251
|
Castleman MJ, Febbraio M, Hall PR. CD36 Is Essential for Regulation of the Host Innate Response to Staphylococcus aureus α-Toxin-Mediated Dermonecrosis. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26223653 DOI: 10.4049/jimmunol.1500500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSIs) in the United States. α-Hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. In this study, we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36(-/-) mice are significantly larger, with increased neutrophil accumulation and IL-1β expression, compared with CD36(+/+) (wild-type) mice. Neutrophil depletion of CD36(-/-) mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36(+/+) but not CD36(-/-) macrophages near the site of intoxication reduces dermonecrosis, IL-1β production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36(+/+) macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Taken together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection.
Collapse
Affiliation(s)
- Moriah J Castleman
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| | - Maria Febbraio
- School of Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131; and
| |
Collapse
|
252
|
Desouky SE, Shojima A, Singh RP, Matsufuji T, Igarashi Y, Suzuki T, Yamagaki T, Okubo KI, Ohtani K, Sonomoto K, Nakayama J. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria. FEMS Microbiol Lett 2015; 362:fnv109. [PMID: 26149266 DOI: 10.1093/femsle/fnv109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptides are commonly used as quorum-sensing autoinducers in Gram-positive Firmicutes bacteria. Well-studied examples of such molecules are thiolactone and lactone, used to regulate the expression of a series of virulence genes in the agr system of Staphylococcus aureus and the fsr system of Enterococcus faecalis, respectively. Three cyclodepsipeptides WS9326A, WS9326B and cochinmicin II/III were identified as a result of screening actinomycetes culture extracts for activity against the agr/fsr system. These molecules are already known as receptor antagonists, the first two for tachykinin and the last one for endothelin. WS9326A also inhibited the transcription of pfoA regulated by the VirSR two-component system in Clostridium perfringens. Receptor-binding assays using a fluorescence-labeled autoinducer (FITC-GBAP) showed that WS9326A and WS9326B act as receptor antagonists in this system. In addition, an ex vivo assay showed that WS9326B substantially attenuated the toxicity of S. aureus for human corneal epithelial cells. These results suggest that these three natural cyclodepsipeptides have therapeutic potential for targeting the cyclic peptide-mediated quorum sensing of Gram-positive pathogens.
Collapse
Affiliation(s)
- Said E Desouky
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Department of Botany and Microbiology, Faculty of Science, Al-azhar University, 11884 Nasr, Cairo, Egypt
| | - Akane Shojima
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ravindra Pal Singh
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takahisa Matsufuji
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tohru Yamagaki
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | - Ken-Ichi Okubo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kaori Ohtani
- Department of Bacteriology, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
253
|
Edwards BS, Sklar LA. Flow Cytometry: Impact on Early Drug Discovery. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:689-707. [PMID: 25805180 PMCID: PMC4606936 DOI: 10.1177/1087057115578273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/27/2015] [Indexed: 12/15/2022]
Abstract
Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery.
Collapse
Affiliation(s)
- Bruce S Edwards
- Center for Molecular Discovery, Innovation Discovery and Training Center, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Center for Molecular Discovery, Innovation Discovery and Training Center, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
254
|
Phloretin derived from apple can reduce alpha-hemolysin expression in methicillin-resistant Staphylococcus aureus USA300. World J Microbiol Biotechnol 2015; 31:1259-65. [PMID: 26026280 DOI: 10.1007/s11274-015-1879-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/25/2015] [Indexed: 01/04/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become increasingly important because it is the most common cause of hospital-acquired infections, which have become globally epidemic. Our study specifically focused on the MRSA strain USA300, which was shown in 2014 to be responsible for the most current pandemic of highly virulent MRSA in the United States. We aimed to evaluate the in vitro effect of phloretin on USA300. Susceptibility testing, western blotting assays, hemolysis assays and real-time RT-PCR were employed to examine the in vitro effects of phloretin on alpha-hemolysin (Hla) production when the bacterium was co-cultured with phloretin. The protective effect of phloretin against the USA300-mediated injury of human alveolar epithelial cells (A549) was tested using the live/dead analysis and cytotoxicity assays. We showed that sub-inhibitory concentrations of phloretin have no effect on bacterial viability; however, they can markedly inhibit the production of Hla in culture supernatants and the transcriptional levels of hla (the gene encoding Hla) and agrA (the accessory gene regulator). Phloretin, at a final concentration of 16 µg/ml, could protect A549 cells from injury caused by USA300 in the co-culture system. Our study suggests that phloretin might have a potential application in the development of treatment for MRSA infections.
