251
|
Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension. ACTA ACUST UNITED AC 2020; 56:medicina56070321. [PMID: 32610512 PMCID: PMC7404788 DOI: 10.3390/medicina56070321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023]
Abstract
Background and objectives: Skin grafting is a method usually used in reconstructive surgery to accelerate skin regeneration. This method results frequently in unexpected scar formations. We previously showed that cutaneous wound-healing in normal mice is accelerated by a micrograft (MG) technique. Presently, clinical trials have been performed utilizing this technology; however, the driving mechanisms behind the beneficial effects of this approach remain unclear. In the present study, we focused on five major tissue reactions in wound-healing, namely, regeneration, migration, granulation, neovascularization and contraction. Methods: Morphometrical analysis was performed using tissue samples from the dorsal wounds of mice. Granulation tissue formation, neovascularization and epithelial healing were examined. Results: The wound area correlated well with granulation sizes and neovascularization densities in the granulation tissue. Vascular distribution analysis in the granulation tissue indicated that neovessels extended and reached the subepidermal area in the MG group but was only halfway developed in the control group. Moreover, epithelialization with regeneration and migration was augmented by MG. Myofibroblast is a known machinery for wound contraction that uses α-smooth muscle actin filaments. Their distribution in the granulation tissue was primarily found beneath the regenerated epithelium and was significantly progressed in the MG group. Conclusions: These findings indicated that MG accelerated a series of wound-healing reactions and could be useful for treating intractable wounds in clinical situations.
Collapse
|
252
|
Balogh A, Milibák T, Szabó V, Nagy ZZ, Resch MD. Position of macula lutea and presence of proliferative vitreoretinopathy affect vitreous cytokine expression in rhegmatogenous retinal detachment. PLoS One 2020; 15:e0234525. [PMID: 32542038 PMCID: PMC7295219 DOI: 10.1371/journal.pone.0234525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022] Open
Abstract
Our purpose was to evaluate the concentrations of vitreous cytokines in patients with rhegmatogenous retinal detachment (RRD). We hypothesized that patients with macula on RRD have lower levels of cytokines compared to patients with macula off RRD and proliferative vitreoretinopathy (PVR). Vitreous fluids were collected during 23G pars plana vitrectomy from 58 eyes of 58 patients. Indication for vitrectomy included macula off and macula on RRD, PVR, and idiopathic epiretinal membrane (ERM). A multiplex chemiluminescent immunoassay was performed to measure the concentrations of 48 cytokines, chemokines, and growth factors. Levels of HGF, IL-6, IL-8, IL-16, IFN-gamma, MCP-1, and MIF were significantly higher in all groups of retinal detachment compared to ERM. Levels of CTACK, eotaxin, G-CSF, IP-10, MIG, SCF, SCGF-beta, SDF-1alpha were significantly higher in PVR compared to macula on RRD and ERM. Levels of IL-1ra, IL-5, IL-9, M-CSF, MIP-1alpha, and TRIAL were significantly higher in PVR compared to macula on RRD. Our results indicate that the position of macula lutea and the presence of PVR significantly influence vitreous cytokine expression. The detected proteins may serve as biomarkers to estimate the possibility of PVR formation and may help to invent personalized therapeutic strategies to slow down or prevent PVR.
Collapse
Affiliation(s)
- Anikó Balogh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Uzsoki Hospital, Budapest, Hungary
| | - Tibor Milibák
- Department of Ophthalmology, Uzsoki Hospital, Budapest, Hungary
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
253
|
Influence of Systemic Inflammatory Response to Appearance of New Foci of Chronic Inflammation. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2020-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Changes in the body in the presence of a chronic inflammatory process, even of a low intensity, lead to the change in the body’s reactivity, having a negative impact on the development, course and clinical prognosis of newly emerging inflammatory processes. Structural changes in the vascular network in the focus of chronic inflammation and following cellular reactions that occur under the action of chemokines and cytokines are the basis for the maintenance and development of the phlogogenic process, including subsequent structural changes in tissues. The failure to resolve the inflammation leads not only to the persistence of the process in the primary focus, but also to the formation of a multitude of the so-calledpathological circles, included at the system level, causing the imbalance among proinflammatory, anti-inflammatory and pro-resolving factors. As a result, conditions are formed for the emergence of new foci of the inflammation in other organs and tissues and in the case of their realization, new vicious circles are formed that contribute to the maintenance and progression of the inflammation. The complex application of etio-tropic, pathogenetic and sanogenetic principles of the treatment allows intensifying of the formation of specialized pro-resolving factors with the elimination of their relative insufficiency, contributing to the reduction of newly formed vessels and to the restoration of the normal cellular composition of the tissue as well as to the resolution of inflammation.
