251
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864;(select * from (select(sleep(32)))xznt)#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
252
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864");declare @x char(9);set @x=0x303a303a332;waitfor delay @x--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
253
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864)));select count(*) from generate_series(1,32000000)--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
254
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864";select dbms_pipe.receive_message(chr(107)||chr(117)||chr(76)||chr(121),32) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
255
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864);select benchmark(32000000,md5(0x63574259))#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
256
|
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
257
|
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
258
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864));select dbms_pipe.receive_message(chr(107)||chr(117)||chr(76)||chr(121),32) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
259
|
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol 2017. [PMID: 29164625 DOI: 10.1111/php.12864;select sleep(32)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photobiomodulation (PBM) involves the use of red or near-infrared light at low power densities to produce a beneficial effect on cells or tissues. PBM therapy is used to reduce pain, inflammation, edema, and to regenerate damaged tissues such as wounds, bones, and tendons. The primary site of light absorption in mammalian cells has been identified as the mitochondria and, more specifically, cytochrome c oxidase (CCO). It is hypothesized that inhibitory nitric oxide can be dissociated from CCO, thus restoring electron transport and increasing mitochondrial membrane potential. Another mechanism involves activation of light or heat-gated ion channels. This review will cover the redox signaling that occurs in PBM and examine the difference between healthy and stressed cells, where PBM can have apparently opposite effects. PBM has a marked effect on stem cells, and this is proposed to operate via mitochondrial redox signaling. PBM can act as a preconditioning regimen and can interact with exercise on muscles.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
260
|
Hadis MA, Cooper PR, Milward MR, Gorecki PC, Tarte E, Churm J, Palin WM. Development and application of LED arrays for use in phototherapy research. JOURNAL OF BIOPHOTONICS 2017; 10:1514-1525. [PMID: 28164460 DOI: 10.1002/jbio.201600273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Lasers/LEDs demonstrate therapeutic effects for a range of biomedical applications. However, a consensus on effective light irradiation parameters and efficient and reliable measurement techniques remain limited. The objective here is to develop, characterise and demonstrate the application of LED arrays in order to progress and improve the effectiveness and accuracy of in vitro photobiomodulation studies. 96-well plate format LED arrays (400-850 nm) were developed and characterised to accurately assess irradiance delivery to cell cultures. Human dental pulp cells (DPCs) were irradiated (3.5-142 mW/cm2 : 15-120 s) and the biological responses were assessed using MTT assays. Array calibration was confirmed using a range of optical and analytical techniques. Multivariate analysis of variance revealed biological responses were dependent on wavelength, exposure time and the post-exposure assay time (P < 0.05). Increased MTT asbsorbance was measured 24 h post-irradiation for 30 s exposures of 3.5 mW/cm2 at 470, 527, 631, 655, 680, 777, 798 and 826 nm with distinct peaks at 631 nm and 798 nm (P < 0.05). Similar wavelengths were also effective at higher irradiances (48-142 mW/cm2 ). LED arrays and high throughput assays provide a robust and reliable platform to rapidly identify irradiation parameters which is both time- and cost-effective. These arrrays are applicable in photobiomodulation, photodynamic therapy and other photobiomedical research.
Collapse
Affiliation(s)
- Mohammed A Hadis
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paul R Cooper
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Michael R Milward
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Patricia C Gorecki
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Edward Tarte
- School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - James Churm
- School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - William M Palin
- School of Dentistry, College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| |
Collapse
|
261
|
Liebert A, Krause A, Goonetilleke N, Bicknell B, Kiat H. A Role for Photobiomodulation in the Prevention of Myocardial Ischemic Reperfusion Injury: A Systematic Review and Potential Molecular Mechanisms. Sci Rep 2017; 7:42386. [PMID: 28181487 PMCID: PMC5299427 DOI: 10.1038/srep42386] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischemia reperfusion injury is a negative pathophysiological event that may result in cardiac cell apoptosis and is a result of coronary revascularization and cardiac intervention procedures. The resulting loss of cardiomyocyte cells and the formation of scar tissue, leads to impaired heart function, a major prognostic determinant of long-term cardiac outcomes. Photobiomodulation is a novel cardiac intervention that has displayed therapeutic effects in reducing myocardial ischemia reperfusion related myocardial injury in animal models. A growing body of evidence supporting the use of photobiomodulation in myocardial infarct models has implicated multiple molecular interactions. A systematic review was conducted to identify the strength of the evidence for the therapeutic effect of photobiomodulation and to summarise the current evidence as to its mechanisms. Photobiomodulation in animal models showed consistently positive effects over a range of wavelengths and application parameters, with reductions in total infarct size (up to 76%), decreases in inflammation and scarring, and increases in tissue repair. Multiple molecular pathways were identified, including modulation of inflammatory cytokines, signalling molecules, transcription factors, enzymes and antioxidants. Current evidence regarding the use of photobiomodulation in acute and planned cardiac intervention is at an early stage but is sufficient to inform on clinical trials.
