251
|
Lucas TFG, Lazari MFM, Porto CS. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Mol Cell Endocrinol 2014; 382:84-96. [PMID: 24056172 DOI: 10.1016/j.mce.2013.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/02/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the role of each estrogen receptors on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Activation of ESR1 by 17β-estradiol (E2) and ESR1-selective agonist PPT increased CCND1 expression, and this effect was dependent on NF-kB activation. E2 and the ESR2-selective agonist DPN, but not PPT, increased, in a PI3K and CREB-dependent manner, the expression of CDKN1B and the transcription factors GATA-1 and DMRT1. Analyzing the expression of ESR1 and ESR2 in different stages of development of Sertoli cells, we observed that the ESR1/ESR2 ratio decreased with age, and this ratio seems to be important to determine the end of cell proliferation and the start of cell differentiation. In Sertoli cells from 15-day-old rats, the ESR1/ESR2 ratio favors the effect of ESR1 and the activation of this receptor increased [Methyl-(3)H]thymidine incorporation. We propose that in Sertoli cells from 15-day-old rats E2 modulates Sertoli cell proliferation through ESR1/NF-kB-mediated increase of CCND1, and cell cycle exit and differentiation through ESR2/CREB-mediated increase of CDKN1B, GATA-1 and DMRT1. The present study reinforces the important role of estrogen for normal testis development.
Collapse
Affiliation(s)
- Thaís F G Lucas
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
252
|
TAp73 is required for spermatogenesis and the maintenance of male fertility. Proc Natl Acad Sci U S A 2014; 111:1843-8. [PMID: 24449892 DOI: 10.1073/pnas.1323416111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The generation of viable sperm proceeds through a series of coordinated steps, including germ cell self-renewal, meiotic recombination, and terminal differentiation into functional spermatozoa. The p53 family of transcription factors, including p53, p63, and p73, are critical for many physiological processes, including female fertility, but little is known about their functions in spermatogenesis. Here, we report that deficiency of the TAp73 isoform, but not p53 or ΔNp73, results in male infertility because of severe impairment of spermatogenesis. Mice lacking TAp73 exhibited increased DNA damage and cell death in spermatogonia, disorganized apical ectoplasmic specialization, malformed spermatids, and marked hyperspermia. We demonstrated that TAp73 regulates the mRNA levels of crucial genes involved in germ stem/progenitor cells (CDKN2B), spermatid maturation/spermiogenesis (metalloproteinase and serine proteinase inhibitors), and steroidogenesis (CYP21A2 and progesterone receptor). These alterations of testicular histology and gene expression patterns were specific to TAp73 null mice and not features of mice lacking p53. Our work provides previously unidentified in vivo evidence that TAp73 has a unique role in spermatogenesis that ensures the maintenance of mitotic cells and normal spermiogenesis. These results may have implications for the diagnosis and management of human male infertility.
Collapse
|
253
|
Goericke-Pesch S, Gentil M, Spang A, Kowalewski MP, Failing K, Hoffmann B. Status of the down-regulated canine testis using two different GNRH agonist implants in comparison with the juvenile testis. Reproduction 2013; 146:517-26. [DOI: 10.1530/rep-13-0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Testicular function in the dog was down-regulated using two different GNRH agonist implants, with adult and juvenile testes serving as controls. Treatment resulted in an increased percentage of the interstitial area and decreased area of Leydig cell nuclei. Expression of StAR and the steroidogenic enzymes cytochrome P450 side-chain cleavage enzyme (P450scc, CYP11A1) and cytochrome P450 17α-hydroxylase-17,20-lyase (P450c17, CYP17A1) in Leydig cells was blocked at the mRNA and protein level, showing no differences between the two agonists. Staining for androgen receptor (AR) by immunohistochemistry was positive in Sertoli, Leydig and peritubular cells and some spermatogonia, with in situ hybridization confirming expression in Sertoli cells. At the mRNA level, expression of AR was not affected; however, translation was blocked (reduced percentage of AR-positive Sertoli cells), with the number of nuclei in basal position being decreased. In the juvenile testes, mRNA expression of StAR, CYP11A1 and CYP17A1 was higher compared with the other groups but distinctly lower for the AR. At the protein level, the expression was at the limit of detection for StAR; AR-positive Sertoli cells were not detected. Our observations show that the down-regulated testis is different from the juvenile one rather resembling the testicular status in seasonal breeders out of season.
