251
|
Investigating the Interaction of Cyclic RGD Peptidomimetics with α Vβ₆ Integrin by Biochemical and Molecular Docking Studies. Cancers (Basel) 2017; 9:cancers9100128. [PMID: 28934103 PMCID: PMC5664067 DOI: 10.3390/cancers9100128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023] Open
Abstract
The interaction of a small library of cyclic RGD (Arg-Gly-Asp) peptidomimetics with αVβ6 integrin has been investigated by means of competitive solid phase binding assays to the isolated receptor and docking calculations in the crystal structure of the αVβ6 binding site. To this aim, a rigid receptor-flexible ligand docking protocol has been set up and then applied to predict the binding mode of the cyclic RGD peptidomimetics to αVβ6 integrin. Although the RGD interaction with αVβ6 recapitulates the RGD binding mode observed in αVβ3, differences between the integrin binding pockets can strongly affect the ligand binding ability. In general, the peptidomimetics exhibited IC50 values for integrin αVβ6 (i.e., the concentration of compound required for 50% inhibition of biotinylated fibronectin binding to isolated αVβ6 integrin) in the nanomolar range (77–345 nM), about 10–100 times higher than those for the related αVβ3 receptor, with a single notable ligand displaying a low nanomolar IC50 value (2.3 nM). Insights from the properties of the binding pocket combined with the analysis of the docking poses provided a rationale for ligand recognition and selectivity.
Collapse
|
252
|
Bartolomé RA, Aizpurua C, Jaén M, Torres S, Calviño E, Imbaud JI, Casal JI. Monoclonal Antibodies Directed against Cadherin RGD Exhibit Therapeutic Activity against Melanoma and Colorectal Cancer Metastasis. Clin Cancer Res 2017; 24:433-444. [PMID: 28916526 DOI: 10.1158/1078-0432.ccr-17-1444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/02/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
Abstract
Purpose: New targets are required for the control of advanced metastatic disease. We investigated the use of cadherin RGD motifs, which activate the α2β1integrin pathway, as targets for the development of therapeutic monoclonal antibodies (mAb).Experimental Design: Cadherin 17 (CDH17) fragments and peptides were prepared and used for immunization and antibody development. Antibodies were tested for inhibition of β1 integrin and cell adhesion, proliferation, and invasion assays using cell lines from different cancer types (colorectal, pancreatic, melanoma, and breast cancer). Effects of the mAbs on cell signaling were determined by Western blot analysis. Nude mice were used for survival analysis after treatment with RGD-specific mAbs and metastasis development.Results: Antibodies against full-length CDH17 failed to block the binding to α2β1 integrin. However, CDH17 RGD peptides generated highly selective RGD mAbs that blocked CDH17 and vascular-endothelial (VE)-cadherin-mediated β1 integrin activation in melanoma and breast, pancreatic, and colorectal cancer cells. Antibodies provoked a significant reduction in cell adhesion and proliferation of metastatic cancer cells. Treatment with mAbs impaired the integrin signaling pathway activation of FAK in colorectal cancer, of JNK and ERK kinases in colorectal and pancreatic cancers, and of JNK, ERK, Src, and AKT in melanoma and breast cancer. In vivo, RGD-specific mAbs increased mouse survival after inoculation of melanoma and colorectal cancer cell lines to cause lung and liver metastasis, respectively.Conclusions: Blocking the interaction between RGD cadherins and α2β1 integrin with highly selective mAbs constitutes a promising therapy against advanced metastatic disease in colon cancer, melanoma, and, potentially, other cancers. Clin Cancer Res; 24(2); 433-44. ©2017 AACRSee related commentary by Marshall, p. 253.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Marta Jaén
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Sofía Torres
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - J Ignacio Casal
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
253
|
Cedra S, Wiegand S, Kolb M, Dietz A, Wichmann G. Reduced Cytokine Release in Ex Vivo Response to Cilengitide and Cetuximab Is a Marker for Improved Survival of Head and Neck Cancer Patients. Cancers (Basel) 2017; 9:cancers9090117. [PMID: 28872582 PMCID: PMC5615332 DOI: 10.3390/cancers9090117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023] Open
Abstract
Targeting of αVβ3 and αVβ5 integrins by cilengitide may reduce growth of solid tumors including head and neck squamous cell carcinoma (HNSCC). Preclinical investigations suggest increased activity of cilengitide in combination with other treatment modalities. The only published trial in HNSCC (ADVANTAGE) investigated cisplatin, 5-fluorouracil, and cetuximab (PFE) without or with once (PFE+CIL1W) or twice weekly cilengitide (PFE+CIL2W) in recurrent/metastatic HNSCC. ADVANTAGE showed good tolerability of the cilengitide arms and even lower adverse events (AEs) compared to PFE but not the benefit in overall survival expected based on preclinical data. As we found in the FLAVINO assay, a short-time ex vivo assay for prediction of chemosensitivity, only a subgroup of HNSCC had an increased suppressive effect of cilengitide containing combination therapies on colony formation of epithelial cells (CFec) and release of pro-angiogenetic and pro-inflammatory cytokines, whereas other HNSCC failed to respond. Response to αVβ3 and αVβ5 integrin targeting by cilengitide classifies HNSCC regarding outcome. We present FLAVINO data arguing for further development of cilengitide plus cetuximab in treatment of a subgroup of HNSCC potentially identified by the FLAVINO assay using a set of biomarkers for response evaluation.
Collapse
Affiliation(s)
- Susan Cedra
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, 04103 Leipzig, Germany.
| | - Susanne Wiegand
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, 04103 Leipzig, Germany.
| | - Marlen Kolb
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, 04103 Leipzig, Germany.
| | - Andreas Dietz
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, 04103 Leipzig, Germany.
| | - Gunnar Wichmann
- Department of Otolaryngology, Head and Neck Surgery, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
254
|
Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel) 2017; 9:cancers9090116. [PMID: 28869579 PMCID: PMC5615331 DOI: 10.3390/cancers9090116] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine.
Collapse
|
255
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
256
|
Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel) 2017; 9:E110. [PMID: 28832494 PMCID: PMC5615325 DOI: 10.3390/cancers9090110] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.