Collapse
Affiliation(s)
- Ann Liebert
- Australasian Research Institute, Wahroonga, Australia
- Sydney University, Sydney, Australia
| | | | - Neil Goonetilleke
- Sydney University, Sydney, Australia
- Blacktown Hospital, Sydney, Australia
| | - Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia
- Australian Catholic University, North Sydney, Australia
| | - Hosen Kiat
- University of New South Wales, Kensington, Australia
- Macquarie University, Marsfield, Australia
| |
Collapse
|
262
|
Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of Near-Infrared Light on Cerebral Bioenergetics Measured with Phosphorus Magnetic Resonance Spectroscopy. Photomed Laser Surg 2017; 35:395-400. [PMID: 28186868 DOI: 10.1089/pho.2016.4238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cerebral photobiomodulation (PBM) improves mood and cognition. Cerebral metabolic enhancement is a mechanism proposed to underlie PBM effects. No PBM studies to date have applied phosphorus magnetic resonance spectroscopy (31P MRS), which can be used to assess metabolic intermediates such as phosphocreatine (PCr) and adenosine triphosphate, the latter of which is elevated by PBM. Accordingly, we used 9.4 Tesla 31P MRS to characterize effects of single and repeat cerebral PBM treatments on metabolism. PBM was delivered to healthy adult beagles in the form of transcranial laser treatment (TLT) at a wavelength of 808 nm, which passes safely through the skull and activates cytochrome C oxidase, a mitochondrial respiratory chain enzyme. METHODS Isoflurane-anesthetized subjects (n = 4) underwent a baseline 31P MRS scan followed by TLT applied sequentially for 2 min each to anterior and posterior cranium midline locations, to irradiate the dorsal cortex. Subjects then underwent 31P MRS scans for 2 h to assess acute TLT effects. After 2 weeks of repeat TLT (3 times/week), subjects were scanned again with 31P MRS to characterize effects of repeat TLT. RESULTS TLT did not induce acute 31P MRS changes over the course of 2 h in either scan session. However, after repeat TLT, the baseline PCr/β-nucleoside triphosphate ratio was higher than the scan 1 baseline (p < 0.0001), an effect attributable to increased PCr level (p < 0.0001). CONCLUSIONS Our findings are consistent with reports that bioenergetic effects of PBM can take several hours to evolve. Thus, in vivo 31P MRS may be useful for characterizing bioenergetic effects of PBM in brain and other tissues.
Collapse
Affiliation(s)
| | - Timothy E Gillis
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Marc J Kaufman
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
263
|
Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA. Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. JOURNAL OF BIOPHOTONICS 2016; 9:1125-1135. [PMID: 26790619 DOI: 10.1002/jbio.201500209] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Hearing loss is a serious occupational health problem worldwide. Noise, aminoglycoside antibiotics and chemotherapeutic drugs induce hearing loss through changes in metabolic functions resulting in sensory cell death in the cochlea. Metabolic sequelae from noise exposure increase production of nitric oxide (NO) and Reactive Oxygen Species (ROS) contributing to higher levels of oxidative stress beyond the physiologic threshold levels of intracellular repair. Photobiomodulation (PBM) therapy is a light treatment involving endogenous chromophores commonly used to reduce inflammation and promote tissue repair. Near infrared light (NIR) from Light Emitting Diodes (LED) at 810 nm wavelength were used as a biochemical modulator of cytokine response in cultured HEI-OC1 auditory cells placed under oxidative stress. Results reported here show that NIR PBM at 810 nm, 30 mW/cm2 , 100 seconds, 1.0 J, 3 J/cm2 altered mitochondrial metabolism and oxidative stress response for up to 24 hours post treatment. We report a decrease of inflammatory cytokines and stress levels resulting from NIR applied to HEI-OC1 auditory cells before treatment with gentamicin or lipopolysaccharide. These results show that cells pretreated with NIR exhibit reduction of proinflammatory markers that correlate with inhibition of mitochondrial superoxide, ROS and NO in response to continuous oxidative stress challenges. Non-invasive biomolecular down regulation of proinflammatory intracellular metabolic pathways and suppression of oxidative stress via NIR may have the potential to develop novel therapeutic approaches to address noise exposure and ototoxic compounds associated with hearing loss.
