRNAs using in vivo model systems, and to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. Here we discuss progress in using mouse models to understand the roles of miRNAs in cancer and the potential for manipulating miRNAs for cancer therapy as these molecules make their way towards clinical trials.
Collapse
Affiliation(s)
- Andrea L Kasinski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
281
|
Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S, Sarkar FH. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 2011; 72:335-45. [PMID: 22108826 DOI: 10.1158/0008-5472.can-11-2182] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The histone methyltransferase EZH2 is a central epigenetic regulator of cell survival, proliferation, and cancer stem cell (CSC) function. EZH2 expression is increased in various human cancers, including highly aggressive pancreatic cancers, but the mechanisms underlying for its biologic effects are not yet well understood. In this study, we probed EZH2 function in pancreatic cancer using diflourinated-curcumin (CDF), a novel analogue of the turmeric spice component curcumin that has antioxidant properties. CDF decreased pancreatic cancer cell survival, clonogenicity, formation of pancreatospheres, invasive cell migration, and CSC function in human pancreatic cancer cells. These effects were associated with decreased expression of EZH2 and increased expression of a panel of tumor-suppressive microRNAs (miRNA), including let-7a, b, c, d, miR-26a, miR-101, miR-146a, andmiR-200b, c that are typically lost in pancreatic cancer. Mechanistic investigations revealed that reexpression of miR-101 was sufficient to limit the expression of EZH2 and the proinvasive cell surface adhesion molecule EpCAM. In an orthotopic xenograft model of human pancreatic cancer, administration of CDF inhibited tumor growth in a manner associated with reduced expression of EZH2, Notch-1, CD44, EpCAM, and Nanog and increased expression of let-7, miR-26a, and miR-101. Taken together, our results indicated that CDF inhibited pancreatic cancer tumor growth and aggressiveness by targeting an EZH2-miRNA regulatory circuit for epigenetically controlled gene expression.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, Banerjee S, Kong D, Li Y, Thakur S, Sarkar FH. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2011; 5:355-64. [PMID: 22086681 DOI: 10.1158/1940-6207.capr-11-0299] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, which is, in part, due to intrinsic (de novo) and extrinsic (acquired) resistance to conventional therapeutics, suggesting that innovative treatment strategies are required for overcoming therapeutic resistance to improve overall survival of patients. Oral administration of metformin in patients with diabetes mellitus has been reported to be associated with reduced risk of pancreatic cancer and that metformin has been reported to kill cancer stem cells (CSC); however, the exact molecular mechanism(s) has not been fully elucidated. In the current study, we examined the effect of metformin on cell proliferation, cell migration and invasion, and self-renewal capacity of CSCs and further assessed the expression of CSC marker genes and microRNAs (miRNA) in human pancreatic cancer cells. We found that metformin significantly decreased cell survival, clonogenicity, wound-healing capacity, sphere-forming capacity (pancreatospheres), and increased disintegration of pancreatospheres in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Metformin also decreased the expression of CSC markers,CD44, EpCAM,EZH2, Notch-1, Nanog and Oct4, and caused reexpression of miRNAs (let-7a,let-7b, miR-26a, miR-101, miR-200b, and miR-200c) that are typically lost in pancreatic cancer and especially in pancreatospheres. We also found that reexpression of miR-26a by transfection led to decreased expression of EZH2 and EpCAM in pancreatic cancer cells. These results clearly suggest that the biologic effects of metformin are mediated through reexpression of miRNAs and decreased expression of CSC-specific genes, suggesting that metformin could be useful for overcoming therapeutic resistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer 2011; 129:2315-27. [PMID: 21792897 PMCID: PMC6953416 DOI: 10.1002/ijc.26312] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