Collapse
Affiliation(s)
- Sabine Raab-Westphal
- Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - John F Marshall
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Simon L Goodman
- Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
257
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
258
|
Mahadevappa R, Ma R, Kwok HF. Venom Peptides: Improving Specificity in Cancer Therapy. Trends Cancer 2017; 3:611-614. [PMID: 28867164 DOI: 10.1016/j.trecan.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Abstract
Venom peptides (VPs) exhibit high specificity and selectivity towards cancer cells, with effects on cell proliferation, invasion, migration, and angiogenesis, as well as modulating immune responses. Studying VPs can help the design of more specific peptide drugs for targeted cancer therapy.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Rui Ma
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
259
|
Conibear AC, Hager S, Mayr J, Klose MHM, Keppler BK, Kowol CR, Heffeter P, Becker CFW. Multifunctional α vβ 6 Integrin-Specific Peptide-Pt(IV) Conjugates for Cancer Cell Targeting. Bioconjug Chem 2017; 28:2429-2439. [PMID: 28796473 DOI: 10.1021/acs.bioconjchem.7b00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing the specificity of cancer therapy, and thereby decreasing damage to normal cells, requires targeting to cancer-cell specific features. The αvβ6 integrin is a receptor involved in cell adhesion and is frequently up-regulated in cancer cells compared to normal cells. We have selected a peptide ligand reported to bind specifically to the β6 integrin and have synthesized a suite of multispecific molecules to explore the potential for targeting of cancer cells. A combination of solid-phase peptide synthesis and chemoselective ligations was used to synthesize multifunctional molecules composed of integrin-targeting peptides, cytotoxic platinum(IV) prodrugs, and fluorescent or affinity probes joined with flexible linkers. The modular synthesis approach facilitates the construction of peptide-drug conjugates with various valencies and properties in a convergent manner. The binding and specificity of the multifunctional peptide conjugates were investigated using a cell line transfected with the β6 integrin and fluorescence microscopy. This versatile and highly controlled approach to synthesizing labeled peptide-drug conjugates has the potential to target potent cytotoxic drugs specifically to cancer cells, reducing the doses required for effective treatment.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna , Währinger Straße 38, 1090 Vienna, Austria
| | - Sonja Hager
- Institute of Cancer Research and Comprehensive Cancer Centre, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Josef Mayr
- Institute of Inorganic Chemistry, University of Vienna, Faculty of Chemistry , Währinger Straße 42, 1090 Vienna, Austria
| | - Matthias H M Klose
- Institute of Inorganic Chemistry, University of Vienna, Faculty of Chemistry , Währinger Straße 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Faculty of Chemistry , Währinger Straße 42, 1090 Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, University of Vienna, Faculty of Chemistry , Währinger Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Centre, Medical University of Vienna , Borschkegasse 8a, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna , Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
260
|
Zhang X, Li X, Hua H, Wang A, Liu W, Li Y, Fu F, Shi Y, Sun K. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Int J Nanomedicine 2017; 12:5717-5732. [PMID: 28848349 PMCID: PMC5557616 DOI: 10.2147/ijn.s138501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas.
Collapse
Affiliation(s)
- Xuemei Zhang
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China.,Luye Pharmaceutical Co., Ltd., Shandong Province, People's Republic of China
| | - Xuejuan Li
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Shandong Province, People's Republic of China
| | - Hongchen Hua
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China
| | - Aiping Wang
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China
| | - Wanhui Liu
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China.,Luye Pharmaceutical Co., Ltd., Shandong Province, People's Republic of China
| | - Youxin Li
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China.,Luye Pharmaceutical Co., Ltd., Shandong Province, People's Republic of China
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People's Republic of China.,Luye Pharmaceutical Co., Ltd., Shandong Province, People's Republic of China
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Shandong Province, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Yantai University, Yantai, Shandong Province, People's Republic of China
| |
Collapse
|
261
|
Berg T. Inhibition of Protein-Protein Interactions: New Options for Developing Drugs against Neglected Tropical Diseases. Angew Chem Int Ed Engl 2017; 56:12048-12050. [PMID: 28766862 DOI: 10.1002/anie.201706479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 02/02/2023]
Abstract
Wake up! Sleeping sickness and Chagas disease are neglected tropical diseases caused by trypanosome infections. Small molecules that disrupt a crucial protein-protein interaction in the parasites offer a new approach to drug development for these diseases.
Collapse
Affiliation(s)
- Thorsten Berg
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
262
|
Zimmerman SP, Asokan SB, Kuhlman B, Bear JE. Cells lay their own tracks - optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration. J Cell Sci 2017; 130:2971-2983. [PMID: 28754687 DOI: 10.1242/jcs.205948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
Rho GTPase family members are known regulators of directed migration and therefore play key roles in processes including development, the immune response and cancer metastasis. However, their individual contributions to these processes are complex. Here, we modify the activity of the two Rho GTPase family members Rac and Cdc42 by optogenetically recruiting specific guanine nucleotide exchange factor (GEF) DH or PH domains to defined regions of the cell membrane. We find that the localized activation of both GTPases produces lamellipodia in cells plated on a fibronectin substrate. By using a novel optotaxis assay, we show that biased activation can drive directional migration. Interestingly, in the absence of exogenous fibronectin, Rac activation is insufficient to produce stable lamellipodia or directional migration whereas Cdc42 activation is sufficient for these processes. We find that a remarkably small amount of fibronectin (<10 puncta per protrusion) is necessary to support stable GTPase-driven lamellipodia formation. Cdc42 bypasses the need for exogenous fibronectin by stimulating cellular fibronectin deposition under the newly formed lamellipodia.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Seth P Zimmerman
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Kuhlman
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA .,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
263
|
Chingle R, Proulx C, Lubell WD. Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for Biomedical Applications. Acc Chem Res 2017; 50:1541-1556. [PMID: 28598597 DOI: 10.1021/acs.accounts.7b00114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mimicry of bioactive conformations is critical for peptide-based medicinal chemistry because such peptidomimetics may augment stability, enhance affinity, and increase specificity. Azapeptides are peptidomimetics in which the α-carbon(s) of one or more amino acid residues are substituted by nitrogen. The resulting semicarbazide analogues have been shown to reinforce β-turn conformation through the combination of lone pair-lone pair repulsion of the adjacent hydrazine nitrogen and urea planarity. Substitution of a semicarbazide for an amino amide residue in a peptide may retain biological activity and add benefits such as improved metabolic stability. The applications of azapeptides include receptor ligands, enzyme inhibitors, prodrugs, probes, and imaging agents. Moreover, azapeptides have proven therapeutic utility. For example, the aza-glycinamide analogue of the luteinizing hormone-releasing hormone analogue Zoladex is a potent long-acting agonist currently used in the clinic for the treatment of prostate and breast cancer. However, the use of azapeptides was hampered by tedious solution-phase synthetic routes for selective hydrazine functionalization. A remarkable stride to overcome this bottleneck was made in 2009 through the introduction of the submonomer procedure for azapeptide synthesis, which enabled addition of diverse side chains onto a common semicarbazone intermediate, providing a means to construct azapeptide libraries by solution- and solid-phase chemistry. In brief, aza residues are introduced into the peptide chain using the submonomer strategy by semicarbazone incorporation, deprotonation, N-alkylation, and orthogonal deprotection. Amino acylation of the resulting semicarbazide and elongation gives the desired azapeptide. Since the initial report, a number of chemical transformations have taken advantage of the orthogonal chemistry of semicarbazone residues (e.g., Michael additions and N-arylations). In addition, libraries have been synthesized from libraries by diversification of aza-propargylglycine (e.g., A3 coupling reactions, [1,3]-dipolar cycloadditions, and 5-exo-dig cyclizations) and aza-chloroalkylglycine residues. In addition, oxidation of aza-glycine residues has afforded azopeptides that react in pericyclic reactions (e.g., Diels-Alder and Alder-ene chemistry). The bulk of these transformations of aza-glycine residues have been developed by the Lubell laboratory, which has applied such chemistry in the synthesis of ligands with promising biological activity for treating diseases such as cancer and age-related macular degeneration. Azapeptide analogues of growth hormone-releasing peptide-6 (His-d-Trp-Ala-Trp-d-Phe-Lys-NH2, GHRP-6) have for example been pursued as ligands of the cluster of differentiation 36 receptor (CD36) and show promising activity for the development of treatments for angiogenesis-related diseases, such as age-related macular degeneration, as well as for atherosclerosis. Azapeptides have also been employed to make a series of conformationally constrained second mitochondria-derived activator of caspase (Smac) mimetics that exhibit promising apoptosis-inducing activity in cancer cells. The synthesis of cyclic azapeptide derivatives was used to make an aza scan to study the conformation-activity relationships of the anticancer agent cilengitide, cyclo(RGDf-N(Me)V), and its parent counterpart cyclo(RGDfV), which exhibit potency against human tumor metastasis and tumor-induced angiogenesis. Innovations in the synthesis and application of azapeptides will be presented in this Account, focusing on the creation and use of side-chain diversity in medicinal chemistry.