Collapse
Affiliation(s)
- Adam Bartos
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Yohann Grondin
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Magda E Bortoni
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Elisa Ghelfi
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Rosalinda Sepulveda
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - James Carroll
- THOR Photomedicine Ltd, Chesham, HP5 1LF, United Kingdom
| | - Rick A Rogers
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
264
|
Accelerating Ablative Fractional Resurfacing Wound Healing Recovery by Photobiomodulation. CURRENT DERMATOLOGY REPORTS 2016. [DOI: 10.1007/s13671-016-0151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
265
|
O'Connor M, Patil R, Yu J, Hickey R, Premanand K, Kajdacsy-Balla A, Benedetti E, Bartholomew A. Mesenchymal Stem Cells Synergize with 635, 532, and 405 nm Laser Wavelengths in Renal Fibrosis: A Pilot Study. Photomed Laser Surg 2016; 34:556-563. [PMID: 27244220 DOI: 10.1089/pho.2015.4025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To address whether a single treatment of one of three visible light wavelengths, 635, 532, and 405 nm (constant wave, energy density 2.9 J/m2), could affect the hallmarks of established renal fibrosis and whether these wavelengths could facilitate mesenchymal stem cell (MSC) beneficence. BACKGROUND DATA Chronic kidney disease is a global health problem with only 20% receiving care worldwide. Kidneys with compromised function have ongoing inflammation, including increased oxidative stress and apoptosis, peritubular capillary loss, tubular atrophy, and tubulointerstitial fibrosis. Promising studies have highlighted the significant potential of MSC-based strategies to mitigate fibrosis; however, reversal of established fibrosis has been problematic, suggesting that methods to potentiate MSC effects require further development. Laser treatments at visible wavelengths have been reported to enhance mitochondrial potential and available cellular ATP, facilitate proliferation, and inhibit apoptosis. We hypothesized that laser-delivered energy might provide wavelength-specific effects in the fibrotic kidney and enhance MSC responses. MATERIALS AND METHODS Renal fibrosis, established in C57BL6 mice following 21 days of unilateral ureter obstruction (UUO), was treated with one of three wavelengths alone or with autologous MSC. Mitochondrial activity, cell proliferation, apoptosis, and cytokines were measured 24 h later. RESULTS Wavelengths 405, 532, and 635 nm all significantly synergized with MSC to enhance mitochondrial activity and reduce apoptosis. Proliferative activity was observed in the renal cortices following combined treatment with the 532 nm laser and MSC; endothelial proliferation increased in response to the 635 nm laser alone and to the combined effects of MSC and the 405 nm wavelength. Reductions of transforming growth factor-β were observed with 532 nm alone and when combined with MSC. CONCLUSIONS Specific wavelengths of laser energy appear to induce different responses in renal fibrotic tissue. These findings support further study in the development of a customized laser therapy program of combined wavelengths to optimize MSC effects in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Megan O'Connor
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Rachana Patil
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Jiangzhou Yu
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Richard Hickey
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Kavitha Premanand
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Andre Kajdacsy-Balla
- 2 Department of Pathology, University of Illinois at Chicago , Chicago, Illinois
| | - Enrico Benedetti
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois.,3 Department of Transplant Surgery, University of Illinois at Chicago , Chicago, Illinois
| | - Amelia Bartholomew
- 1 Department of Surgery, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
266
|
Heymann PGB, Ziebart T, Kämmerer PW, Mandic R, Saydali A, Braun A, Neff A, Draenert GF. The enhancing effect of a laser photochemotherapy with cisplatin or zolendronic acid in primary human osteoblasts and osteosarcoma cells in vitro. J Oral Pathol Med 2016; 45:803-809. [PMID: 27122094 DOI: 10.1111/jop.12442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Photodynamic therapies (PDT) have become increasingly popular in the adjuvant treatment of different tumour entities. Chemotherapeutic agents, such as cisplatin may be used in combination with low-level laser therapy (LLLT) as laser photochemotherapy. The aim of this study was to investigate the effect of LLLT on cell bioviability of normal and malignant bone cells under chemotherapeutic conditions with either cisplatin or zolendronic acid in vitro. METHODS Primary human osteoblasts (HOB) and an osteosarcoma cell line (Saos-2) were treated with different concentrations of zolendronic acid or cisplatin and irradiated twice with a diode laser (wavelength 670 nm, 120 s, energy outputs of 100mW/cm2 , continuous wave mode). Cell viability was tested by XTT-assay and via histomorphological analysis. RESULTS LLLT alone increased bioviability for both cell lines. LLLT lowered HOB viability at the three highest concentrations of cisplatin and zolendronic acid. For Saos-2, LLLT reduced cell viability at every concentration of cisplatin. In cases of incubation with zolendronic acid, similar to osteoblasts, LLLT lowered cell viability at the highest concentration only. CONCLUSIONS Based on the conditions of this study, laser photochemotherapy may be able to raise the cytotoxicity of cisplatin and zolendronic acid in benign and malignant bone cells. This could be of interest in the development of new therapeutic treatment modalities against neoplastic bone diseases like osteosarcoma.