Collapse
|
254
|
Soliman AT, Yasin M, El-Awwa A, Abdelrahman MO, De Sanctis V. Does blood transfusion affect pituitary gonadal axis and sperm parameters in young males with sickle cell disease? Indian J Endocrinol Metab 2013; 17:962-968. [PMID: 24381868 PMCID: PMC3872712 DOI: 10.4103/2230-8210.122599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE We evaluated the effect of packed red cell transfusion (PCTx) on serum concentrations of gonadotropins luteinizing hormone and follicle-stimulating hormone (LH and FSH) and testosterone (T) levels and measured sperm parameters in young adults with sickle cell disease (SCD) on top-up transfusion (TTx) and those on exchange transfusion (ETx) regimen. MATERIALS AND METHODS Basal serum concentrations of FSH, LH, and T and semen parameters were evaluated before and 7 days after PCTx in 18 young adults with transfusion-dependent SCD, aged 20.7 ± 2.88 years. They had full pubertal development (Tanner's stage 5), and capacity to ejaculate. They were regularly transfused since early childhood. Chelation therapy was started early during the first 2 years of life using desferrioxamine and was replaced by deferasirox for the last 4-5 years. Ten patients were on TTx and eight were on ETx regimen. RESULTS PCTx significantly increased hemoglobin (Hb) from 8.5 ± 1.17 g/dl to 10.5 ± 0.4 g/dl, T from 12.3 ± 1.24 nmol/L to 14.23 ± 1.22 nmol/L and gonadotropins' concentrations. Sperm parameters improved significantly after PCTx including: total sperm count from 87.4 ± 24.6 million/ml to 146.2 ± 51.25 million/ml, total progressive sperm motility (TPM) from 40.8 ± 11.1 million/ml to 93.4 ± 38.3 million/ml, rapid progressive sperm motility (RPM) progressive motility from 29.26 ± 8.75 million/ml to 67.4 ± 29 million/ml. After PCTx the total sperm count, TPM and RPM were significantly better in the ETx group versus the TTx group. Before and after PCTx, T concentrations were correlated significantly with sperm total count, volume, TPM and RPM (r = 0.53, 0.55, 0.42, and 0.38, respectively, P < 0.01). Hb concentrations were correlated significantly with sperm count, TPM, RPM, and % of sperms with normal morphology (r = 0.60, 0.69, 0.66, and 0.86, respectively, P < 0.001). CONCLUSION Our study suggests that in males with SCD blood transfusion is associated with significant acute enhancement of sperm parameters and with increased concentrations of serum T, LH, and FSH. Improvement of sperm parameters were significantly better in the ETx group verses the TTx group. These "acute" effects on spermiogenesis are reached with an unknown mechanism/s and suggest a number of pathways that need further human and/or experimental studies.
