251
|
Abstract
A growing number of studies in recent years have highlighted the importance of molecular nutrition as a potential determinant of health and disease. In particular, the ability of micronutrients to regulate the final expression of gene products via modulation of transcription and translation is now being recognised. Modulation of microRNA (miRNA) by nutrients is one pathway by which nutrition may mediate gene expression. miRNA, a class of non-coding RNA, can directly regulate gene expression post-transcriptionally. In addition, miRNA are able to indirectly influence gene expression potential at the transcriptional level via modulation of the function of components of the epigenetic machinery (DNA methylation and histone modifications). These mechanisms interact to form a complex, bi-directional regulatory circuit modulating gene expression. Disease-specific miRNA profiles have been identified in multiple disease states, including those with known dietary risk factors. Therefore, the role that nutritional components, in particular, vitamins and minerals, play in the modulation of miRNA profiles, and consequently health and disease, is increasingly being investigated, and as such is a timely subject for review. The recently posited potential for viable exogenous miRNA to enter human blood circulation from food sources adds another interesting dimension to the potential for dietary miRNA to contribute to gene modulation.
Collapse
|
252
|
Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan LL. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 2014. [PMID: 24606609 DOI: 10.1186/1471‐2164‐15‐181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood. RESULTS The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases. CONCLUSION Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | | |
Collapse
|
253
|
Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan LL. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics 2014; 15:181. [PMID: 24606609 PMCID: PMC4029070 DOI: 10.1186/1471-2164-15-181] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/25/2014] [Indexed: 01/23/2023] Open
Abstract
Background MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S. aureus, two mastitis causing pathogens, is not well understood. Results The global expression of miRNAs in bovine mammary epithelial cells (MAC-T cells) challenged with and without heat-inactivated Staphylococcus aureus (S. aureus) or Escherichia coli (E. coli) bacteria at 0, 6, 12, 24, and 48 hr was profiled using RNA-Seq. A total of 231 known bovine miRNAs were identified with more than 10 counts per million in at least one of 13 libraries and 5 miRNAs including bta-miR-21-5p, miR-27b, miR-22-3p, miR-184 and let-7f represented more than 50% of the abundance. One hundred and thirteen novel miRNAs were also identified and more than one third of them belong to the bta-miR-2284 family. Seventeen miRNAs were significantly (P < 0.05) differentially regulated by the presence of pathogens. E. coli initiated an earlier regulation of miRNAs (6 miRNAs differentially regulated within the first 6 hrs post challenge as compared to 1 miRNA for S. aureus) while S. aureus presented a delayed response. Five differentially expressed miRNAs (bta-miR-184, miR-24-3p, miR-148, miR-486 and let-7a-5p) were unique to E. coli while four (bta-miR-2339, miR-499, miR-23a and miR-99b) were unique to S. aureus. In addition, our study revealed a temporal differential regulation of five miRNAs (bta-miR-193a-3p, miR-423-5p, miR-30b-5p, miR-29c and miR-un116) in unchallenged cells. Target gene predictions of pathogen differentially expressed miRNAs indicate a significant enrichment in gene ontology functional categories in development/cellular processes, biological regulation as well as cell growth and death. Furthermore, target genes were significantly enriched in several KEGG pathways including immune system, signal transduction, cellular process, nervous system, development and human diseases. Conclusion Using next-generation sequencing, our study identified a pathogen directed differential regulation of miRNAs in MAC-T cells with roles in immunity and development. Our study provides a further confirmation of the involvement of mammary epithelia cells in contributing to the immune response to infecting pathogens and suggests the potential of miRNAs to serve as biomarkers for diagnosis and development of control measures.
Collapse
Affiliation(s)
| | | | | | | | - Xin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | | |
Collapse
|
254
|
Gu YQ, Gong G, Xu ZL, Wang LY, Fang ML, Zhou H, Xing H, Wang KR, Sun L. miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. Int J Mol Med 2014; 33:1243-9. [PMID: 24584717 DOI: 10.3892/ijmm.2014.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/17/2014] [Indexed: 11/06/2022] Open
Abstract
The tumor microenvironment plays an important role in breast carcinogenesis. Milk acts as an important microenvironment of breast cancer, but its role in breast carcinogenesis is largely unknown. Milk stasis may exist in the breast for a number of years after breastfeeding. In the present study, we reported the first microRNA (miRNA) profiling of milk from patients with milk stasis. We identified 266 known miRNAs and 271 novel miRNAs in 10 milk stasis only samples, 271 known miRNAs and 140 novel miRNAs in 10 milk stasis plus breast neoplasm samples by deep sequencing. miRNA profiles were different between the two groups. Furthermore, nine tumor suppressor miRNAs such as miR-29a, miR-146 and miR-223 were significantly downregulated, while seven oncogenic miRNAs such as miR-451, miR-486, miR-107, miR-92 and miR-10 were significantly upregulated in the milk of milk stasis plus neoplasm patients. Three of the identified miRNAs (miR-140, miR-21 and let-7a) were selected using real-time PCR, confirming that these miRNAs were highly expressed. The results also showed that the three miRNAs detected were more abundant in the milk than in the blood. In summary, the data suggested that miRNAs in milk from milk stasis patients may contribute to breast carcinogenesis and that they are more sensitive biomarkers for breast cancer than miRNAs in the blood.