The niche is the environment in which stem cells reside and is responsible for the maintenance of unique stem cell properties such as self-renewal and an undifferentiated state. The heterogeneous populations which constitute a niche include both stem cells and surrounding differentiated cells. This network of heterogeneity is responsible for the control of the necessary pathways that function in determining stem cell fate. The concept that cancer stem cells, a subpopulation of cells responsible for tumor initiation and formation, reside in their own unique niche is quickly evolving and it is of importance to understand and identify the processes occurring within this environment. The necessary intrinsic pathways that are utilized by this cancer stem cell population to maintain both self-renewal and the ability to differentiate are believed to be a result of the environment where cancer stem cells reside. The ability of a specific cancer stem cell niche to provide the environment in which this population can flourish is a critical aspect of cancer biology that mandates intense investigation. This review focuses on current evidence demonstrating that homeostatic processes such as inflammation, epithelial to mesenchymal transition, hypoxia and angiogenesis contribute to the maintenance and control of cancer stem cell fate by providing the appropriate signals within the microenvironment. It is necessary to understand the key processes occurring within this highly specialized cancer stem cell niche to identify potential therapeutic targets that can serve as the basis for development of more effective anticancer treatments.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | | |
Collapse
|
284
|
Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, Liu Y, He Y, Park EY, Zhang H, Lv X, Ma K, Su F, Park JH, Song E. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem 2011; 287:465-473. [PMID: 22074923 DOI: 10.1074/jbc.m111.280768] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tumor-initiating cells (T-ICs), a subpopulation of cancer cells with stem cell-like properties, are related to tumor relapse and metastasis. Our previous studies identified a distinct profile of microRNA (miRNA) expression in breast T-ICs (BT-ICs), and the dysregulated miRNAs contribute to the self-renewal and tumorigenesis of these cells. However, the underlying mechanisms for miRNA dysregulation in BT-ICs remain obscure. In the present study, we demonstrated that the expression and function of miR-34c were reduced in the BT-ICs of MCF-7 and SK-3rd cells, a breast cancer cell line enriched for BT-ICs. Ectopic expression of miR-34c reduced the self-renewal of BT-ICs, inhibited epithelial-mesenchymal transition, and suppressed migration of the tumor cells via silencing target gene Notch4. Furthermore, we identified a single hypermethylated CpG site in the promoter region of miR-34c gene that contributed to transcriptional repression of miR-34c in BT-ICs by reducing DNA binding activities of Sp1. Therefore, miR-34c reduction in BT-ICs induced by a single hypermethylated CpG site in the promoter region promotes self-renewal and epithelial-mesenchymal transition of BT-ICs.
Collapse
Affiliation(s)
- Fengyan Yu
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Yu Jiao
- School of Life Sciences, Sun-Yat-Sen University, Guangzhou 510006, China
| | - Yinghua Zhu
- School of Life Sciences, Sun-Yat-Sen University, Guangzhou 510006, China
| | - Ying Wang
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Jingde Zhu
- Cancer Epigenetics and Gene Therapy Group, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai 200032, China
| | - Xiuying Cui
- Center of Medical Research, Sun Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Yujie Liu
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Yinghua He
- Cancer Epigenetics and Gene Therapy Group, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai 200032, China
| | - Eun-Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hongyu Zhang
- Cancer Epigenetics and Gene Therapy Group, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai 200032, China
| | - Xiaobin Lv
- Center of Medical Research, Sun Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Kelong Ma
- Cancer Epigenetics and Gene Therapy Group, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai 200032, China
| | - Fengxi Su
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Erwei Song
- Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China; School of Life Sciences, Sun-Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
285
|
Papamichos SI, Lambropoulos AF, Kotoula V. Putative EMT induction by OCT4Bs’ shutdown. Biochem Biophys Res Commun 2011; 415:426-7. [DOI: 10.1016/j.bbrc.2011.10.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
286
|
Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K, Hakomori SI. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci U S A 2011. [PMID: 22006308 DOI: 10.1073/pnas.1115191108/suppl_file/pnas.201115191si.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The process termed "epithelial-mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β-induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K, Hakomori SI. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci U S A 2011; 108:17690-5. [PMID: 22006308 PMCID: PMC3203762 DOI: 10.1073/pnas.1115191108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The process termed "epithelial-mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor β (TGF-β) in human prostate epithelial cell lines. We found that: (i) TGF-β treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-β treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-β-induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.