Collapse
|
255
|
Arya R, Ravikumar R, Santhosh RS, Princy SA. SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front Microbiol 2015; 6:416. [PMID: 26074884 PMCID: PMC4447123 DOI: 10.3389/fmicb.2015.00416] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/20/2015] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - R Ravikumar
- Department of Chemistry, SASTRA University Thanjavur, India
| | - R S Santhosh
- Genetic Engineering Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| |
Collapse
|
256
|
Elmore BO, Triplett KD, Hall PR. Apolipoprotein B48, the Structural Component of Chylomicrons, Is Sufficient to Antagonize Staphylococcus aureus Quorum-Sensing. PLoS One 2015; 10:e0125027. [PMID: 25942561 PMCID: PMC4420250 DOI: 10.1371/journal.pone.0125027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Serum lipoproteins (LP) are increasingly being recognized as dual purpose molecules that contribute to both cholesterol homeostasis and host innate defense. In fact, very low LP levels are associated with increased risk of bacterial infection in critically ill patients. In this respect, we reported that apolipoprotein B100 (apoB100), the 4536 amino acid structural protein of very low density lipoprotein (VLDL) produced by the liver, limits Staphylococcus aureus pathogenesis. S. aureus uses quorum-sensing (QS) via the accessory gene regulator (agr) operon and an autoinducing peptide (AIP) to coordinate expression of over 200 virulence genes. ApoB100 prevents agr activation by binding and sequestering secreted AIP. Importantly, human serum LP are produced not only by the liver, but are also produced by enterocytes, in the form of chylomicrons, during uptake of dietary lipids. In contrast to apoB100 in VLDL, human enterocytes use apoB48, the N-terminal 2152 amino acids (48%) of apoB100, as the structural component of chylomicrons. Interestingly, enteral feeding of critically ill patients has been associated with decreased risk of infectious complications, suggesting chylomicrons could contribute to host innate defense in critically ill patients when serum LP production by the liver is limited during the acute phase response. Therefore, we hypothesized that apoB48 would be sufficient to antagonize S. aureus QS. As expected, isolated apoB48-LP bound immobilized AIP and antagonized agr-signaling. ApoB48- and apoB100-LP inhibited agr activation with IC50s of 3.5 and 2.3 nM, respectively, demonstrating a conserved AIP binding site. Importantly, apoB48-LP antagonized QS, limited morbidity and promoted bacterial clearance in a mouse model of S. aureus infection. This work demonstrates that both naturally occurring forms of apolipoprotein B can antagonize S. aureus QS, and may suggest a previously unrecognized role for chylomicrons and enterocytes in host innate defense against S. aureus QS-mediated pathogenesis.