Collapse
Affiliation(s)
- Yi-Qi Gu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gu Gong
- Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhe-Li Xu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li-Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming-Li Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Zhou
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hua Xing
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ke-Ren Wang
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang Sun
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
255
|
Rathe M, Müller K, Sangild PT, Husby S. Clinical applications of bovine colostrum therapy: a systematic review. Nutr Rev 2014; 72:237-54. [DOI: 10.1111/nure.12089] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mathias Rathe
- Hans Christian Andersen Children's Hospital; Odense University Hospital; Odense Denmark
| | - Klaus Müller
- Pediatric Clinic and Institute of Inflammation Research; Rigshospitalet; Copenhagen Denmark
| | - Per Torp Sangild
- Clinical and Experimental Nutrition; University of Copenhagen; Faculty of Science; Frederiksberg Denmark
| | - Steffen Husby
- Hans Christian Andersen Children's Hospital; Odense University Hospital; Odense Denmark
| |
Collapse
|
256
|
Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey. PLoS One 2014; 9:e88843. [PMID: 24533154 PMCID: PMC3923055 DOI: 10.1371/journal.pone.0088843] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats.
Collapse
Affiliation(s)
- Hirohisa Izumi
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
- * E-mail:
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takashi Shimizu
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Kazunori Sekine
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Mitsunori Takase
- Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| |
Collapse
|
257
|
Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 2014; 12:43. [PMID: 24521175 PMCID: PMC3930015 DOI: 10.1186/1479-5876-12-43] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022] Open
Abstract
Epidemiological evidence confirmed that raw cow's milk consumption in the first year of life protects against the development of atopic diseases and increases the number of regulatory T-cells (Tregs). However, milk's atopy-protective mode of action remains elusive.This review supported by translational research proposes that milk-derived microRNAs (miRs) may represent the missing candidates that promote long-term lineage commitment of Tregs downregulating IL-4/Th2-mediated atopic sensitization and effector immune responses. Milk transfers exosomal miRs including the ancient miR-155, which is important for the development of the immune system and controls pivotal target genes involved in the regulation of FoxP3 expression, IL-4 signaling, immunoglobulin class switching to IgE and FcϵRI expression. Boiling of milk abolishes milk's exosomal miR-mediated bioactivity. Infant formula in comparison to human breast- or cow's milk is deficient in bioactive exosomal miRs that may impair FoxP3 expression. The boost of milk-mediated miR may induce pivotal immunoregulatory and epigenetic modifications required for long-term thymic Treg lineage commitment explaining the atopy-protective effect of raw cow's milk consumption.The presented concept offers a new option for the prevention of atopic diseases by the addition of physiological amounts of miR-155-enriched exosomes to infant formula for mothers incapable of breastfeeding.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090 Osnabrück, Germany
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
258
|
Bar Yamin H, Barnea M, Genzer Y, Chapnik N, Froy O. Long-term commercial cow's milk consumption and its effects on metabolic parameters associated with obesity in young mice. Mol Nutr Food Res 2013; 58:1061-8. [PMID: 24550222 DOI: 10.1002/mnfr.201300650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
SCOPE Research has demonstrated that consumption of milk promotes weight loss and satiety, however conflicting evidence also exists. Therefore, we tested the effect of long-term milk consumption on body weight and metabolic parameters. METHODS AND RESULTS Newly weaned mice received whole milk, low-fat milk, or water as control for 17 weeks and serum, liver, and white adipose tissue (WAT) were tested for parameters associated with obesity and diabetes. Our results show that low-fat milk leads to the same overall caloric intake and body weight as the control group. However, the whole-milk group consumed more calories and reached a higher body weight. In addition, in the low-fat milk group, cholesterol, HDL-cholesterol, triglycerides, leptin, ghrelin, insulin, corticosterone, and glucagon were not significantly different than the control group. In contrast, in the whole-milk group, cholesterol, HDL-cholesterol, triglycerides, and glucagon were high compared with the control group. Metabolism in both liver and WAT showed only slight differences between the milk groups. Whereas the whole-milk group showed reduced insulin signaling in WAT, the low-fat milk group exhibited increased insulin signaling. CONCLUSION Whole-milk consumption leads to increased body weight and caloric intake and reduced insulin signaling in WAT, as opposed to low-fat milk consumption.