Collapse
Affiliation(s)
| | - Kirill Gelfenbeyn
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
| | - Yao Ding
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
| | - Ulla Mandel
- Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | - Henrik Clausen
- Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | - Kazuko Handa
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
| | - Sen-itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
288
|
Targeting of α(v)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia 2011; 13:516-25. [PMID: 21677875 DOI: 10.1593/neo.11122] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 02/03/2023] Open
Abstract
Acquisition of an invasive phenotype by cancer cells is a requirement for bone metastasis. Transformed epithelial cells can switch to a motile, mesenchymal phenotype by epithelial-mesenchymal transition (EMT). Recently, it has been shown that EMT is functionally linked to prostate cancer stem cells, which are not only critically involved in prostate cancer maintenance but also in bone metastasis. We showed that treatment with the non-peptide α(v)-integrin antagonist GLPG0187 dose-dependently increased the E-cadherin/vimentin ratio, rendering the cells a more epithelial, sessile phenotype. In addition, GLPG0187 dose-dependently diminished the size of the aldehyde dehydrogenase high subpopulation of prostate cancer cells, suggesting that α(v)-integrin plays an important role in maintaining the prostate cancer stem/progenitor pool. Our data show that GLPG0187 is a potent inhibitor of osteoclastic bone resorption and angiogenesis in vitro and in vivo. Real-time bioluminescent imaging in preclinical models of prostate cancer demonstrated that blocking α(v)-integrins by GLPG0187 markedly reduced their metastatic tumor growth according to preventive and curative protocols. Bone tumor burden was significantly lower in the preventive protocol. In addition, the number of bone metastases/mouse was significantly inhibited. In the curative protocol, the progression of bone metastases and the formation of new bone metastases during the treatment period was significantly inhibited. In conclusion, we demonstrate that targeting of integrins by GLPG0187 can inhibit the de novo formation and progression of bone metastases in prostate cancer by antitumor (including inhibition of EMT and the size of the prostate cancer stem cell population), antiresorptive, and antiangiogenic mechanisms.
Collapse
|
289
|
Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res 2011; 8:141-53. [PMID: 22265735 DOI: 10.1016/j.scr.2011.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/21/2011] [Accepted: 09/28/2011] [Indexed: 01/14/2023] Open
Abstract
The master regulatory gene Bmi1 modulates key stem cell properties in neural precursor cells (NPCs), and has been implicated in brain tumorigenesis. We previously identified a population of CD133+ brain tumor cells possessing stem cell properties, known as brain tumor initiating cells (BTICs). Here, we characterize the expression and role of Bmi1 in primary minimally cultured human glioblastoma (GBM) patient isolates in CD133+ and CD133- sorted populations. We find that Bmi1 expression is increased in CD133- cells, and Bmi1 protein and transcript expression are highest during intermediate stages of differentiation as CD133+ BTICs lose their CD133 expression. Furthermore, in vitro stem cell assays and Bmi1 knockdown show that Bmi1 contributes to self-renewal in CD133+ populations, but regulates proliferation and cell fate determination in CD133- populations. Finally, we test if our in vitro stem cell assays and Bmi1 expression in BTIC patient isolates are predictive of clinical outcome for GBM patients. Bmi1 expression profiles show a marked elevation in the proneural GBM subtype, and stem cell frequency as assessed by tumor sphere assays correlates with patient outcome.
Collapse
|
290
|
The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene 2011; 31:2164-74. [PMID: 21996751 DOI: 10.1038/onc.2011.400] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accumulating evidence suggests that a subpopulation of breast cancer cells, referred to as cancer stem cells (CSCs), have the ability to propagate a tumor and potentially seed new metastases. Furthermore, stimulation of an epithelial-to-mesenchymal transition by factors like transforming growth factor-β (TGFβ) is accompanied with the generation of breast CSCs. Previous observations indicated that bone morphogenetic protein-7 (BMP7) antagonizes the protumorigenic and prometastatic actions of TGFβ, but whether BMP7 action is mechanistically linked to breast CSCs has remained elusive. Here, we have studied the effects of BMP7, BMP2 and a BMP2/7 heterodimer on the formation of human breast CSCs (ALDH(hi)/CD44(hi)/CD24(-/low)) and bone metastases formation in a preclinical model of intra-cardiac injection of MDA-MB-231 cells in athymic nude (Balb/c nu/nu) mice. The BMP2/7 heterodimer was the most efficient stimulator of BMP signaling and very effectively reduced TGFβ-driven Smad signaling and cancer cell invasiveness. The tested BMPs-particularly the heterodimeric BMP2/7-strongly reduced the size of the ALDH(hi)/CD44(hi)/CD24(-/low) CSC subpopulation. In keeping with these in vitro observations, pretreatment of cancer cells with BMPs for 72 h prior to systemic inoculation of the cancer cells inhibited the formation of bone metastases. Collectively, our data support the notion that breast CSCs are involved in bone metastasis formation and describe heterodimeric BMP2/7 as a powerful TGFβ antagonist with anti-metastatic potency.