Collapse
|
254
|
Park TH, Lee S, Amatya R, Maharjan P, Kim HJ, Park WS, Ahn MJ, Kim SY, Moon C, Cheong H, Min KA, Shin MC. Development and characterization of a superabsorbing hydrogel film containing Ulmus davidiana var. Japonica root bark and pullulan for skin wound healing. Saudi Pharm J 2020; 28:791-802. [PMID: 32647480 PMCID: PMC7335722 DOI: 10.1016/j.jsps.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Ulmus davidiana var. japonica (UD) has widely been used in Korean traditional medicine for the treatment of various types of diseases including inflammation and skin wounds. The UD root bark powders possess gelling activity with an excellent capacity for absorbing water. This distinct property could make the UD root bark powders to be a great material for manufacturing a gel film specifically for the healing of large and highly exudating wounds (e.g., pressure sores and diabetic ulcers). In this research, we separated the UD root bark powder into 4 different samples based on their sizes and then tested their water absorption capacity and flowability. Based on these results, 75-150 μm sized and below 75 μm sized samples of UD root bark powders were chosen, and UD gel films were prepared. The UD gel films showed good thermal stability and mechanically improved properties compared with pullulan only gel film with excellent swelling capacity and favorable skin adhesiveness. Further, in the animal studies with the skin wound mice model, the UD gel films exhibited significant therapeutic effects on accelerating wound closure and dermal regeneration. Overall, this study demonstrated the applicability of UD root bark powders for hydrogel wound dressing materials, and the potential of UD gel films to be superior wound dressings to currently available ones.
Collapse
Affiliation(s)
- Tae Hoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sumi Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Pooja Maharjan
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hye-Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea.,Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon 21565, Republic of Korea
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Republic of Korea
| | - Heesun Cheong
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10408, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| |
Collapse
|
255
|
Insights into the Role of Innate Immunity in Cervicovaginal Papillomavirus Infection from Studies Using Gene-Deficient Mice. J Virol 2020; 94:JVI.00087-20. [PMID: 32295905 DOI: 10.1128/jvi.00087-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 01/28/2023] Open
Abstract
We demonstrate that female C57BL/6J mice are susceptible to a transient lower genital tract infection with MmuPV1 mouse papillomavirus and display focal histopathological abnormalities resembling those of human papillomavirus (HPV) infection. We took advantage of strains of genetically deficient mice to study in vivo the role of innate immune signaling in the control of papillomavirus. At 4 months, we sacrificed MmuPV1-infected mice and measured viral 757/3139 spliced transcripts by TaqMan reverse transcription-PCR (RT-PCR), localization of infection by RNAscope in situ hybridization, and histopathological abnormities by hematoxylin and eosin (H&E) staining. Among mice deficient in receptors for pathogen-associated molecular patterns, MyD88-/- and STING-/- mice had 1,350 and 80 copies of spliced transcripts/μg RNA, respectively, while no viral expression was detected in MAVS-/- and Ripk2-/- mice. Mice deficient in an adaptor molecule, STAT1-/-, for interferon signaling had 46,000 copies/μg RNA. Among mice with targeted deficiencies in the inflammatory response, interleukin-1 receptor knockout (IL-1R-/-) and caspase-1-/- mice had 350 and 30 copies/μg RNA, respectively. Among mice deficient in chemokine receptors, CCR6-/- mice had 120 copies/μg RNA, while CXCR2-/- and CXCR3-/- mice were negative. RNAscope confirmed focal infection in MyD88-/-, STAT1-/-, and CCR6-/- mice but was negative for other gene-deficient mice. Histological abnormalities were seen only in the latter mice. Our findings and the literature support a working model of innate immunity to papillomaviruses involving the activation of a MyD88-dependent pathway and IL-1 receptor signaling, control of viral replication by interferon-stimulated genes, and clearance of virus-transformed dysplastic cells by the action of the CCR6/CCL20 axis.IMPORTANCE Papillomaviruses infect stratified squamous epithelia, and the viral life cycle is linked to epithelial differentiation. Additionally, changes occur in viral and host gene expression, and immune cells are activated to modulate the infectious process. In vitro studies with keratinocytes cannot fully model the complex viral and host responses and do not reflect the contribution of local and migrating immune cells. We show that female C57BL/6J mice are susceptible to a transient papillomavirus cervicovaginal infection, and mice deficient in select genes involved in innate immune responses are susceptible to persistent infection with variable manifestations of histopathological abnormalities. The results of our studies support a working model of innate immunity to papillomaviruses, and the model provides a framework for more in-depth studies. A better understanding of mechanisms of early viral clearance and the development of approaches to induce clearance will be important for cancer prevention and the treatment of HPV-related diseases.