Collapse
Affiliation(s)
- Ramesh Chingle
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - Caroline Proulx
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
264
|
Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Sci Rep 2017; 7:5765. [PMID: 28720870 PMCID: PMC5515959 DOI: 10.1038/s41598-017-06202-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis arises from leukocyte infiltration and thickening of the artery walls and constitutes a major component of vascular disease pathology, but the molecular events underpinning this process are not fully understood. Proteins containing an Asn-Gly-Arg (NGR) motif readily undergo deamidation of asparagine to generate isoDGR structures that bind to integrin αvβ3 on circulating leukocytes. Here we report the identification of isoDGR motifs in human atherosclerotic plaque components including extracellular matrix (ECM) proteins fibronectin and tenascin C, which have been strongly implicated in human atherosclerosis. We further demonstrate that deamidation of NGR motifs in fibronectin and tenascin C leads to increased adhesion of the monocytic cell line U937 and enhanced binding of primary human monocytes, except in the presence of a αvβ3-blocking antibody or the αv-selective inhibitor cilengitide. In contrast, under the same deamidating conditions monocyte-macrophages displayed only weak binding to the alternative ECM component vitronectin which lacks NGR motifs. Together, these findings confirm a critical role for isoDGR motifs in mediating leukocyte adhesion to the ECM via integrin αvβ3 and suggest that protein deamidation may promote the pathological progression of human atherosclerosis by enhancing monocyte recruitment to developing plaques.
Collapse
|
265
|
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators. Cancers (Basel) 2017; 9:cancers9070078. [PMID: 28678151 PMCID: PMC5532614 DOI: 10.3390/cancers9070078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of integrins to activate and integrate intracellular communication illustrates the potential of these receptors to serve as functional distribution hubs in a bi-directional signal transfer outside-in and inside-out of the cells. Tight regulation of the integrin signaling is paramount for normal physiological functions such as migration, proliferation, and differentiation, and misregulated integrin activity could be associated with several pathological conditions. Because of the important roles of integrins and their ligands in biological development, immune responses, leukocyte traffic, haemostasis, and cancer, their potential as therapeutic tools is now widely recognized. Nowadays extensive efforts have been made to discover and develop small molecule ligands as integrin antagonists, whereas less attention has been payed to agonists. In recent years, it has been recognized that integrin agonists could open up novel opportunities for therapeutics, which gain benefits to increase rather than decrease integrin-dependent adhesion and transductional events. For instance, a significant factor in chemo-resistance in melanoma is a loss of integrin-mediated adhesion; in this case, stimulation of integrin signaling by agonists significantly improved the response to chemotherapy. In this review, we overview results about small molecules which revealed an activating action on some integrins, especially those involved in cancer, and examine from a medicinal chemistry point of view, their structure and behavior.
Collapse
Affiliation(s)
- Alessandra Tolomelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
266
|
Piras M, Testa A, Fleming IN, Dall'Angelo S, Andriu A, Menta S, Mori M, Brown GD, Forster D, Williams KJ, Zanda M. High-Affinity “Click” RGD Peptidomimetics as Radiolabeled Probes for Imaging αv
β3
Integrin. ChemMedChem 2017; 12:1142-1151. [DOI: 10.1002/cmdc.201700328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Monica Piras
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Andrea Testa
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Ian N. Fleming
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Alexandra Andriu
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
| | - Sergio Menta
- Dipartimento di Chimica e Tecnologie del Farmaco; “Sapienza” Università di Roma; P.le A. Moro 5 00185 Rome Italy
- Current affiliation: IRBM Science Park SpA; Via Pontina km 30 600 00071 Pomezia RM Italy
| | - Mattia Mori
- Center for Life Nano Science@Sapienza; Istituto Italiano di Tecnologia; Viale Regina Elena 291 00161 Roma RM Italy
| | - Gavin D. Brown
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Duncan Forster
- Manchester Cancer Research Centre and Wolfson Molecular Imaging Centre; The University of Manchester; Palatine Road Manchester M20 3JJ UK
| | - Kaye J. Williams
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Manchester Cancer Research Centre, Division of Pharmacy and Optometry; The University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Matteo Zanda
- Institute of Medical Sciences and Kosterlitz Centre for Therapeutics, School of Medicine, Medical Sciences and Nutrition; University of Aberdeen, Foresterhill; Aberdeen AB25 2ZD Scotland UK
- C.N.R.-I.C.R.M.; via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
267
|
Karageorgis A, Claron M, Jugé R, Aspord C, Thoreau F, Leloup C, Kucharczak J, Plumas J, Henry M, Hurbin A, Verdié P, Martinez J, Subra G, Dumy P, Boturyn D, Aouacheria A, Coll JL. Systemic Delivery of Tumor-Targeted Bax-Derived Membrane-Active Peptides for the Treatment of Melanoma Tumors in a Humanized SCID Mouse Model. Mol Ther 2017; 25:534-546. [PMID: 28153100 DOI: 10.1016/j.ymthe.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/03/2023] Open
Abstract
Melanoma is a highly metastatic and deadly form of cancer. Invasive melanoma cells overexpress integrin αvβ3, which is a well-known target for Arg-Gly-Asp-based (RGD) peptides. We developed a sophisticated method to synthetize milligram amounts of a targeted vector that allows the RGD-mediated targeting, internalization, and release of a mitochondria-disruptive peptide derived from the pro-apoptotic Bax protein. We found that 2.5 μM Bax[109-127] was sufficient to destabilize the mitochondria in ten different tumor cell lines, even in the presence of the anti-apoptotic Bcl2 protein, which is often involved in tumor resistance. This pore-forming peptide displayed antitumor activity when it was covalently linked by a disulfide bridge to the tetrameric RAFT-c[RGD]4-platform and after intravenous injection in a human melanoma tumor model established in humanized immuno-competent mice. In addition to its direct toxic effect, treatment with this combination induced the release of the immuno-stimulating factor monocyte chimoattractant protein 1 (MCP1) in the blood and a decrease in the level of the pro-angiogenic factor FGF2. Our novel multifunctional, apoptosis-inducing agent could be further customized and assayed for potential use in tumor-targeted therapy.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Michaël Claron
- Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Romain Jugé
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Caroline Aspord
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Fabien Thoreau
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Claire Leloup
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Jérôme Kucharczak