Collapse
Affiliation(s)
- Bradley O. Elmore
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Kathleen D. Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Pamela R. Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
257
|
Abstract
Skin is the most common site of Staphylococcus aureus infection. While most of these infections are self-limited, recurrent infections are common. Keratinocytes and recruited immune cells participate in skin defense against infection. We postulated that S. aureus is able to adapt to the milieu within human keratinocytes to avoid keratinocyte-mediated clearance. From a collection of S. aureus isolated from chronically infected patients with atopic dermatitis, we noted 22% had an agr mutant-like phenotype. Using several models of human skin infection, we demonstrate that toxin-deficient, agr mutants of methicillin-resistant S. aureus (MRSA) USA300 are able to persist within keratinocytes by stimulating autophagy and evading caspase-1 and inflammasome activation. MRSA infection induced keratinocyte autophagy, as evidenced by galectin-8 and LC3 accumulation. Autophagy promoted the degradation of inflammasome components and facilitated staphylococcal survival. The recovery of more than 58% agr or RNAIII mutants (P < 0.0001) of an inoculum of wild-type (WT) MRSA from within wortmannin-treated keratinocytes compared to control keratinocytes reflected the survival advantage for mutants no longer expressing agr-dependent toxins. Our results illustrate the dynamic interplay between S. aureus and keratinocytes that can result in the selection of mutants that have adapted specifically to evade keratinocyte-mediated clearance mechanisms. Human skin is a major site of staphylococcal infection, and keratinocytes actively participate in eradication of these pathogens. We demonstrate that methicillin-resistant Staphylococcus aureus (MRSA) is ingested by keratinocytes and activates caspase-1-mediated clearance through pyroptosis. Toxin-deficient MRSA mutants are selected within keratinocytes that fail to induce caspase-1 activity and keratinocyte-mediated clearance. These intracellular staphylococci induce autophagy that enhances their intracellular survival by diminishing inflammasome components. These findings suggest that S. aureus mutants, by exploiting autophagy, can persist within human keratinocytes.
Collapse
|
258
|
Otter JA. Journal roundup. J Hosp Infect 2015; 88:55-7. [PMID: 25271334 PMCID: PMC7134438 DOI: 10.1016/j.jhin.2014.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
259
|
Narrow-spectrum inhibitors of Campylobacter jejuni flagellar expression and growth. Antimicrob Agents Chemother 2015; 59:3880-6. [PMID: 25870073 DOI: 10.1128/aac.04926-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023] Open
Abstract
Campylobacter jejuni is a major cause of food-borne illness due to its ability to reside within the gastrointestinal tracts of chickens. Multiple studies have identified the flagella of C. jejuni as a major determinant of chicken colonization. An inhibitor screen of approximately 147,000 small molecules was performed to identify compounds that are able to inhibit flagellar expression in a reporter strain of C. jejuni. Several compounds that modestly inhibited motility of wild-type C. jejuni in standard assays were identified, as were a number of small molecules that robustly inhibited C. jejuni growth, in vitro. Examination of similar bacterial screens found that many of these small molecules inhibited only the growth of C. jejuni. Follow-up assays demonstrated inhibition of other strains of C. jejuni and Campylobacter coli but no inhibition of the closely related Helicobacter pylori. The compounds were determined to be bacteriostatic and nontoxic to eukaryotic cells. Preliminary results from a day-of-hatch chick model of colonization suggest that at least one of the compounds demonstrates promise for reducing Campylobacter colonization loads in vivo, although further medicinal chemistry may be required to enhance bioavailability.
Collapse
|
260
|
Khan BA, Yeh AJ, Cheung GYC, Otto M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs 2015; 24:689-704. [PMID: 25704585 DOI: 10.1517/13543784.2015.1019062] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Antibiotic resistance is a serious global health concern for developed and developing nations. MRSA represents a particularly severe public health threat that is associated with high morbidity and mortality. The lack of novel antibiotics has led scientists to explore therapies targeting bacterial virulence mechanisms and virulence regulators, including those controlling cell-cell communication. AREAS COVERED The authors discuss the role of quorum-sensing in Staphylococcus aureus infections and components of the system that are being targeted using novel investigational drugs. In particular, the authors examine the role of the accessory gene regulator (Agr) system in virulence regulation of S. aureus pathogenesis. Finally, the authors present and compare natural and synthetic compounds that have been found to interfere with Agr functionality. EXPERT OPINION There is a great need to develop new therapeutic methods to combat S. aureus infections. These include anti-virulence therapies that target key global regulators involved with the establishment and propagation of infection. Several molecules have been found to interfere with S. aureus virulence regulation, especially those targeting the Agr quorum-sensing signaling molecule. These preliminary findings warrant further investigation and validation, with the goal of refining a compound that has broad-spectrum inhibitory effects on most S. aureus strains and Agr subtypes.