Collapse
|
256
|
Chen J, Chen YQ, Wang SN, Duan FX, Shi YJ, Ding SQ, Hu JG, Lü HZ. Effect of VX‑765 on the transcriptome profile of mice spinal cords with acute injury. Mol Med Rep 2020; 22:33-42. [PMID: 32377730 PMCID: PMC7248530 DOI: 10.3892/mmr.2020.11129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that caspase-1 plays an important role in the acute inflammatory response of spinal cord injury (SCI). VX‑765, a novel and irreversible caspase‑1 inhibitor, has been reported to effectively intervene in inflammation. However, the effect of VX‑765 on genome‑wide transcription in acutely injured spinal cords remains unknown. Therefore, in the present study, RNA‑sequencing (RNA‑Seq) was used to analyze the effect of VX‑765 on the local expression of gene transcription 8 h following injury. The differentially expressed genes (DEGs) underwent enrichment analysis of functions and pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. Parallel analysis of western blot confirmed that VX‑765 can effectively inhibit the expression and activation of caspase‑1. RNA‑Seq showed that VX‑765 treatment resulted in 1,137 upregulated and 1,762 downregulated DEGs. These downregulated DEGs and their associated signaling pathways, such as focal adhesion, cytokine‑cytokine receptor interaction, leukocyte transendothelial migration, extracellular matrix‑receptor interaction, phosphatidylinositol 3‑kinase‑protein kinase B, Rap1 and hypoxia inducible factor‑1 signaling pathway, are mainly associated with inflammatory response, local hypoxia, macrophage differentiation, adhesion migration and apoptosis of local cells. This suggests that the application of VX‑765 in the acute phase can improve the local microenvironment of SCI by inhibiting caspase‑1. However, whether VX‑765 can be used as a therapeutic drug for SCI requires further exploration. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA548970).
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
257
|
McLuckie M, Robotti F, Sanchez-Macedo N, Enderlin D, Frese L, Cheng PF, Levesque MP, Egaña JT, Poulikakos D, Ferrari A, Lindenblatt N. Lipoconstruct surface topography grating size influences vascularization onset in the dorsal skinfold chamber model. Acta Biomater 2020; 106:136-144. [PMID: 32044460 DOI: 10.1016/j.actbio.2020.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
After skin tissue injury or pathological removal, vascularization timing is paramount in graft survival. As full thickness skin grafts often fail to become perfused over larger surfaces, split-thickness grafts are preferred and can be used together with biomaterials, which themselves are non-angiogenic. One way of promoting vascular ingrowth is to "pre-vascularize" an engineered substitute by introducing endothelial cells (ECs). Since it has been previously demonstrated that surface structured biomaterials have an effect on wound healing, skin regeneration, and fibrosis reduction, we proposed that a microvascular-rich lipoconstruct with anisotropic topographical cues could be a clinically translatable vascularization approach. Murine lipofragments were formed with three polydimethylsiloxane molds (flat, 5 µm, and 50 µm parallel gratings) and implanted into the dorsal skinfold chamber of male C57BL/6 mice. Vascular ingrowth was observed through intravital microscopy over 21 days and further assessed by histology and protein identification. Our investigation revealed that topographical feature size influenced the commencement of neovascular ingrowth, with 5 µm gratings exhibiting early construct perfusion at 3 days post-operation, and 50 µm being delayed until day 5. We therefore postulate that surface structured lipoconstructs may serve as an easily obtained and produced construct suitable for providing soft tissue and ECs to tissue defects. STATEMENT OF SIGNIFICANCE: Skin graft failures due to inadequate or uneven perfusion frequently occur and can be even more complicated in deep, difficult to heal wounds, or bone coverage. In complex injuries, biomaterials are often used to cover bone structures with a standard split thickness graft; however, perfusion can take up to 3 weeks. Thus, any means to promote faster and uniform vascularization could significantly reduce healing time, as well as lower patient down-time. As pre-vascularized constructs have reported success in research, we created a cost-efficient, translatable method with no additional laboratory time as adipose tissue can be harvested and used immediately. We further used surface topography as an aspect to modulate construct perfusion, which has been reported for the first time here.