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Joël Plumas
- Université Grenoble Alpes, 38000 Grenoble, France; EMR EFS-UGA-INSERM U1209- CNRS, Immunobiology and Immunotherapy of Chronic Diseases, 38706 La Tronche, France; EFS Rhone-Alpes, R&D Laboratory, 38701 La Tronche, France
| | - Maxime Henry
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Amandine Hurbin
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France
| | - Pascal Verdié
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Jean Martinez
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Gilles Subra
- CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Pascal Dumy
- CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France; CNRS UMR 5247, Institut des Biomolécules Max Mousseron IBMM, 34095 Montpellier, France
| | - Didier Boturyn
- Université Grenoble Alpes, 38000 Grenoble, France; CNRS UMR 5250, ICMG FR2607, 38000 Grenoble, France
| | - Abdel Aouacheria
- Molecular Biology of the Cell Laboratory (LBMC), Ecole Normale Supérieure de Lyon, UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, 38706 La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
268
|
Feldkoren B, Hutchinson R, Rapoport Y, Mahajan A, Margulis V. Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression – Important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma. Exp Cell Res 2017; 355:57-66. [DOI: 10.1016/j.yexcr.2017.03.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
269
|
Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017; 20:185-204. [PMID: 28361267 PMCID: PMC5439974 DOI: 10.1007/s10456-017-9552-y] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Angiogenesis is defined as the formation of new blood vessels from preexisting vessels and has been characterized as an essential process for tumor cell proliferation and viability. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve tumor of nutrients and oxygen, primarily through blockade of VEGF/VEGFR signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, alone or in combination with chemotherapy or other targeted therapies. But this success had only limited impact on overall survival of cancer patients and rarely resulted in durable responses. Given the recent success of immunotherapies, combinations of anti-angiogenics with immune checkpoint blockers have become an attractive strategy. However, implementing such combinations will require a better mechanistic understanding of their interaction. Due to overexpression of pro-angiogenic factors in tumors, their vasculature is often tortuous and disorganized, with excessively branched leaky vessels. This enhances vascular permeability, which in turn is associated with high interstitial fluid pressure, and a reduction in blood perfusion and oxygenation. Judicious dosing of anti-angiogenic treatment can transiently normalize the tumor vasculature by decreasing vascular permeability and improving tumor perfusion and blood flow, and synergize with immunotherapy in this time window. However, anti-angiogenics may also excessively prune tumor vessels in a dose and time-dependent manner, which induces hypoxia and immunosuppression, including increased expression of the immune checkpoint programmed death receptor ligand (PD-L1). This review focuses on revisiting the concept of anti-angiogenesis in combination with immunotherapy as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Rakesh R Ramjiawan
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Cox-734, Boston, MA, 02114, USA
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dan G Duda
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St, Cox-734, Boston, MA, 02114, USA.
| |
Collapse
|
270
|
Tang J, He Y, Chen H, Sheng W, Wang H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp 3)-H activation. Chem Sci 2017; 8:4565-4570. [PMID: 28936334 PMCID: PMC5590095 DOI: 10.1039/c6sc05530c] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/11/2017] [Indexed: 12/22/2022] Open
Abstract
Synthesis of cyclic peptides with novel Cβ–Ar crosslinks has been achieved by C(sp3)–H activation, and their biological properties have been evaluated for the first time.
Cyclic peptides have attracted increasing attention in recent years due to their ability to inhibit protein–protein interactions. Current strategies to prepare cyclic peptides often rely on functional amino acid side chains or the incorporation of unnatural amino acids, thus limiting their structural diversity. Here, we describe the development of a highly versatile peptide macrocyclization strategy through a palladium-catalyzed C(sp3)–H activation and the synthesis of cyclic peptides featuring unique hydrocarbon linkages between the β-carbon of amino acids and the aromatic side chains of Phe and Trp. We demonstrate that such peptides exhibit improved biological properties compared to their acyclic counterparts. Finally, we applied this method in the synthesis of the natural product celogentin C.
Collapse
Affiliation(s)
- Jian Tang
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Yadong He
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Hongfei Chen
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Wangjian Sheng
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| |
Collapse
|
271
|
Chang YT, Shiu JH, Huang CH, Chen YC, Chen CY, Chang YS, Chuang WJ. Effects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition. PLoS One 2017; 12:e0175321. [PMID: 28399159 PMCID: PMC5388508 DOI: 10.1371/journal.pone.0175321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Rhodostomin (Rho) is a medium disintegrin containing a 48PRGDMP motif. We here showed that Rho proteins with P48A, M52W, and P53N mutations can selectively inhibit integrin αIIbβ3. To study the roles of the RGD loop and C-terminal region in disintegrins, we expressed Rho 48PRGDMP and 48ARGDWN mutants in Pichia pastoris containing 65P, 65PR, 65PRYH, 65PRNGLYG, and 65PRNPWNG C-terminal sequences. The effect of C-terminal region on their integrin binding affinities was αIIbβ3 > αvβ3 ≥ α5β1, and the 48ARGDWN-65PRNPWNG protein was the most selective integrin αIIbβ3 mutant. The 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants had similar activities in inhibiting platelet aggregation and the binding of fibrinogen to platelet. In contrast, 48ARGDWN-65PRYH and 48ARGDWN-65PRNGLYG exhibited 2.9- and 3.0-fold decreases in inhibiting cell adhesion in comparison with that of 48ARGDWN-65PRNPWNG. Based on the results of cell adhesion, platelet aggregation and the binding of fibrinogen to platelet inhibited by ARGDWN mutants, integrin αIIbβ3 bound differently to immobilized and soluble fibrinogen. NMR structural analyses of 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants demonstrated that their C-terminal regions interacted with the RGD loop. In particular, the W52 sidechain of 48ARGDWN interacted with H68 of 65PRYH, L69 of 65PRNGLYG, and N70 of 65PRNPWNG, respectively. The docking of the 48ARGDWN-65PRNPWNG mutant into integrin αIIbβ3 showed that the N70 residue formed hydrogen bonds with the αIIb D159 residue, and the W69 residue formed cation-π interaction with the β3 K125 residue. These results provide the first structural evidence that the interactions between the RGD loop and C-terminus of medium disintegrins depend on their amino acid sequences, resulting in their functional differences in the binding and selectivity of integrins.