Collapse
Affiliation(s)
- Paul Günther Baptist Heymann
- Department of Oral and Maxillofacial Surgery, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany.
| | - Thomas Ziebart
- Department of Oral and Maxillofacial Surgery, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral-Maxillofacial and Plastic Surgery, University of Rostock, Rostock, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Akram Saydali
- Department of Oral and Maxillofacial Surgery, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Andreas Braun
- Department of Operative Dentistry and Endodontology, University of Marburg, Marburg, Germany
| | - Andreas Neff
- Department of Oral and Maxillofacial Surgery, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Guy Florian Draenert
- Department of Oral and Maxillofacial Surgery, University of Marburg, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| |
Collapse
|
267
|
George E, Elman I, Becerra L, Berg S, Borsook D. Pain in an era of armed conflicts: Prevention and treatment for warfighters and civilian casualties. Prog Neurobiol 2016; 141:25-44. [PMID: 27084355 DOI: 10.1016/j.pneurobio.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Chronic pain is a common squealae of military- and terror-related injuries. While its pathophysiology has not yet been fully elucidated, it may be potentially related to premorbid neuropsychobiological status, as well as to the type of injury and to the neural alterations that it may evoke. Accordingly, optimized approaches for wounded individuals should integrate primary, secondary and tertiary prevention in the form of thorough evaluation of risk factors along with specific interventions to contravene and mitigate the ensuing chronicity. Thus, Premorbid Events phase may encompass assessments of psychological and neurobiological vulnerability factors in conjunction with fostering preparedness and resilience in both military and civilian populations at risk. Injuries per se phase calls for immediate treatment of acute pain in the field by pharmacological agents that spare and even enhance coping and adaptive capabilities. The key objective of the Post Injury Events is to prevent and/or reverse maladaptive peripheral- and central neural system's processes that mediate transformation of acute to chronic pain and to incorporate timely interventions for concomitant mental health problems including post-traumatic stress disorder and addiction We suggest that the proposed continuum of care may avert more disability and suffering than the currently employed less integrated strategies. While the requirements of the armed forces present a pressing need for this integrated continuum and a framework in which it can be most readily implemented, this approach may be also instrumental for the care of civilian casualties.
Collapse
Affiliation(s)
- E George
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, MGH, HMS, Boston, MA, United States; Commander, MC, USN (Ret), United States
| | - I Elman
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Psychiatry, Boonshoft School of Medicine and Dayton VA Medical Center, United States; Veterans Administration Medical Center, Dayton, OH, United States
| | - L Becerra
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, BCH, HMS, Boston, MA, United States; Departments of Psychiatry and Radiology, MGH, Boston, MA, United States
| | - Sheri Berg
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, MGH, HMS, Boston, MA, United States
| | - D Borsook
- Center for Pain and the Brain, Harvard Medical School (HMS), United States; Department of Anesthesia, Critical Care and Pain Medicine, BCH, HMS, Boston, MA, United States; Departments of Psychiatry and Radiology, MGH, Boston, MA, United States.
| |
Collapse
|
268
|
Sanchez-Rodriguez SP, Sauer JP, Stanley SA, Qian X, Gottesdiener A, Friedman JM, Dordick JS. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells. Biotechnol Bioeng 2016; 113:2228-40. [PMID: 27563853 DOI: 10.1002/bit.25984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 02/03/2023]
Abstract
Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra P Sanchez-Rodriguez
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Jeremy P Sauer
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Sarah A Stanley
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065
| | - Xi Qian
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Andrew Gottesdiener
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065.,Weill Cornell Medical College, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, 1230 York Ave, New York, New York, 10065.