Collapse
|
258
|
Chen Z, Haus JM, Chen L, Wu SC, Urao N, Koh TJ, Minshall RD. CCL28-induced CCR10/eNOS interaction in angiogenesis and skin wound healing. FASEB J 2020; 34:5838-5850. [PMID: 32124475 DOI: 10.1096/fj.201902060r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/25/2022]
Abstract
Chemokines and their receptors play important roles in vascular homeostasis, development, and angiogenesis. Little is known regarding the molecular signaling mechanisms activated by CCL28 chemokine via its primary receptor CCR10 in endothelial cells (ECs). Here, we test the hypothesis that CCL28/CCR10 signaling plays an important role in regulating skin wound angiogenesis through endothelial nitric oxide synthase (eNOS)-dependent Src, PI3K, and MAPK signaling. We observed nitric oxide (NO) production in human primary ECs stimulated with exogenous CCL28, which also induced direct binding of CCR10 and eNOS resulting in inhibition of eNOS activity. Knockdown of CCR10 with siRNA lead to reduced eNOS expression and tube formation suggesting the involvement of CCR10 in EC angiogenesis. Based on this interaction, we engineered a myristoylated 7 amino acid CCR10-binding domain (Myr-CBD7) peptide and showed that this can block eNOS interaction with CCR10, but not with calmodulin, resulting in upregulation of eNOS activity. Importantly, topical administration of Myr-CBD7 peptide on mouse dermal wounds not only blocked CCR10-eNOS interaction, but also enhanced expression of eNOS, CD31, and IL-4 with reduction of CCL28 and IL-6 levels associated with improved wound healing. These results point to a potential therapeutic strategy to upregulate NO bioavailability, enhance angiogenesis, and improve wound healing by disrupting CCL28-activated CCR10-eNOS interaction.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Chen
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie C Wu
- Center for Lower Extremity Ambulatory Research (CLEAR), Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
259
|
Tejada S, Batle JM, Ferrer MD, Busquets-Cortés C, Monserrat-Mesquida M, Nabavi SM, Del Mar Bibiloni M, Pons A, Sureda A. Therapeutic Effects of Hyperbaric Oxygen in the Process of Wound Healing. Curr Pharm Des 2020; 25:1682-1693. [PMID: 31269879 DOI: 10.2174/1381612825666190703162648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Chronic and non-healing wounds, especially diabetic foot ulcers and radiation injuries, imply remarkable morbidity with a significant effect on the quality of life and a high sanitary cost. The management of these wounds requires complex actions such as surgical debris, antibiotic treatment, dressings and even revascularization. These wounds are characterized by poor oxygen supply resulting in inadequate oxygenation of the affected tissue. The adjuvant treatment with hyperbaric oxygen therapy (HBOT) may increase tissue oxygenation favoring the healing of wounds which do not respond to the usual clinical care. The increase in the partial pressure of oxygen contributes to cover the energy demands necessary for the healing process and reduces the incidence of infections. Moreover, the increase in oxygen leads to the production of reactive species with hormetic activity, acting on signaling pathways that modulate the synthesis of inflammation mediators, antioxidants and growth factors which can contribute to the healing process. Studies performed with cell cultures and in animal models seem to demonstrate the beneficial effects of HBOT. However, clinical trials do not show such conclusive results; thus, additional randomized placebo-controlled studies are necessary to determine the real efficacy of HBOT and the mechanism of action for various types of wounds.