Collapse
Affiliation(s)
- Yao-Tsung Chang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Jia-Hau Shiu
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chun-Hao Huang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yi-Chun Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chiu-Yueh Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yung-Sheng Chang
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Woei-Jer Chuang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
272
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
273
|
Thakar D, Dalonneau F, Migliorini E, Lortat-Jacob H, Boturyn D, Albiges-Rizo C, Coche-Guerente L, Picart C, Richter RP. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials 2017; 123:24-38. [PMID: 28152381 PMCID: PMC5405871 DOI: 10.1016/j.biomaterials.2017.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
The chemokine CXCL12α is a potent chemoattractant that guides the migration of muscle precursor cells (myoblasts) during myogenesis and muscle regeneration. To study how the molecular presentation of chemokines influences myoblast adhesion and motility, we designed multifunctional biomimetic surfaces as a tuneable signalling platform that enabled the response of myoblasts to selected extracellular cues to be studied in a well-defined environment. Using this platform, we demonstrate that CXCL12α, when presented by its natural extracellular matrix ligand heparan sulfate (HS), enables the adhesion and spreading of myoblasts and facilitates their active migration. In contrast, myoblasts also adhered and spread on CXCL12α that was quasi-irreversibly surface-bound in the absence of HS, but were essentially immotile. Moreover, co-presentation of the cyclic RGD peptide as integrin ligand along with HS-bound CXCL12α led to enhanced spreading and motility, in a way that indicates cooperation between CXCR4 (the CXCL12α receptor) and integrins (the RGD receptors). Our findings reveal the critical role of HS in CXCL12α induced myoblast adhesion and migration. The biomimetic surfaces developed here hold promise for mechanistic studies of cellular responses to different presentations of biomolecules. They may be broadly applicable for dissecting the signalling pathways underlying receptor cross-talks, and thus may guide the development of novel biomaterials that promote highly specific cellular responses.
Collapse
Affiliation(s)
- Dhruv Thakar
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Fabien Dalonneau
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France
| | - Elisa Migliorini
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Didier Boturyn
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Grenoble Alpes, INSERM, CNRS, Grenoble, France
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France
| | - Catherine Picart
- CNRS UMR 5628 (LMGP), Grenoble, France; Grenoble Institute of Technology, Université Grenoble Alpes, LMGP, Grenoble, France.
| | - Ralf P Richter
- Université Grenoble Alpes, Département de Chimie Moléculaire (DCM), Grenoble, France; CNRS, DCM, Grenoble, France; University of Leeds, School of Biomedical Sciences and School of Physics and Astronomy, Leeds, United Kingdom; CIC biomaGUNE, San Sebastian, Spain.
| |
Collapse
|
274
|
Tan YH, Gamage AM, Gan YH. Complement-activated vitronectin enhances the invasion of nonphagocytic cells by bacterial pathogens Burkholderia and Klebsiella. Cell Microbiol 2017; 19. [PMID: 28186697 DOI: 10.1111/cmi.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/22/2022]
Abstract
Burkholderia pseudomallei is a serum-resistant Gram-negative bacterium capable of causing disseminated infections with metastatic complications. However, its interaction with nonphagocytic cells is poorly understood. We observed that exposure of B. pseudomallei and the closely related yet avirulent B. thailandensis to human plasma increased epithelial cell invasion by >20 fold. Enhanced invasion was primarily driven by a plasma factor, which required a functional complement cascade, but surprisingly, was downstream of C3 mediated opsonisation. Receptor blocking studies with RGD-domain containing peptide and αV β3 blocking antibody identified complement-activated vitronectin as the factor facilitating this invasion. Plasma treatment led to the recruitment of vitronectin onto the bacterial surface, and its conversion into the active conformation. Activation of vitronectin, as well as increased invasion, required the complement pathway and was not observed in C3 or C5 depleted serum. The integrin inhibitor cilengitide, currently in clinical trials as an anti-angiogenesis agent, suppresses plasma-mediated Burkholderia invasion by ~95%, along with a downstream reduction in intracellular bacterial replication. We extend these findings to serum-resistant Klebsiella pneumoniae as well. Thus, the potential use of commercially available integrin inhibitors as anti-infective agents during selective bacterial infections should be explored.
Collapse
Affiliation(s)
- Yi Han Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Akshamal M Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
275
|
Kanazawa H, Imoto K, Okada M, Yamawaki H. Canstatin inhibits hypoxia-induced apoptosis through activation of integrin/focal adhesion kinase/Akt signaling pathway in H9c2 cardiomyoblasts. PLoS One 2017; 12:e0173051. [PMID: 28235037 PMCID: PMC5325616 DOI: 10.1371/journal.pone.0173051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
A hypoxic stress which causes apoptosis of cardiomyocytes is the main problem in the ischemic heart disease. Canstatin, a non-collagenous fragment of type IV collagen α2 chain, is an endogenous anti-angiogenic factor. We have previously reported that canstatin has a cytoprotective effect on cardiomyoblasts. In the present study, we examined the effects of canstatin on hypoxia-induced apoptosis in H9c2 cardiomyoblasts. Cell counting assay was performed to determine a cell viability. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of focal adhesion kinase (FAK) and Akt. Immunocytochemical staining was performed to observe a distribution of αv integrin. Hypoxia (1% O2, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression. Canstatin (10–250 ng/ml) significantly inhibited these changes in a concentration-dependent manner. Cilengitide (1 μM), an αvβ3 and αvβ5 integrin inhibitor, significantly prevented the protective effects of canstatin on cell viability. Canstatin significantly increased phosphorylation of FAK and Akt under hypoxic condition, which were inhibited by cilengitide. LY294002, an inhibitor of phosphatidylinositol-3 kinase/Akt pathway, suppressed the canstatin-induced Akt phosphorylation and reversed the protective effects of canstatin. It was observed that hypoxia caused a localization of αv integrin to focal adhesion. In summary, we for the first time clarified that canstatin inhibits hypoxia-induced apoptosis via FAK and Akt pathways through activating integrins in H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Hiroki Kanazawa
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
- * E-mail:
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
276
|
Miller LM, Pritchard JM, Macdonald SJF, Jamieson C, Watson AJB. Emergence of Small-Molecule Non-RGD-Mimetic Inhibitors for RGD Integrins. J Med Chem 2017; 60:3241-3251. [DOI: 10.1021/acs.jmedchem.6b01711] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lisa M. Miller
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - John M. Pritchard
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Simon J. F. Macdonald
- Fibrosis Discovery
Performance Unit, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Allan J. B. Watson
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| |
Collapse
|
277
|
Guzzetti I, Civera M, Vasile F, Arosio D, Tringali C, Piarulli U, Gennari C, Pignataro L, Belvisi L, Potenza D. Insights into the Binding of Cyclic RGD Peptidomimetics to α 5β 1 Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen 2017; 6:128-136. [PMID: 28168158 PMCID: PMC5288746 DOI: 10.1002/open.201600112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The interaction of a small library of cyclic DKP-RGD peptidomimetics with α5β1 integrin has been investigated by means of an integrated experimental and computational approach. Bioaffinity NMR techniques, including saturation transfer difference (STD) and transferred NOESY, were applied to the ligands in a suspension of intact MDA-MB-231 breast cancer cells, in which integrin α5β1 is highly expressed. The NMR data were compared with the docking calculations of the RGD ligands in the crystal structure of the α5β1 binding site, and were integrated with competitive binding assays to the purified α5β1 integrin. Ligand binding epitopes involve protons of both the RGD moiety and the DKP scaffold, although the stereochemistry and the functionalization of the DKP scaffold as well as the macrocycle conformation determine a great variability in the interaction. The ligand showing the highest number of STD signals is also the most potent α5β1 ligand of the series, displaying a nanomolar IC50 value.