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180. .,Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180. .,Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180.
| |
Collapse
|
269
|
The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers Med Sci 2016; 31:789-809. [PMID: 26964800 PMCID: PMC4851696 DOI: 10.1007/s10103-016-1914-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Lasers and light-emitting diodes are used for a range of biomedical applications with many studies reporting their beneficial effects. However, three main concerns exist regarding much of the low-level light therapy (LLLT) or photobiomodulation literature; (1) incomplete, inaccurate and unverified irradiation parameters, (2) miscalculation of ‘dose,’ and (3) the misuse of appropriate light property terminology. The aim of this systematic review was to assess where, and to what extent, these inadequacies exist and to provide an overview of ‘best practice’ in light measurement methods and importance of correct light measurement. A review of recent relevant literature was performed in PubMed using the terms LLLT and photobiomodulation (March 2014–March 2015) to investigate the contemporary information available in LLLT and photobiomodulation literature in terms of reporting light properties and irradiation parameters. A total of 74 articles formed the basis of this systematic review. Although most articles reported beneficial effects following LLLT, the majority contained no information in terms of how light was measured (73 %) and relied on manufacturer-stated values. For all papers reviewed, missing information for specific light parameters included wavelength (3 %), light source type (8 %), power (41 %), pulse frequency (52 %), beam area (40 %), irradiance (43 %), exposure time (16 %), radiant energy (74 %) and fluence (16 %). Frequent use of incorrect terminology was also observed within the reviewed literature. A poor understanding of photophysics is evident as a significant number of papers neglected to report or misreported important radiometric data. These errors affect repeatability and reliability of studies shared between scientists, manufacturers and clinicians and could degrade efficacy of patient treatments. Researchers need a physicist or appropriately skilled engineer on the team, and manuscript reviewers should reject papers that do not report beam measurement methods and all ten key parameters: wavelength, power, irradiation time, beam area (at the skin or culture surface; this is not necessarily the same size as the aperture), radiant energy, radiant exposure, pulse parameters, number of treatments, interval between treatments and anatomical location. Inclusion of these parameters will improve the information available to compare and contrast study outcomes and improve repeatability, reliability of studies.
Collapse
|
270
|
Liebert AD, Chow RT, Bicknell BT, Varigos E. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton. J Exp Neurosci 2016; 10:1-19. [PMID: 26848276 PMCID: PMC4737522 DOI: 10.4137/jen.s33444] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.
Collapse
Affiliation(s)
| | - Roberta T. Chow
- Brain and Mind Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
271
|
Abstract
Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, 201 Calle Norzagaray, San Juan 00901, Puerto Rico
| |
Collapse
|
272
|
Barolet D, Christiaens F, Hamblin MR. Infrared and skin: Friend or foe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 155:78-85. [PMID: 26745730 DOI: 10.1016/j.jphotobiol.2015.12.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/01/2022]
Abstract
In the last decade, it has been proposed that the sun's IR-A wavelengths might be deleterious to human skin and that sunscreens, in addition to their desired effect to protect against UV-B and UV-A, should also protect against IR-A (and perhaps even visible light). Several studies showed that NIR may damage skin collagen content via an increase inMMP-1 activity in the same manner as is known for UVR. Unfortunately, the artificial NIR light sources used in such studies were not representative of the solar irradiance. Yet, little has been said about the other side of the coin. This article will focus on key information suggesting that IR-A may be more beneficial than deleterious when the skin is exposed to the appropriate irradiance/dose of IR-A radiation similar to daily sun exposure received by people in real life.IR-A might even precondition the skin--a process called photo prevention--from an evolutionary standpoint since exposure to early morning IR-A wavelengths in sunlight may ready the skin for the coming mid-day deleterious UVR. Consequently IR-A appears to be the solution, not the problem. It does more good than bad for the skin. It is essentially a question of intensity and how we can learn from the sun. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Collapse
Affiliation(s)
- Daniel Barolet
- Department of Medicine, Dermatology Division, McGill University, Montreal H3A 1A1, Canada; RoseLab Skin Optics Laboratory, LavalH7T 0G3, Canada.
| | | | - Michael R Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States
| |
Collapse
|
273
|
Morcos N, Omran M, Ghanem H, Elahdal M, Kamel N, Attia E. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats. Photochem Photobiol 2015; 91:942-51. [PMID: 25975382 DOI: 10.1111/php.12465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/22/2022]
Abstract
One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.
Collapse
Affiliation(s)
- Nadia Morcos
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Manar Omran
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hala Ghanem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud Elahdal
- Radiation Protection and Dosimetry Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Nashwa Kamel
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Elbatoul Attia
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|