Collapse
Affiliation(s)
- Silvia Tejada
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Juan M Batle
- MEDISUB Recerca (Institut de Recerca Hiperbarica), Cami d´Aucanada 52, E-07410 Pto. de Alcudia, Balearic Islands, Spain
| | - Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, 14359-16471 Tehran, Iran
| | - Maria Del Mar Bibiloni
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition), E-07122, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
260
|
Kosol W, Kumar S, Marrero-BerrÍos I, Berthiaume F. Medium conditioned by human mesenchymal stromal cells reverses low serum and hypoxia-induced inhibition of wound closure. Biochem Biophys Res Commun 2020; 522:335-341. [PMID: 31761327 PMCID: PMC10660584 DOI: 10.1016/j.bbrc.2019.11.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Chronic wounds, such as pressure ulcers, are a common complication of impaired peripheral circulation, such as in advanced diabetes. Factors secreted by mesenchymal stromal cells (MSCs) have been shown to enhance wound healing in vitro and in vivo. However, there is little understanding of the impact of the chronic wound environment, namely the limited supply of nutrients and oxygen, on the ability of wound cells to respond to MSCs. In this study, we first established the effects of hypoxia (1% O2) and low serum (1% serum) concentration on the proliferation and migration of keratinocytes. We found that hypoxia and low serum significantly slowed down these processes. Next, we found that supplementation with human MSC-concentrated conditioned media (hMSC-CM) enhanced both cell migration and proliferation in the presence of hypoxia and low serum. Furthermore, low serum and hypoxia decreased cell spreading and F-actin expression, which was reversed in the presence of hMSC-CM. Several wound healing mediators were identified in hMSC-CM, including IL-5, IL-6, IL-8, IL-9, IP-10, MCP-1, FGF-2, and VEGF. This study suggests that the concentrated secretome of human MSCs can reverse the inhibitory effect of hypoxia and low serum on keratinocyte proliferation and migration. This phenomenon may contribute to the beneficial effects of hMSC-CM on wound healing in vivo.
Collapse
Affiliation(s)
- Wilai Kosol
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Ileana Marrero-BerrÍos
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
261
|
Zhu F, Yin J, Li J, Xue J. MicroRNA-421 affects the chemotaxis of monocytes via MCP-1, and regulates the local immune responses in injured cartilage site of elbow joint of upper limbs. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1738955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Feng Zhu
- Department of Hand Surgery, Ningbo, Zhejiang, P.R. China
| | - Jie Yin
- Department of Hand Surgery, Ningbo, Zhejiang, P.R. China
| | - Junjie Li
- Department of Hand Surgery, Ningbo, Zhejiang, P.R. China
| | - Jianbo Xue
- Department of Hand Surgery, Ningbo, Zhejiang, P.R. China
| |
Collapse
|
262
|
Riise R, Odqvist L, Mattsson J, Monkley S, Abdillahi SM, Tyrchan C, Muthas D, Yrlid LF. Bleomycin hydrolase regulates the release of chemokines important for inflammation and wound healing by keratinocytes. Sci Rep 2019; 9:20407. [PMID: 31892708 PMCID: PMC6938525 DOI: 10.1038/s41598-019-56667-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 11/09/2022] Open
Abstract
Bleomycin hydrolase (BLMH) is a well-conserved cysteine protease widely expressed in several mammalian tissues. In skin, which contains high levels of BLMH, this protease is involved in the degradation of citrullinated filaggrin monomers into free amino acids important for skin hydration. Interestingly, the expression and activity of BLMH is reduced in patients with atopic dermatitis (AD) and psoriasis, and BLMH knockout mice acquire tail dermatitis. Apart from its already known function, we have discovered a novel role of BLMH in the regulation of inflammatory chemokines and wound healing. We show that lowered BLMH levels in keratinocytes result in increased release of the pro-inflammatory chemokines CXCL8 and GROα, which are upregulated in skin from AD patients compared to healthy individuals. Conditioned media from keratinocytes expressing low levels of BLMH increased chemotaxis by neutrophils and caused a delayed wound healing in the presence of low-level TNFα. This defective wound healing was improved by blocking the shared receptor of CXCL8 and GROα, namely CXCR2, using a specific receptor antagonist. Collectively, our results present a novel function of BLMH in regulating the secretion of chemokines involved in inflammation and wound healing in human keratinocytes.