Collapse
Affiliation(s)
- Ashraf T. Soliman
- Department of Pediatric Endocrinology, Hamad Medical Center, Doha, Qatar
| | - Mohamed Yasin
- Department of Hematology, Hamad Medical Center, Doha, Qatar
| | - Ahmed El-Awwa
- Department of Pediatric Endocrinology, Hamad Medical Center, Doha, Qatar
| | | | - Vincenzo De Sanctis
- Department of Pediatrics, Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy
| |
Collapse
|
255
|
C-terminal region of teneurin-1 co-localizes with the dystroglycan complex in adult mouse testes and regulates testicular size and testosterone production. Histochem Cell Biol 2013; 141:191-211. [PMID: 24154551 DOI: 10.1007/s00418-013-1154-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/10/2023]
Abstract
Testicular size is directly proportional to fertility potential and is dependent on the integration of developmental proteins, trophic factors, and sex steroids. The teneurins are transmembrane glycoproteins that function as signaling and cell adhesion molecules in the establishment and maintenance of the somatic gonad, gametogenesis, and basement membrane. Moreover, teneurins are thought to function redundantly to the extracellular matrix protein, dystroglycan. Encoded on the last exon of the teneurin genes is a family of bioactive peptides termed the teneurin C-terminal-associated peptides (TCAPs). One of these peptides, TCAP-1, functionally interacts with β-dystroglycan to act as a neuromodulatory peptide with trophic characteristics independent from the teneurins. However, little is known about the localization and relationship between the teneurin-TCAP-1 system and the dystroglycans in the gonad. In the adult mouse testis, immunoreactive TCAP-1 was localized to spermatogonia and spermatocytes and co-localized with β-dystroglycan. However, teneurin-1 was localized to the peritubular myoid cell layer of seminiferous tubules and tubules within the epididymis, and co-localized with α-dystroglycan and α-smooth muscle actin. TCAP-1-binding sites were identified in the germ cell layers and adluminal compartment of the seminiferous tubules, and epithelial cells of the epididymis. In vivo, TCAP-1 administration to adult mice for 9 days increased testicular size, seminiferous and epididymal tubule short-diameter and elevated testosterone levels. TCAP-1-treated mice also showed increased TCAP-1 immunoreactivity in the caput and corpa epididymis. Our data provide novel evidence of TCAP-1 localization in the testes that is distinct from teneurin-1, but is integrated through an association with the dystroglycan complex.
Collapse
|
256
|
Mok KW, Mruk DD, Cheng CY. Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:291-358. [PMID: 23317821 DOI: 10.1016/b978-0-12-407704-1.00006-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian testes, haploid spermatozoa are formed from diploid spermatogonia during spermatogenesis, which is a complicated cellular process. While these cellular events were reported in the 1960s and 1970s, the underlying molecular mechanism(s) that regulates these events remained unexplored until the past ∼10 years. For instance, adhesion proteins were shown to be integrated components at the Sertoli cell-cell interface and/or the Sertoli-spermatid interface in the late 1980s. But only until recently, studies have demonstrated that some of the adhesion proteins serve as the platform for signal transduction that regulates cell adhesion. In this chapter, a brief summary and critical discussion are provided on the latest findings regarding these cell-adhesion proteins in the testis and their relationship to spermatogenesis. Moreover, antagonistic effects of two mammalian target of rapamycin (mTOR) complexes, known as mTORC1 and mTORC2, on cell-adhesion function in the testis are discussed. Finally, a hypothetic model is presented to depict how these two mTOR-signaling complexes having the "yin" and "yang" antagonistic effects on the Sertoli cell tight junction (TJ)-permeability barrier can maintain the blood-testis barrier (BTB) integrity during the epithelial cycle while preleptotene spermatocytes are crossing the BTB.
Collapse
Affiliation(s)
- Ka Wai Mok
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, USA
| | | | | |
Collapse
|
257
|
Zalata A, El-Mogy M, Abdel-Khabir A, El-Bayoumy Y, El-Baz M, Mostafa T. Seminal androgens, oestradiol and progesterone in oligoasthenoteratozoospermic men with varicocele. Andrologia 2013; 46:761-5. [PMID: 23944757 DOI: 10.1111/and.12145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 02/05/2023] Open
Abstract
This study aimed to assess seminal androgens, oestradiol, progesterone levels in oligoasthenoteratozoospermic (OAT) men with varicocele (Vx). In all, 154 men with matched age and body mass index were investigated that were divided into healthy fertile controls (n = 35), OAT men with Vx (n = 55), OAT men without Vx (n = 64). They were subjected to assessment of semen parameters, seminal levels of testosterone (T), androstenedione (A), 5α-androstane-3 α,17 β-diol (3 α-diol), oestradiol (E2 ), 17-hydroxyprogesterone (17-OHP) and progesterone (P). Seminal levels of T and A were significantly decreased where seminal levels of 3 α-diol, E2 , 17-OHP, P were significantly higher in OAT men with/without Vx compared with fertile controls. Sperm count, sperm motility and sperm normal forms percentage demonstrated significant positive correlation with seminal T and A and significant negative correlation with seminal 3 α-diol, E2 , P. It is concluded that in fertile men, seminal T and A are significantly increased and seminal 3 α-diol, E2 , 17-OHP, P are significantly decreased compared with infertile OAT men with/without Vx. Association of Vx demonstrated a nonsignificant influence on these hormonal levels in OAT cases. Sperm count, sperm motility and sperm normal forms demonstrated significant positive correlation with seminal T, A and significant negative correlation with seminal 3 α-diol, E2 , P.