Collapse
Affiliation(s)
- Burhan A Khan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , 903 S. 4th St, 1/1110, Hamilton, MT 59840 , USA
| | | | | | | |
Collapse
|
261
|
Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment. J Theor Biol 2015; 372:1-11. [PMID: 25701634 PMCID: PMC4396697 DOI: 10.1016/j.jtbi.2015.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
Abstract
Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention.
Collapse
|
262
|
ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother 2015; 59:2223-35. [PMID: 25645827 DOI: 10.1128/aac.04564-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation.
Collapse
|
263
|
Welsh MA, Eibergen NR, Moore JD, Blackwell HE. Small molecule disruption of quorum sensing cross-regulation in pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 2015; 137:1510-9. [PMID: 25574853 DOI: 10.1021/ja5110798] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses three interwoven quorum-sensing (QS) circuits-Las, Rhl, and Pqs-to regulate the global expression of myriad virulence-associated genes. Interception of these signaling networks with small molecules represents an emerging strategy for the development of anti-infective agents against this bacterium. In the current study, we applied a chemical approach to investigate how the Las-Rhl-Pqs QS hierarchy coordinates key virulence phenotypes in wild-type P. aeruginosa. We screened a focused library of synthetic, non-native N-acyl l-homoserine lactones and identified compounds that can drastically alter production of two important virulence factors: pyocyanin and rhamnolipid. We demonstrate that these molecules act by targeting RhlR in P. aeruginosa, a QS receptor that has seen far less scrutiny to date relative to other circuitry. Unexpectedly, modulation of RhlR activity by a single compound induces inverse regulation of pyocyanin and rhamnolipid, a result that was not predicted using genetic approaches to interrogate QS in P. aeruginosa. Further, we show that certain RhlR agonists strongly repress Pqs signaling, revealing disruption of Rhl-Pqs cross-regulation as a novel mechanism for QS inhibition. These compounds significantly expand the known repertoire of chemical probes available to study RhlR in P. aeruginosa. Moreover, our results suggest that designing chemical agents to disrupt Rhl-Pqs crosstalk could be an effective antivirulence strategy to fight this common pathogen.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
264
|
Abstract
Resistance of important bacterial pathogens to common antimicrobial therapies and the emergence of multidrug-resistant bacteria are increasing at an alarming rate and constitute one of our greatest challenges in the combat of bacterial infection and accompanied diseases. The current shortage of effective drugs, lack of successful prevention measures and only a few new antibiotics in the clinical pipeline demand the development of novel treatment options and alternative antimicrobial therapies. Our increasing understanding of bacterial virulence strategies and the induced molecular pathways of the infectious disease provides novel opportunities to target and interfere with crucial pathogenicity factors or virulence-associated traits of the bacteria while bypassing the evolutionary pressure on the bacterium to develop resistance. In the past decade, numerous new bacterial targets for anti-virulence therapies have been identified, and structure-based tailoring of intervention strategies and screening assays for small-molecule inhibitors of such pathways were successfully established. In this chapter, we will take a closer look at the bacterial virulence-related factors and processes that present promising targets for anti-virulence therapies, recently discovered inhibitory substances and their promises and discuss the challenges, and problems that have to be faced.
Collapse
|
265
|
Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics. Antimicrob Agents Chemother 2014; 59:1512-8. [PMID: 25534736 DOI: 10.1128/aac.04767-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 μg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents.
Collapse
|
266
|
Quave CL, Horswill AR. Flipping the switch: tools for detecting small molecule inhibitors of staphylococcal virulence. Front Microbiol 2014; 5:706. [PMID: 25566220 PMCID: PMC4264471 DOI: 10.3389/fmicb.2014.00706] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/27/2014] [Indexed: 11/25/2022] Open
Abstract
Through the expression of the accessory gene regulator quorum sensing cascade, Staphylococcus aureus is able to produce an extensive array of enzymes, hemolysins and immunomodulators essential to its ability to spread through the host tissues and cause disease. Many have argued for the discovery and development of quorum sensing inhibitors (QSIs) to augment existing antibiotics as adjuvant therapies. Here, we discuss the state-of-the-art tools that can be used to conduct screens for the identification of such QSIs. Examples include fluorescent reporters, MS-detection of autoinducing peptide production, agar plate methods for detection of hemolysins and lipase, High performance liquid chromatography-detection of hemolysins from supernatants, and cell-toxicity assays for detecting damage (or relief thereof) against human keratinocyte cells. In addition to providing a description of these various approaches, we also discuss their amenability to low-, medium-, and high-throughput screening efforts for the identification of novel QSIs.