Collapse
Affiliation(s)
- Rebecca Riise
- Bioscience COPD/IPF, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lina Odqvist
- Bioscience COPD/IPF, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Mattsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Susan Monkley
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suado M Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Muthas
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Fahlén Yrlid
- Bioscience COPD/IPF, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
263
|
The Role of Maresins in Inflammatory Pain: Function of Macrophages in Wound Regeneration. Int J Mol Sci 2019; 20:ijms20235849. [PMID: 31766461 PMCID: PMC6928948 DOI: 10.3390/ijms20235849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Although acute inflammatory responses are host-protective and generally self-limited, unresolved and delayed resolution of acute inflammation can lead to further tissue damage and chronic inflammation. The mechanism of pain induction under inflammatory conditions has been studied extensively; however, the mechanism of pain resolution is not fully understood. The resolution of inflammation is a biosynthetically active process, involving specialized pro-resolving mediators (SPMs). In particular, maresins (MaRs) are synthesized from docosahexaenoic acid (DHA) by macrophages and have anti-inflammatory and pro-resolving capacities as well as tissue regenerating and pain-relieving properties. A new class of macrophage-derived molecules—MaR conjugates in tissue regeneration (MCTRs)—has been reported to regulate phagocytosis and the repair and regeneration of damaged tissue. Macrophages not only participate in the biosynthesis of SPMs, but also play an important role in phagocytosis. They exhibit different phenotypes categorized as proinflammatory M1-like phenotypes and anti-inflammatory M2 phenotypes that mediate both harmful and protective functions, respectively. However, the signaling mechanisms underlying macrophage functions and phenotypic changes have not yet been fully established. Recent studies report that MaRs help resolve inflammatory pain by enhancing macrophage phagocytosis and shifting cytokine release to the anti-inflammatory M2 phenotypes. Consequently, this review elucidated the characteristics of MaRs and macrophages, focusing on the potent action of MaRs to enhance the M2 macrophage phenotype profiles that possess the ability to alleviate inflammatory pain.
Collapse
|
264
|
Bi H, Li H, Zhang C, Mao Y, Nie F, Xing Y, Sha W, Wang X, Irwin DM, Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther 2019; 10:302. [PMID: 31623669 PMCID: PMC6798485 DOI: 10.1186/s13287-019-1415-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A refractory wound is a typical complication of diabetes and is a common outcome after surgery. Current approaches have difficulty in improving wound healing. Recently, non-expanded stromal vascular fraction (SVF), which is derived from mature fat, has opened up new directions for the treatment of refractory wound healing. The aim of the current study is to systematically investigate the impact of SVF on wound healing, including the rate and characteristics of wound healing, ability of fibroblasts to migrate, and blood transport reconstruction, with a special emphasis on their precise molecular mechanisms. METHODS SVF was isolated by digestion, followed by filtration and centrifugation, and then validated by immunocytochemistry, a MTS proliferation assay and multilineage potential analysis. A wound model was generated by creating 6-mm-diameter wounds, which include a full skin defect, on the backs of streptozocin-induced hyperglycemic mice. SVF or human adipose-derived stem cell (hADSC) suspensions were subcutaneously injected, and the wounds were characterized over a 9-day period by photography and measurements. A scratch test was used to determine whether changes in the migratory ability of fibroblasts occurred after co-culture with hADSCs. Angiogenesis was observed with human umbilical vein endothelial cells. mRNA from fibroblasts, endotheliocyte, and skin tissue were sequenced by high-throughput RNAseq, and differentially expressed genes, and pathways, potentially regulated by SVF or hADSCs were bioinformatically analyzed. RESULTS Our data show that hADSCs have multiple characteristics of MSC. SVF and hADSCs significantly improved wound healing in hyperglycemic mice. hADSCs improve the migratory ability of fibroblasts and capillary structure formation in HUVECs. SVF promotes wound healing by focusing on angiogenesis and matrix remodeling. CONCLUSIONS Both SVF and hADSCs improve the function of fibroblast and endothelial cells, regulate gene expression, and promote skin healing. Various mechanisms likely are involved, including migration of fibroblasts, tubulogenesis of endothelial cells through regulation of cell adhesion, and cytokine pathways.