Collapse
Affiliation(s)
- A Zalata
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | |
Collapse
|
258
|
Soares TS, Fernandes SAF, Lima ML, Stumpp T, Schoorlemmer GH, Lazari MFM, Porto CS. Experimental varicocoele in rats affects mechanisms that control expression and function of the androgen receptor. Andrology 2013; 1:670-81. [PMID: 23836701 DOI: 10.1111/j.2047-2927.2013.00103.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 01/24/2023]
Abstract
Varicocoele is an important cause of male infertility. Normal male reproductive function and fertility depends on a delicate balance between androgen receptor (AR) and the classic oestrogen receptors ESR1 (ERα) and ESR2 (ERβ). Using a model of surgically induced varicocoele in rats, this study aimed to investigate the effects of varicocoele on the expression of AR, ESR1, ESR2 and G-protein coupled oestrogen receptor (GPER). Varicocoele did not affect the mRNA and protein expression of ESR1 and ESR2 in both testes. Varicocoele did not affect the mRNA and protein expression of GPER in the right testis, but slightly reduced the mRNA and increased the protein levels in the left testis. Varicocoele did not affect the mRNA for AR, but reduced the protein levels in both testes. A proteomic approach was used in an attempt to find differentially expressed targets with possible correlation with AR downregulation. Varicocoele caused the differential expression of 29 proteins. Six proteins were upregulated, including the receptor for activated C kinase 1 (RACK1), and 23 were downregulated, including dihydrolipoamide dehydrogenase, alpha-enolase and pyrophosphatase 1. Western blot analysis confirmed that varicocoele upregulated the expression of RACK1, a protein involved with tyrosine phosphorylation and regulation of AR transcriptional activity, AR metabolism and dynamics of the blood-testis barrier. In conclusion, this study suggests that varicocoele affects mechanisms that control AR expression and function. This regulation of AR may play an important role in the varicocoele-induced testicular dysfunction. Furthermore, varicocoele downregulates several other proteins in the testis that may be useful markers of spermatozoa function and male infertility.
Collapse
Affiliation(s)
- T S Soares
- Section of Experimental Endocrinology, Department of Pharmacology, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
259
|
Liang X, Cheng S, Jiang X, He X, Wang Y, Jiang Z, Hou W, Li S, Liu Y, Wang Z. The Noncircadian Function of the Circadian Clock Gene in the Regulation of Male Fertility. J Biol Rhythms 2013; 28:208-17. [DOI: 10.1177/0748730413486873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mice homozygous for a dominant-negative allele of the Clock gene ( ClockΔ 19/Δ 19) have slightly but significantly decreased male fertility. The molecular mechanism for this reduction in fertility is unknown. In the present study, we used a small hairpin RNA (shRNA) strategy to specifically knock down the Clock gene expression in the testes of male mice and determined its effect on male fertility. Clock knockdown led to smaller litter size, a lower in vitro fertility rate, lower blastula formation rate, and lower acrosin activity of the knockdown sperm. Locomotor activity analysis of the Clock knockdown mice revealed that Clock knockdown in testes did not alter their circadian rhythm. Taken together, these results provide the first evidence that Clock gene expression in round spermatids is essential for maintaining male reproductivity and suggest that acrosin may be a novel regulatory target of the Clock gene that would regulate the fertilization and early embryonic development to blastula. These findings may provide new clues for development of novel male contraceptive strategies.