Collapse
Affiliation(s)
- Ileana Guzzetti
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Francesca Vasile
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Daniela Arosio
- CNR–Istituto di Scienze e Tecnologie Molecolari (ISTM)Via Golgi, 1920133MilanoItaly
| | - Cristina Tringali
- Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoVia Fratelli Cervi, 9320090Segrate (MI)Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 1122100ComoItaly
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| | - Donatella Potenza
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia Golgi, 1920133MilanoItaly
| |
Collapse
|
278
|
Pallarola D, Platzman I, Bochen A, Cavalcanti-Adam EA, Axmann M, Kessler H, Geiger B, Spatz JP. Focal adhesion stabilization by enhanced integrin-cRGD binding affinity. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractIn this study we investigate the impact of ligand presentation by various molecular spacers on integrin-based focal adhesion formation. Gold nanoparticles (AuNPs) arranged in hexagonal patterns were biofunctionalized with the same ligand head group, cyclic Arg-Gly-Asp [
Collapse
|
279
|
De Vleeschouwer M, Sinnaeve D, Matthijs N, Coenye T, Madder A, Martins JC. Synthesis of N-Methylated Pseudodesmin A Analogues: on the Structural Importance of N-H Hydrogen Bonds. ChemistrySelect 2017. [DOI: 10.1002/slct.201601791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias De Vleeschouwer
- Organic and Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Davy Sinnaeve
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ottergemsesteenweg 460 9000 Ghent
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ottergemsesteenweg 460 9000 Ghent
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| | - José C. Martins
- NMR and structure analysis unit; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
280
|
Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, Reuning U, Notni J, Wester HJ, Mas-Moruno C, Spatz J, Geiger B, Kessler H. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Sci Rep 2017; 7:39805. [PMID: 28074920 PMCID: PMC5225454 DOI: 10.1038/srep39805] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay.
Collapse
Affiliation(s)
- Tobias G Kapp
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Oleg V Maltsev
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Elisabetta A Cavalcanti-Adam
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Revital Zarka
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics &Gynecology, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, and Centre for Research in NanoEngineering (CRNE), Technical University of Catalonia, 08028-Barcelona, Spain
| | - Joachim Spatz
- Max-Planck-Institute for Medical Research, Department of Biointerface Science and Technology, Heidelberg, Postal address: Heisenbergstr. 3, 70 569 Stuttgart, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
281
|
Purwada A, Shah SB, Beguelin W, Melnick AM, Singh A. Modular Immune Organoids with Integrin Ligand Specificity Differentially Regulate Ex Vivo B Cell Activation. ACS Biomater Sci Eng 2017; 3:214-225. [PMID: 33450794 DOI: 10.1021/acsbiomaterials.6b00474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Germinal centers are dynamic structures within lymphoid tissues, which develop once B cells receive activating signals from surrounding immune cells. Germinal center B cells are small in number, heterogeneous, and prone to rapid apoptosis unless selected by the body to form memory B cells. Despite extensive research in the B cell differentiation process, the role of the lymphoid niche, in particular integrin ligands, in the development of early germinal center-like phenotype remains unclear. Here, we report a biomaterials-based modular immune organoid that enables development of early germinal-center phenotype in an integrin ligand-specific manner. We demonstrate the differential role of integrin α4β1- and αvβ3-binding ligands in the induction of GL7+ (GC-like) and GL7- (non-GC-like) phenotype in differentiating B cells while in the presence of CD40 ligand and interleukin-4. We further demonstrate the role of integrin ligand specificities in clustering of β3 integrin and B cell receptor on the surface of differentiated B cells in 3D organoids as compared to the classic 2D cocultures. The study demonstrates that biomaterials-based immune organoids represent an ex vivo platform technology, which recapitulates certain aspects of GC biology to understand the process of B cell differentiation and induction of immunological responses. This platform is particularly useful in understanding the role of selective biomolecular signals and the temporal dependency of immune responses to these signals.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Shivem B Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Wendy Beguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
282
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
283
|
Ricci L, Sernissi L, Scarpi D, Bianchini F, Contini A, Occhiato EG. Synthesis and conformational analysis of peptides embodying 2,3-methanopipecolic acids. Org Biomol Chem 2017; 15:6826-6836. [DOI: 10.1039/c7ob01617d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
When 2,3-methanopipecolic acids replace a proline in peptides, a marked preference (42–92%) for thecisgeometry around the pipecolic amide bond is observed in both water and organic solvents.
Collapse
Affiliation(s)
- Luciano Ricci
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Lorenzo Sernissi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Dina Scarpi
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Francesca Bianchini
- Department of Biomedical
- Experimental and Clinical Sciences “Mario Serio”
- University of Florence
- Florence
- Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences
- University of Milan
- I-20133 Milan
- Italy
| | - Ernesto G. Occhiato
- Department of Chemistry “U. Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|
284
|
Ma X, Phi Van V, Kimm MA, Prakash J, Kessler H, Kosanke K, Feuchtinger A, Aichler M, Gupta A, Rummeny EJ, Eisenblätter M, Siveke J, Walch AK, Braren R, Ntziachristos V, Wildgruber M. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer. Neoplasia 2017; 19:8-16. [PMID: 27940248 PMCID: PMC5157790 DOI: 10.1016/j.neo.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 11/05/2022]
Abstract
Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Lewis Lung/diagnosis
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Disease Progression
- Fluorescence
- Gene Expression
- Humans
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- Integrins/genetics
- Integrins/metabolism
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Molecular Imaging
- Protein Kinase Inhibitors/pharmacology
- Tomography
- Tomography, X-Ray Computed
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaopeng Ma
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Valerie Phi Van
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Melanie A Kimm
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Jaya Prakash
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Horst Kessler
- Chemistry Department and TUM Institute for Advanced Study, Lichtenbergstrasse 2a, D-85748, Garching, Germany
| | - Katja Kosanke
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Michel Eisenblätter
- Department of Clinical Radiology, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Jens Siveke
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), partner site Essen, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Rickmer Braren
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Oberschleissheim, Germany
| | - Moritz Wildgruber
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675, München, Germany; Department of Clinical Radiology, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
285
|
Pagel M, Beck-Sickinger AG. Multifunctional biomaterial coatings: synthetic challenges and biological activity. Biol Chem 2017; 398:3-22. [DOI: 10.1515/hsz-2016-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
Abstract
A controlled interaction of materials with their surrounding biological environment is of great interest in many fields. Multifunctional coatings aim to provide simultaneous modulation of several biological signals. They can consist of various combinations of bioactive, and bioinert components as well as of reporter molecules to improve cell-material contacts, prevent infections or to analyze biochemical events on the surface. However, specific immobilization and particular assembly of various active molecules are challenging. Herein, an overview of multifunctional coatings for biomaterials is given, focusing on synthetic strategies and the biological benefits by displaying several motifs.