Collapse
Affiliation(s)
- Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Chen Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Ying Xing
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Wuga Sha
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8 Canada
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| |
Collapse
|
265
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
266
|
Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam 2019; 2019:3706315. [PMID: 31275545 PMCID: PMC6582859 DOI: 10.1155/2019/3706315] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Experimental work of the last two decades has revealed the general steps of the wound healing process. This complex network has been organized in three sequential and overlapping steps. The first step of the inflammatory phase is an immediate response to injury; primary sensory neurons sense injury and send danger signals to the brain, to stop bleeding and start inflammation. The following target of the inflammatory phase, led by the peripheral blood mononuclear cells, is to eliminate the pathogens and clean the wound. Once this is completed, the inflammatory phase is resolved and homeostasis is restored. The aim of the proliferative phase, the second phase, is to repair wound damage and begin tissue remodeling. Fibroplasia, reepithelialization, angiogenesis, and peripheral nerve repair are the central actions of this phase. Lastly, the objective of the final phase is to complete tissue remodeling and restore skin integrity. This review provides present day information regarding the status of the participant cells, extracellular matrix, cytokines, chemokines, and growth factors, as well as their interactions with the microenvironment during the wound healing process.
Collapse
Affiliation(s)
- Luis Cañedo-Dorantes
- Research Division, Faculty of Medicine, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
267
|
Chadwick P, Ousey K. Bacterial-binding dressings in the management of wound healing and infection prevention: a narrative review. J Wound Care 2019; 28:370-382. [DOI: 10.12968/jowc.2019.28.6.370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of this review was to present the clinical data on the use of the family of bacterial-binding dressings (Sorbact; dialkylcarbamoyl chloride-coated) in the treatment of a variety of acute and chronic wounds. The findings are discussed in terms of the effectiveness of the bacterial-binding dressings on bacterial bioburden reduction, infection prevention, initiation/progression of wound healing and cost-effectiveness. The evidence in support of the bacterial-binding dressings is strongest in the area of infection prevention in surgical wounds, with several controlled trials showing the prophylactic benefit of the dressing in these wounds. Wound bioburden management in chronic wounds is supported by a number of clinical studies. In total, 29 published clinical studies (with a total of 4044 patients) were included in this review.
Collapse
Affiliation(s)
- Paul Chadwick
- Clinical Director, The College of Podiatry, Quartz House, 207 Providence Square, Mill Street, London, SE1 2EW
| | - Karen Ousey
- Professor of Skin Integrity, Professor and Director of the Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield
| |
Collapse
|
268
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
269
|
The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages' Response and Wound Healing in Indirect Co-culture System In Vitro. Int J Mol Sci 2019; 20:ijms20071671. [PMID: 30987193 PMCID: PMC6479913 DOI: 10.3390/ijms20071671] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023] Open
Abstract
Immunomodulatory and wound healing activities of adipose-derived stem cells (ADSCs) have been reported in various in vitro and in vivo experimental models suggesting their beneficial role in regenerative medicine and treatments of inflammatory-related disorders. Lipoma-derived stem cells (LDSCs) were reported as a potential tool in regenerative medicine due to the similarity with ADSCs but we have previously shown that LDSCs have different differentiation capacity than ADSCs despite a similar mesenchymal phenotype. To further analyze the potential differences and/or similarities between those two stem cell types, in the present study we examined the macrophages (MΦs)’ response, immunomodulatory and wound healing effect of conditioned media (CM) of LDSCs and ADSCs in indirect co-culture system in vitro. We confirmed similar mesenchymal phenotype and stemness state of LDSCs and ADSCs but indicated differences in expression of some inflammatory-related genes. Anti-inflammatory potential of CM of LDSCs and ADSCs, with pronounced effect of LDSCs, in unstimulated RAW 264.7 MΦs was evaluated by decrease in Tnf and increase in Il10 gene expression, which was confirmed by corresponding cytokines’ secretion analysis. Conditioned media of both LDSCs and ADSCs led to the functional activation of MΦs, with slightly more pronounced effect of CM of LDSCs, while both stimulated wound healing in vitro in a similar manner. Results of this study suggest that LDSCs secrete soluble factors like ADSCs and therefore may have a potential for application in regenerative medicine, due to immunomodulatory and wound healing activity, and indicate that LDSCs through secretome may interact with other cells in lipoma tissue.