Collapse
|
291
|
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RCM, van der Pluijm G. Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2559-68. [PMID: 21907176 DOI: 10.1016/j.ajpath.2011.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 01/02/2023]
Abstract
Integrins participate in multiple cellular processes, including cell adhesion, migration, proliferation, survival, and the activation of growth factor receptors. Recent studies have shown that expression of αv integrins is elevated in the prostate cancer stem/progenitor cell subpopulation compared with more differentiated, committed precursors. Here, we examine the functional role of αv integrin receptor expression in the acquisition of a metastatic stem/progenitor phenotype in human prostate cancer. Stable knockdown of αv integrins expression in PC-3M-Pro4 prostate cancer cells coincided with a significant decrease of prostate cancer stem/progenitor cell characteristics (α2 integrin, CD44, and ALDH(hi)) and decreased expression of invasion-associated genes Snail, Snail2, and Twist. Consistent with these observations, αv-knockdown strongly inhibited the clonogenic and migratory potentials of human prostate cancer cells in vitro and significantly decreased tumorigenicity and metastatic ability in preclinical models of orthotopic growth and bone metastasis. Our data indicate that integrin αv expression is functionally involved in the maintenance of a highly migratory, mesenchymal cellular phenotype as well as the acquisition of a stem/progenitor phenotype in human prostate cancer cells with metastasis-initiating capacity.
Collapse
|
292
|
Aalaoui-Jamali M, Bijian K, Batist G. Emerging drug discovery approaches for selective targeting of "precursor" metastatic breast cancer cells: highlights and perspectives. Am J Transl Res 2011; 3:434-444. [PMID: 22046485 PMCID: PMC3204890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
Breast cancer is a prevalent disease and a major cause of morbidity and cancer-related deaths among women worldwide. A significant number of patients at the time of primary diagnosis present metastatic disease, at least to locoregional lymph nodes, which results in somewhat unpredictable prognosis that often prompts adjuvant systemic therapies of various kinds. The time course of distant recurrence is also unpredictable with some patients sustaining a recurrence within months after diagnosis, even during adjuvant treatments, while others can experience recurrence years or decades after initial diagnosis. To date, clinically approved therapeutics yielded marginal benefits for patients with systemic metastatic breast disease, since despite high clinical responses to various therapies, the patients virtually always become resistant and tumor relapses. Molecular profiling studies established that breast cancer is highly heterogeneous and encompasses diverse histological and molecular subtypes with distinct biological and clinical implications in particular in relation to the incidence of progression to metastasis. The latter has been recognized to result from late genetic events during the multistep progression proposed by the dominant theory of carcinogenesis. However, there is evidence that the dissemination of primary cancer can also be initiated at a very early stage of cancer development, originating from rare cell variants, possibly cancer stem-like cells (CSC), with invasive potential. These precursor metastatic cancer cells with stem-like properties are defined by their ability to self-renew and to regenerate cell variants, which have high plasticity and intrinsic invasive properties required for dissemination and tropism toward specific organs. Equally relevant to the CSC hypothesis for metastasis formation is the epithelial-mesenchymal transition (EMT) process, which is critical for the acquisition of cancer cell invasive behavior and for selection/gain of CSC properties. These exciting concepts have led to the formulation of various approaches for targeting precursor metastatic cells, and these have taken on greater priority in therapeutic drug discovery research by both academia and pharmaceuticals. In this review, we focus on current efforts in medicinal chemistry to develop small molecules able to target precursor metastatic cells via interference with the CSC/EMT differentiation program, self-renewal, and survival. It is not meant to be comprehensive and the reader is referred to selected reviews that provide coverage of related basic aspects. Rather, emphasis is given to promising molecules with CSC/EMT signaling at the preclinical stage and in clinical trials that are paving the way to new generations of anti-metastasis drugs.