Collapse
|
286
|
Abstract
Peptides have been used as drugs to treat various health conditions, and they are also being developed as diagnostic agents. Due to their receptor selectivity, peptides have recently been utilized for drug delivery to target drug molecules to specific types of cells (i.e. cancer cells, immune cells) to lower the side effects of the drugs. In this case, the drug is conjugated to the carrier peptide for directing the drug to the target cells (e.g. cancer cells) with higher expression of a specific receptor that recognizes the carrier peptide. As a result, the drug is directed to the target diseased cells without affecting the normal cells. Peptides are also being developed for improving drug delivery through the intestinal mucosa barrier (IMB) and the blood-brain barrier (BBB). These peptides were derived from intercellular junction proteins such as occludins, claudins, and cadherins and improve drug delivery through the IMB and BBB via the paracellular pathways. It is hypothesized that the peptides modulate protein-protein interactions in the intercellular junctions of the IMB and BBB to increase the porosity of paracellular pathways of the barriers. These modulator peptides have been shown to enhance brain delivery of small molecules and medium-sized peptides as well as a large protein such as 65 kDa albumin. In the future, this method has the potential to improve oral and brain delivery of therapeutic and diagnostic peptides and proteins.
Collapse
|
287
|
Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem 2017; 17:3425-3443. [PMID: 29357802 PMCID: PMC5835217 DOI: 10.2174/1568026618666180118154514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| |
Collapse
|
288
|
St-Cyr DJ, García-Ramos Y, Doan ND, Lubell WD. Aminolactam, N-Aminoimidazolone, and N-Aminoimdazolidinone Peptide Mimics. TOPICS IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1007/7081_2017_204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
289
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
290
|
Richard S, Boucher M, Lalatonne Y, Mériaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochim Biophys Acta Gen Subj 2016; 1861:1515-1520. [PMID: 28017683 DOI: 10.1016/j.bbagen.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
In this article, a specific targeting Magnetic Resonance Imaging (MRI) nanoplatform, composed by iron oxide nanoparticle (NP) with cRGD peptides as targeting agent onto NP surface, is explored for the diagnosis of brain tumors by MRI using intracranial U87MG mice xenograft tumor. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Sophie Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | - Marianne Boucher
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Yoann Lalatonne
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France; Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Sébastien Mériaux
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| |
Collapse
|
291
|
Sartori A, Portioli E, Battistini L, Calorini L, Pupi A, Vacondio F, Arosio D, Bianchini F, Zanardi F. Synthesis of Novel c(AmpRGD)-Sunitinib Dual Conjugates as Molecular Tools Targeting the α vβ 3 Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. J Med Chem 2016; 60:248-262. [PMID: 27997164 DOI: 10.1021/acs.jmedchem.6b01266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of a previously discovered anti-αVβ3 integrin peptidomimetic (c(AmpRGD)) and the clinically approved antiangiogenic kinase inhibitor sunitinib, three novel dual conjugates were synthesized (compounds 1-3), featuring the covalent and robust linkage between these two active modules. In all conjugates, the ligand binding competence toward αVβ3 (using both isolated receptors and αVβ3-overexpressing endothelial progenitor EP cells) and the kinase inhibitory activity (toward both isolated kinases and EPCs) remained almost untouched and comparable to the activity of the single active units. Compounds 1-3 showed interesting antiangiogenesis properties in an in vitro tubulogenic assay; furthermore, dimeric-RGD conjugate 3 strongly inhibited in vivo angiogenesis in Matrigel plug assays in FVB mice. These results offer proof-of-concept of how the covalent conjugation of two angiogenesis-related small modules may result in novel and stable molecules, which impair tumor-related angiogenesis with equal or even superior ability as compared to the single modules or their simple combinations.
Collapse
Affiliation(s)
- Andrea Sartori
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Elisabetta Portioli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Lucia Battistini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Lido Calorini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Alberto Pupi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy.,Centro Interdipartimentale per lo Sviluppo Preclinico dell'Imaging Molecolare (CISPIM), Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche , Via Golgi 19, 20133 Milano, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy.,Centro Interdipartimentale per lo Sviluppo Preclinico dell'Imaging Molecolare (CISPIM), Università degli Studi di Firenze , Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | - Franca Zanardi
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
292
|
Le DN, Riedel J, Kozlyuk N, Martin RW, Dong VM. Cyclizing Pentapeptides: Mechanism and Application of Dehydrophenylalanine as a Traceless Turn-Inducer. Org Lett 2016; 19:114-117. [DOI: 10.1021/acs.orglett.6b03308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Diane N. Le
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Jan Riedel
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Natalia Kozlyuk
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Rachel W. Martin
- Department
of Chemistry, University of California, Irvine, California 92697, United States
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Vy M. Dong
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
293
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
294
|
Thakur R, Mishra DP. Matrix reloaded: CCN, tenascin and SIBLING group of matricellular proteins in orchestrating cancer hallmark capabilities. Pharmacol Ther 2016; 168:61-74. [DOI: 10.1016/j.pharmthera.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
295
|
Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 2016; 22:454-462. [PMID: 27856346 DOI: 10.1016/j.drudis.2016.11.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
Natural endogenously occurring peptides exhibit desirable medicinal properties, but are often limited in application by rapid proteolysis and inadequate membrane permeability. However, editing naturally occurring peptide sequences to develop peptidomimetic analogs created a promising class of therapeutics that can augment or inhibit molecular interactions. Here, we discuss a variety of chemical modifications, including l to d isomerization, cyclization, and unnatural amino acid substitution, as well as design strategies, such as attachment to cell-penetrating peptides, which are used to develop peptidomimetics. We also provide examples of approved peptidomimetics and discuss several compounds in clinical trials.
Collapse
Affiliation(s)
- Nir Qvit
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA.
| | - Samuel J S Rubin
- Stanford University, Immunology Program, School of Medicine, Stanford, CA 94305, USA
| | - Travis J Urban
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA; Stanford University, Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Stanford University, Department of Chemical and Systems Biology, School of Medicine, Stanford, CA 94305, USA
| | - Eric R Gross
- Stanford University, Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
296
|
Gubeli RJ, Sonzini S, Podmore A, Ravn P, Scherman OA, van der Walle CF. Selective, non-covalent conjugation of synthetic peptides with recombinant proteins mediated by host-guest chemistry. Chem Commun (Camb) 2016; 52:4235-8. [PMID: 26911663 DOI: 10.1039/c6cc00405a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The combination of potent chemical moieties with biologically active proteins is key to some of today's most innovative therapeutic drugs. In order to obviate any chemical modification of the proteins, we present a novel and powerful strategy for the selective conjugation of recombinant protein domains with synthetically derived peptides via a cucurbit[8]uril host-guest chemistry approach.