Collapse
|
270
|
Souza Neto Júnior JDC, Estevão LRDM, Ferraz AA, Simões RS, Vieira MGF, Evêncio-Neto J. Ointment of Ximenes americana promotes acceleration of wound healing in rats1. Acta Cir Bras 2019; 34:e201900307. [PMID: 30892393 PMCID: PMC6585885 DOI: 10.1590/s0102-865020190030000007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose To evaluate the healing potential of the Ximenia americana
hydroalcoholic extract in 10% cream in excisional wound models in rats. Methods Sixty male adults Wistar rats were submitted to skin and subcutaneous tissue
surgery in the right and left thoracic regions, divided into three
experimental groups: Standard submitted to treatment with only the base
vehicle, Treated wounds treated with hydroalcoholic extract of X. americana
applied on 10%, Lanette base and Control, untreated wounds. The treatment
was performed daily and the wounds evaluated microscopically by the
quantification of fibroblasts, collagen fibers and blood vessels. Results The histomorphometric analysis showed a significant increase in the number
of fibroblasts, collagen fibers and blood vessels in the treated group. Conclusion The topical action of the cream based on Ximenia americana
shows angiogenic effects and improves the replacement of collagen,
suggesting its use for the development of herbal remedy in the treatment of
cutaneous wound healing.
Collapse
Affiliation(s)
- José de Castro Souza Neto Júnior
- Fellow PhD degree, Postgraduate Program in Animal Bioscience, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition and interpretation of data, technical procedures, histopathological examinations, statistics analysis, manuscript preparation
| | - Lígia Reis de Moura Estevão
- PhD, Department of Morphology and Animal Physiology, UFRPE, Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Adriana Aparecida Ferraz
- PhD, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Brazil. Histopathological examinations, manuscript preparation, critical revision
| | - Ricardo Santos Simões
- PhD, Department of Morphology and Genetic, UNIFESP, Sao Paulo-SP, Brazil. Analysis of data, manuscript writing, final approval
| | - Marcela Gabriela Feitosa Vieira
- Fellow Master degree, Department of Morphology and Animal Physiology, UFRPE, Recife-PE, Brazil. Analysis and interpretation of data, manuscript writing
| | - Joaquim Evêncio-Neto
- Full Professor, Department of Morphology and Animal Physiology, UFRPE, Recife-PE, Brazil. Conception and design of the study, manuscript preparation, critical revision
| |
Collapse
|
271
|
Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov 2019; 14:485-497. [PMID: 30870037 DOI: 10.1080/17460441.2019.1588879] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic, nonhealing skin wounds claim >3% of the health-care budget in industrialized countries, and the incidence is rising. Currently, two parallel trends influence innovations within the field of wound healing: the need to reduce spread of antibiotic resistance and the emerging use of health economy and value-based models. Areas covered: This review focuses on the discovery of drug candidates and development of treatments aiming to enhance wound healing in the heterogeneous group of patients with nonhealing wounds. Expert opinion: Nonhealing wounds are multifaceted and recognized as difficult indications. The majority of products currently in use are medical device dressings, or concepts of negative pressure or hyperbaric oxygen treatment. Global best practice guidelines for the treatment of diabetic foot ulcers recommend debridement, redressing, as well as infection control, and are critical to the lack of coherent clinical evidence for many approved products in active wound care. To accelerate wound healing, there is an emerging trend toward biologics, gene therapy, and novel concepts for drug delivery in research and in the pipeline for clinical trials. Scientific delineation of the therapeutic mechanism of action is, in our opinion, vital for clinical trial success and for an increased fraction of medical products in the pharmaceutical pipeline.
Collapse
Affiliation(s)
- E Öhnstedt
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - H Lofton Tomenius
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - E Vågesjö
- b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - M Phillipson
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| |
Collapse
|