Collapse
Affiliation(s)
- Moulay Aalaoui-Jamali
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, McGill University Montreal, Qc H3T1E2, Canada
| | | | | |
Collapse
|
293
|
Cross-regulation between protein L-isoaspartyl O-methyltransferase and ERK in epithelial mesenchymal transition of MDA-MB-231 cells. Acta Pharmacol Sin 2011; 32:1165-72. [PMID: 21841813 DOI: 10.1038/aps.2011.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM Protein L-isoaspartyl O-methyltransferase (PIMT) regulates cell adhesion in various cancer cell lines through activation of integrin αv and the PI3K pathway. The epithelial mesenchymal transition (EMT) enables epithelial cells to acquire the characteristics of mesenchymal cells, and to allow them to migrate for metastasis. Here, we examined the relationship between PIMT and EMT with attached or detached MDA-MB 231 cells. METHODS Human breast cancer cell line MDA-MB-231 cells were maintained in a suspension on poly-HEMA in the presence or absence of PIMT siRNA or ERK inhibitor PD98059. The mRNAs and proteins were analyzed using RT-PCR and immunoblotting, respectively. RESULTS During cellular incubation under detached conditions, PIMT, integrin αv and EMT proteins, such as Snail, Slug and matrix metalloproteinase 2 (MMP-2), were significantly increased in correlation with the phosphorylation of ERK1/2. The ERK inhibitor PD98059 (25 μmol/L) strongly suppressed the expression of the proteins and PIMT. Interestingly, PIMT siRNA blocked the phosphorylation of ERK and the expression of the EMT proteins. Additionally, PIMT and ERK phosphorylation were both co-activated by treatment with TGF-β (10 ng/mL) and TNF-α (10 ng/mL). CONCLUSION A tight cross-regulation exists between ERK and PIMT in regards to their activation and expression during the EMT.
Collapse
|
294
|
Slabáková E, Pernicová Z, Slavíčková E, Staršíchová A, Kozubík A, Souček K. TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 2011; 71:1332-43. [PMID: 21321977 DOI: 10.1002/pros.21350] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/06/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) underlying cancer cell invasion and metastasis has been thoroughly studied in prostate cancer. Although EMT markers have been clinically observed in benign prostate hyperplasia, molecular events underlying the onset and progression of EMT in benign prostate cells have not been described. METHODS EMT in BPH-1 cells was induced by TGF-β1 treatment and the kinetics of expression of EMT markers, regulators, and selected miRNAs was assessed by western blotting and quantitative RT-PCR. RESULTS EMT in BPH-1 cells was accompanied by rapid up-regulation of SNAI2/Slug and ZEB1 transcription factors, while changes in expression levels of ZEB2 and miR-200 family members were observed after extended time intervals. Invasive phenotype with EMT hallmarks, characterizing tumorigenic clones derived from BPH-1 cells, was associated with increased mRNA levels of SNAI2, ZEB1, and ZEB2, but was not associated with significant changes in basal levels of miR-200 family members. RNA interference revealed that SNAI2/Slug is crucial for TGF-β1-induced vimentin up-regulation and migration of BPH-1 cells. CONCLUSIONS This study suggests that in BPH-1 cells the transcription factor SNAI2/Slug is important for EMT initiation, while the ZEB family of transcription factors in cooperation with the miR-200 family may oppose the reversal of the EMT phenotype.
Collapse
Affiliation(s)
- Eva Slabáková
- Department of Cytokinetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
295
|
Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 2011; 112:2296-306. [PMID: 21503965 PMCID: PMC3155646 DOI: 10.1002/jcb.23150] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Zhiwei Wang
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Shadan Ali
- Division of Hematology/Oncology Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Dejuan Kong
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Sanjeev Banerjee
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Aamir Ahmad
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Asfar S. Azmi
- Department of Pathology, Wayne State University, Detroit, Michigan
| | - Lucio Miele
- University of Mississippi Cancer Institute, Jackson, Mississippi
| | - Fazlul H. Sarkar
- Department of Pathology, Wayne State University, Detroit, Michigan
| |
Collapse
|
296
|
Braun J, Hüttelmaier S. Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin. Thyroid Res 2011; 4 Suppl 1:S1. [PMID: 21835047 PMCID: PMC3155107 DOI: 10.1186/1756-6614-4-s1-s1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer is one of the most common malignancies of the endocrine system with increasing incidence. The vast majority of thyroid carcinomas derive from thyroid hormone producing follicular cells. Carcinomas of follicular origin are classified as follicular (FTCs), papillary (PTCs), partially differentiated (PDTCs) or anaplastic (ATCs) thyroid carcinomas. While FTCs and PTCs can be managed effectively, ATCs are considered one of the most lethal human cancers. Despite the identification of various genetic alterations, pathogenic mechanisms promoting the progression of thyroid carcinomas are still largely elusive. Over the recent years, aberrant microRNA expression was revealed in all as yet analyzed human cancers, including thyroid carcinomas. In view of the rapidly evolving perception that deregulated microRNA expression serves a pivotal role in tumor progression, microRNAs provide powerful tools for the diagnosis of thyroid carcinomas as well as the identification of potential therapeutic targets. Here, we summarize recent findings on microRNA signatures in thyroid carcinomas of follicular origin and discuss how deregulated microRNA expression could promote cancer progression.