Collapse
Affiliation(s)
- Cassandra L Quave
- Department of Dermatology, Emory University School of Medicine Atlanta, GA, USA ; Center for the Study of Human Health, Emory University College of Arts and Sciences Atlanta, GA, USA
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
267
|
O’Rourke JP, Daly SM, Triplett KD, Peabody D, Chackerian B, Hall PR. Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway. PLoS One 2014; 9:e111198. [PMID: 25379726 PMCID: PMC4224382 DOI: 10.1371/journal.pone.0111198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023] Open
Abstract
A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models.
Collapse
Affiliation(s)
- John P. O’Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
- * E-mail: (JPO); (PH)
| | - Seth M. Daly
- Department of Pharmaceutical Sciences, University of New Mexico School of Medicine, Albuquerque, NM United States of America
| | - Kathleen D. Triplett
- Department of Pharmaceutical Sciences, University of New Mexico School of Medicine, Albuquerque, NM United States of America
| | - David Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
| | - Pamela R. Hall
- Department of Pharmaceutical Sciences, University of New Mexico School of Medicine, Albuquerque, NM United States of America
- * E-mail: (JPO); (PH)
| |
Collapse
|
268
|
Nicod SS, Weinzierl ROJ, Burchell L, Escalera-Maurer A, James EH, Wigneshweraraj S. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res 2014; 42:12523-36. [PMID: 25352558 PMCID: PMC4227749 DOI: 10.1093/nar/gku1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most DNA-binding bacterial transcription factors contact DNA through a recognition α-helix in their DNA-binding domains. An emerging class of DNA-binding transcription factors, predominantly found in pathogenic bacteria interact with the DNA via a relatively novel type of DNA-binding domain, called the LytTR domain, which mainly comprises β strands. Even though the crystal structure of the LytTR domain of the virulence gene transcription factor AgrA from Staphylococcus aureus bound to its cognate DNA sequence is available, the contribution of specific amino acid residues in the LytTR domain of AgrA to transcription activation remains elusive. Here, for the first time, we have systematically investigated the role of amino acid residues in transcription activation in a LytTR domain-containing transcription factor. Our analysis, which involves in vivo and in vitro analyses and molecular dynamics simulations of S. aureus AgrA identifies a highly conserved tyrosine residue, Y229, as a major amino acid determinant for maximal activation of transcription by AgrA and provides novel insights into structure-function relationships in S. aureus AgrA.
Collapse
Affiliation(s)
- Sophie S Nicod
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Lynn Burchell
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | | - Ellen H James
- MRC Centre for Molecular Microbiology and Infection, Imperial College London, London, UK
| | | |
Collapse
|
269
|
Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol 2014; 9:2291-9. [PMID: 25105594 PMCID: PMC4201345 DOI: 10.1021/cb5004288] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development.
Collapse
Affiliation(s)
- Joseph P. Gerdt
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
270
|
Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol 2014; 22:676-85. [PMID: 25300477 DOI: 10.1016/j.tim.2014.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major cause of bacteremia, which frequently results in serious secondary infections such as infective endocarditis, osteomyelitis, and septic arthritis. The ability of S. aureus to cause such a wide range of infections has been ascribed to its huge armoury of different virulence factors, many of which are under the control of the quorum-sensing accessory gene regulator (Agr) system. However, a significant fraction of S. aureus bacteremia cases are caused by agr-defective isolates, calling into question the role of Agr in invasive staphylococcal infections. This review draws on recent work to define the role of Agr during bacteremia and explain why the loss of this major virulence regulator is sometimes a price worth paying for S. aureus.
Collapse
Affiliation(s)
- Kimberley L Painter
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Aishwarya Krishna
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Andrew M Edwards
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK.
| |
Collapse
|