Collapse
Affiliation(s)
- R J Gubeli
- Formulation Sciences, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK.
| | - S Sonzini
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - A Podmore
- Formulation Sciences, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK.
| | - P Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - O A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - C F van der Walle
- Formulation Sciences, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
297
|
Arriortua OK, Garaio E, Herrero de la Parte B, Insausti M, Lezama L, Plazaola F, García JA, Aizpurua JM, Sagartzazu M, Irazola M, Etxebarria N, García-Alonso I, Saiz-López A, Echevarria-Uraga JJ. Antitumor magnetic hyperthermia induced by RGD-functionalized Fe 3O 4 nanoparticles, in an experimental model of colorectal liver metastases. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1532-1542. [PMID: 28144504 PMCID: PMC5238624 DOI: 10.3762/bjnano.7.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 06/02/2023]
Abstract
This work reports important advances in the study of magnetic nanoparticles (MNPs) related to their application in different research fields such as magnetic hyperthermia. Nanotherapy based on targeted nanoparticles could become an attractive alternative to conventional oncologic treatments as it allows a local heating in tumoral surroundings without damage to healthy tissue. RGD-peptide-conjugated MNPs have been designed to specifically target αVβ3 receptor-expressing cancer cells, being bound the RGD peptides by "click chemistry" due to its selectivity and applicability. The thermal decomposition of iron metallo-organic precursors yield homogeneous Fe3O4 nanoparticles that have been properly functionalized with RGD peptides, and the preparation of magnetic fluids has been achieved. The nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), electron magnetic resonance (EMR) spectroscopy and magnetic hyperthermia. The nanoparticles present superparamagnetic behavior with very high magnetization values, which yield hyperthermia values above 500 W/g for magnetic fluids. These fluids have been administrated to rats, but instead of injecting MNP fluid directly into liver tumors, intravascular administration of MNPs in animals with induced colorectal tumors has been performed. Afterwards the animals were exposed to an alternating magnetic field in order to achieve hyperthermia. The evolution of an in vivo model has been described, resulting in a significant reduction in tumor viability.
Collapse
Affiliation(s)
- Oihane K Arriortua
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Eneko Garaio
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Borja Herrero de la Parte
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Maite Insausti
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Luis Lezama
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Fernando Plazaola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Jose Angel García
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Jesús M Aizpurua
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Maialen Sagartzazu
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Mireia Irazola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Nestor Etxebarria
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Ignacio García-Alonso
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | | | | |
Collapse
|
298
|
Baiula M, Galletti P, Martelli G, Soldati R, Belvisi L, Civera M, Dattoli SD, Spampinato SM, Giacomini D. New β-Lactam Derivatives Modulate Cell Adhesion and Signaling Mediated by RGD-Binding and Leukocyte Integrins. J Med Chem 2016; 59:9721-9742. [PMID: 27726366 DOI: 10.1021/acs.jmedchem.6b00576] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel series of β-lactam derivatives that was designed and synthesized to target RGD-binding and leukocyte integrins is reported. The compound library was evaluated by investigating the effects on integrin-mediated cell adhesion and cell signaling in cell lines expressing αvβ3, αvβ5, αvβ6, α5β1, αIIbβ3, α4β1, and αLβ2 integrins. SAR analysis of the new series of azetidinones enabled the recognition of structural elements associated with integrin selectivity. We obtained selective and potent agonists that could induce cell adhesion and promote cell signaling mediated by αvβ3, αvβ5, α5β1, or α4β1 integrin, and antagonists for the integrins αvβ3 and α5β1, as well as α4β1 and αLβ2, preventing the effects elicited by the respective endogenous agonists.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Martelli
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Roberto Soldati
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milan , Via Golgi 19, 20133 Milan, Italy
| | - Monica Civera
- Department of Chemistry, University of Milan , Via Golgi 19, 20133 Milan, Italy
| | - Samantha Deianira Dattoli
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Mario Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna , Via Irnerio 48, 40126, Bologna, Italy
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna , Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
299
|
Zeller Meidell K, Robinson R, Vieira-de-Abreu A, Gormley AJ, Ghandehari H, W Grainger D, A Campbell R. RGDfK-functionalized gold nanorods bind only to activated platelets. J Biomed Mater Res A 2016; 105:209-217. [PMID: 27648522 DOI: 10.1002/jbm.a.35902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Integrin-targeting peptide RGDfK-labeled gold nanorods (GNR) seek to improve hyperthermia targeted to solid tumors by exploiting the known up-regulation of integrin αvβ3 cell membrane proteins on solid tumor vasculature surfaces. Tumor binding specificity might be expected since surrounding tissues and endothelial cells have limited numbers of these receptors. However, RGD peptide binding to many proteins is promiscuous, with known affinity to several families of cell integrin receptors, and also possible binding to platelets after intravenous infusion via a different integrin receptor, αIIbβ3, on platelets. Binding of RGDfK-targeted GNR could considerably impact platelet function, ultimately leading to increased risk of bleeding or thrombosis depending on the degree of interaction. We sought to determine if RGDfK-labeled GNR could interact with platelets and alter platelet function. Targeted and untargeted nanorods exhibited little interaction with resting platelets in platelet rich plasma (PRP) preparations. However, upon platelet activation, peptide-targeted nanorods bound actively to platelets. Addition of RGDfK-GNR to unactivated platelets had little effect on markers of platelet activation, indicating that RGDfK-nanorods were incapable of inducing platelet activation. We next tested whether activated platelet function was altered in the presence of peptide-targeted nanorods. Platelet aggregation in whole blood and PRP in the presence of targeted nanorods had no significant effect on platelet aggregation. These data suggest that RGDfK-GNR alone have little impact on platelet function in plasma. However, nonspecific nanorod binding may occur in vascular beds where activated platelets are normally cleared, such as the spleen and liver, producing a possible toxicity risk for these nanomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 209-217, 2017.
Collapse
Affiliation(s)
- Krystin Zeller Meidell
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112
| | - Ryan Robinson
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Adriana Vieira-de-Abreu
- Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, 84112
| | - Adam J Gormley
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, Utah, 84112.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112.,Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, 84112
| | - Robert A Campbell
- Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
300
|
Xiao L, Schultz ZD. Targeted-TERS detection of integrin receptors on human cancer cells. CANCER CELL & MICROENVIRONMENT 2016; 3:e1419. [PMID: 27722181 PMCID: PMC5051698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Membrane receptors play important roles in regulating cellular activities. Targeting membrane receptors in cancer cells and understanding their interactions with specific ligands are key for cancer prognosis and therapeutics. However, there is a need to develop new technologies to provide molecular insight into ligand-receptor binding chemistry in cell membrane. Integrin receptors are important membrane receptors that regulate cellular migration, invasion and proliferation in tumors. Integrins have a well-known affinity towards small peptide ligands containing arginine-glycine-aspartate (RGD) sequence and are therefore an attractive model system to study ligand-receptor interactions. We have recently reported a method to detect integrin receptors and study their binding chemistry with cyclic-RGDfC ligand using tip-enhanced Raman scattering (TERS). We have demonstrated that two integrins with similar structures can be differentiated in intact cell membrane, due to the differences in their RGD ligand binding sites, showing the potential of this TERS methodology to study other membrane receptors and their interactions in live cells.
Collapse
|