Collapse
Affiliation(s)
- Hadas Bar Yamin
- Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
259
|
Gigli I, Maizon DO. microRNAs and the mammary gland: A new understanding of gene expression. Genet Mol Biol 2013; 36:465-74. [PMID: 24385846 PMCID: PMC3873174 DOI: 10.1590/s1415-47572013005000040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.
Collapse
Affiliation(s)
- Isabel Gigli
- Facultad de Agronomía, Universidad de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Daniel Omar Maizon
- INTA, EEA Anguil "Ing. Agr. Guillermo Covas", Anguil, La Pampa, Argentina
| |
Collapse
|
260
|
Melnik BC, Schmitz G, John S, Carrera-Bastos P, Lindeberg S, Cordain L. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status. Nutr Metab (Lond) 2013; 10:60. [PMID: 24225036 PMCID: PMC3856498 DOI: 10.1186/1743-7075-10-60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/28/2013] [Indexed: 02/08/2023] Open
Abstract
Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual’s pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals.
Collapse
|
261
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
262
|
Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 2013; 12:103. [PMID: 23883112 PMCID: PMC3725179 DOI: 10.1186/1475-2891-12-103] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023] Open
Abstract
Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090, Osnabrück, Germany.
| | | | | |
Collapse
|
263
|
Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 2013; 10:1107-16. [PMID: 23669076 DOI: 10.4161/rna.24909] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cross-kingdom delivery of specific microRNAs to recipient organisms via food ingestion has been reported recently. However, it is unclear if such delivery of microRNAs occurs frequently in animal organisms after typical dietary intake. We found substantial levels of specific microRNAs in diets commonly consumed orally by humans, mice, and honey bees. Yet, after ingestion of fruit replete with plant microRNAs (MIR156a, MIR159a, and MIR169a), a cohort of healthy athletes did not carry detectable plasma levels of those molecules. Similarly, despite consumption of a diet with animal fat replete in endogenous miR-21, negligible expression of miR-21 in plasma or organ tissue was observed in miR-21 -/- recipient mice. Correspondingly, when fed vegetarian diets containing the above plant microRNAs, wild-type recipient mice expressed insignificant levels of these microRNAs. Finally, despite oral uptake of pollen containing these plant microRNAs, negligible delivery of these molecules was observed in recipient honeybees. Therefore, we conclude that horizontal delivery of microRNAs via typical dietary ingestion is neither a robust nor a frequent mechanism to maintain steady-state microRNA levels in a variety of model animal organisms, thus defining the biological limits of these molecules in vivo.
Collapse
|
264
|
Abstract
MicroRNAs (miRNAs) are small regulatory RNA molecules that modulate specific target mRNAs and play very important roles in physiological processes. They were recently detected in body fluids such as blood, urine, saliva, and milk. These body fluid miRNAs have been studied thoroughly as potential diagnostic biomarkers. However, there have been few studies of milk miRNAs, and their roles are not clearly understood. Milk is the only nutritional source for newborn infants, and bovine milk is used widely as a dairy product. Thus, it is important to study milk miRNAs. In general, body fluid RNA concentrations are extremely low and of diverse existence types. In this chapter, we compare two silica membrane column-based RNA purification kits, and also compare RNA obtained directly from whey with that isolated from whey-derived exosomes.
Collapse
|
265
|
Galio L, Droineau S, Yeboah P, Boudiaf H, Bouet S, Truchet S, Devinoy E. MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics 2012; 45:151-61. [PMID: 23269700 DOI: 10.1152/physiolgenomics.00091.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammary gland undergoes extensive remodeling between the beginning of pregnancy and lactation; this involves cellular processes including cell proliferation, differentiation, and apoptosis, all of which are under the control of numerous regulators. To unravel the role played by miRNA, we describe here 47 new ovine miRNA cloned from mammary gland in early pregnancy displaying strong similarities with those already identified in the cow, human, or mouse. A microarray study of miRNA variations in the adult ovine mammary gland during pregnancy and lactation showed that 100 miRNA are regulated according to three principal patterns of expression: a decrease in early pregnancy, a peak at midpregnancy, or an increase throughout late pregnancy and lactation. One miRNA displaying each pattern (miR-21, miR-205, and miR-200b) was analyzed by qRT-PCR. Variations in expression were confirmed for all three miRNA. Using in situ hybridization, we detected both miR-21 and miR-200 in luminal mammary epithelial cells when expressed, whereas miR-205 was expressed in basal cells during the first half of pregnancy and then in luminal cells during the second half. We therefore conclude that miR-21 is strongly expressed in the luminal cells of the normal mammary gland during early pregnancy when extensive cell proliferation occurs. In addition, we show that miR-205 and miR-200 are coexpressed in luminal cells, but only during the second half of pregnancy. These two miRNA may cooperate to maintain epithelial status by repressing an EMT-like program, to achieve and preserve the secretory phenotype of mammary epithelial cells.
Collapse
Affiliation(s)
- Laurent Galio
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche 1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France.
| | | | | | | | | | | | | |
Collapse
|