Collapse
Affiliation(s)
- Juliane Braun
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University of Halle-Wittenberg, ZAMED Heinrich-Damerow-Str,1, 06120 Halle, Germany.
| | | |
Collapse
|
297
|
Mimeault M, Batra SK. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1816:25-37. [PMID: 21396984 PMCID: PMC3276073 DOI: 10.1016/j.bbcan.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
Abstract
Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27(KIP1), p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
298
|
Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, Banerjee S, Azmi AS, Miele L, Sarkar FH. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 2011; 307:26-36. [PMID: 21463919 PMCID: PMC3104092 DOI: 10.1016/j.canlet.2011.03.012] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/17/2011] [Indexed: 12/14/2022]
Abstract
Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes-1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Zhiwei Wang
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Division of Hematology/Oncology Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Lucio Miele
- University of Mississippi Cancer Institute, Jackson, MS, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
299
|
Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol 2011; 4:222-6. [PMID: 21804917 DOI: 10.1593/tlo.10244] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a transient process occurring during developmental stages and carcinogenesis, characterized by phenotypic and molecular alterations, resulting in increased invasive and metastatic capabilities of cancer cells and drug resistance. Moreover, emerging evidence suggests that EMT is associated with increased enrichment of cancer stem-like cells in neoplastic tissues. We interrogated the molecular alterations occurring in breast cancer using proposed EMT markers such as E-cadherin, vimentin, epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF) D, and nuclear factor κ B (NF-κ B) to decipher their roles in the EMT and breast cancer progression. METHODS Fifty-seven invasive ductal adenocarcinomas of the breast were assessed for the expression of E-cadherin, vimentin, EGFR, NF-κ B, and PDGF-D using immunohistochemical analysis. Tumors were categorized into three groups: A (ER+, and/or PR+, HER-2/neu-), B (ER+, and/or PR+, HER-2/neu+), and C (triple-negative: ER-, PR-, and HER-2/neu-). Immunostained slides were microscopically evaluated and scored using intensity (0, 1+, 2+, and 3+) and percentage of positive cells, and data were statistically analyzed. RESULTS Membranous E-cadherin was positive in all 57 cases (100%), whereas cytoplasmic E-cadherin was predominantly positive in groups B and C compared with group A (21%, 7%, and 0%, respectively). All group A cases were negative for vimentin and EGFR. There was statistically significant increased expression of vimentin (P < .0002), EGFR (P < .0001), and NF-κ B (P < .02) in triple-negative cases when compared with groups A and B. CONCLUSIONS Vimentin, EGFR, and NF-κ B were significantly increased in triple-negative tumors, which is consistent with the aggressiveness of these tumors. These markers could be useful as markers for EMT in breast cancers and may serve as predictive markers for designing customized therapy in the future.
Collapse
|
300
|
Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L, Sarkar FH, Wang Z. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J Cell Biochem 2011; 112:1055-65. [PMID: 21308734 DOI: 10.1002/jcb.23019] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin has been reported to inhibit cell growth and induce apoptosis in oral cancer cells. Although many studies have been done to uncover the mechanisms by which curcumin exerts its antitumor activity, the precise molecular mechanisms remain to be unclear. In the present study, we assessed the effects of curcumin on cell viability and apoptosis in oral cancer. For mechanistic studies, we used multiple cellular and molecular approaches such as gene transfection, real-time RT-PCR, Western blotting, invasion assay, and ELISA. For the first time, we found a significant reduction in cell viability in curcumin-treated cells, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and nuclear factor-κB (NF-κB). Taken together, we conclude that the down-regulation of Notch-1 by curcumin could be an effective approach, which will cause down-regulation of NF-κB, resulting in the inhibition of cell growth and invasion. These results suggest that antitumor activity of curcumin is mediated through a novel mechanism involving inactivation of Notch-1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Shengkai Liao
- Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | | | | | | | | | | | | | | |
Collapse
|