Collapse
Affiliation(s)
- Xin Liang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
- Reproductive Medical Center of the Second Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- These two authors contributed equally to this work
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
- These two authors contributed equally to this work
| | - Xiaohui Jiang
- Reproductive Medicine Laboratory of the Second Clinical College, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xuan He
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Wang Hou
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shiping Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
260
|
Affiliation(s)
- Carole R Mendelson
- University of Texas Southwestern Medical Center, Department of Biochemistry, North Texas March of Dimes Birth Defects Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9038, USA.
| |
Collapse
|
261
|
Qiu LL, Wang X, Zhang XH, Zhang Z, Gu J, Liu L, Wang Y, Wang X, Wang SL. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol Lett 2013; 219:116-24. [DOI: 10.1016/j.toxlet.2013.03.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/17/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
|
262
|
Pollet TV, Cobey KD, van der Meij L. Testosterone levels are negatively associated with fatherhood [corrected] in males, but positively related to offspring count in fathers. PLoS One 2013; 8:e60018. [PMID: 23573228 PMCID: PMC3616053 DOI: 10.1371/journal.pone.0060018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/20/2013] [Indexed: 01/13/2023] Open
Abstract
Variation in testosterone (T) is thought to affect the allocation of effort between reproductive and parenting strategies. Here, using a large sample of elderly American men (n = 754) and women (n = 669) we examined the relationship between T and self-reported parenthood, as well as the relationship between T and number of reported children. Results supported previous findings from the literature, showing that fathers had lower T levels than men who report no children. Furthermore, we found that among fathers T levels were positively associated with the number of children a man reports close to the end of his lifespan. Results were maintained when controlling for a number of relevant factors such as time of T sampling, participant age, educational attainment, BMI, marital status and reported number of sex partners. In contrast, T was not associated with either motherhood or the number of children women had, suggesting that, at least in this sample, T does not influence the allocation of effort between reproductive and parenting strategies among women. Findings from this study contribute to the growing body of literature suggesting that, among men, pair bonding and paternal care are associated with lower T levels, while searching and acquiring sex partners is associated with higher T levels.
Collapse
Affiliation(s)
- Thomas V Pollet
- Department of Social and Organizational Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
263
|
Xia D, Parvizi N, Zhou Y, Xu K, Jiang H, Li R, Hang Y, Lu Y. Paternal fenvalerate exposure influences reproductive functions in the offspring. Reprod Sci 2013; 20:1308-15. [PMID: 23548413 DOI: 10.1177/1933719113483015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fenvalerate (Fen), a synthetic pyrethroid insecticide, has been shown to have adverse effects on male reproductive system. Thus, the aim of the present study was to elucidate whether these adverse effects are passed from exposed male mice to their offspring. Adult male mice received Fen (10 mg/kg) daily for 30 days and mated with untreated females to produce offspring. Fenvalerate significantly changed the methylation status of angiotensin I-converting enzyme (Ace), forkhead box O3 (Foxo3a), huntingtin-associated protein 1 (Hap1), nuclear receptor subfamily 3 (Nr3c2), promyelocytic leukemia (Pml), and Prostaglandin F2 receptor negative regulator (Ptgfrn) genes in paternal mice sperm genomic DNA. Further, Fen significantly increased sperm abnormalities; serum testosterone and estradiol-17ß level in adult male (F0) and their male offspring (F1). Further, paternal Fen treatment significantly increased the length of estrous cycle, serum estradiol-17ß concentration in estrus, and progesterone levels in diestrus in female offspring (F1). These findings suggest that adverse effects of paternal Fen exposure on reproductive functions can be seen not only in treated males (F0) but also in their offsprings.
Collapse
Affiliation(s)
- Dong Xia
- 1Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Dietze R, Konrad L, Shihan M, Kirch U, Scheiner-Bobis G. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:511-9. [DOI: 10.1016/j.bbamcr.2012.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 01/27/2023]
|
265
|
Lie PPY, Cheng CY, Mruk DD. Signalling pathways regulating the blood-testis barrier. Int J Biochem Cell Biol 2013; 45:621-5. [PMID: 23262290 PMCID: PMC3632505 DOI: 10.1016/j.biocel.2012.12.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 12/02/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022]
Abstract
Throughout mammalian spermatogenesis, preleptotene/leptotene spermatocytes traverse the blood-testis barrier during stages VIII-XI of the seminiferous epithelial cycle while trapped within a dynamic intermediate compartment that is sealed at north and south poles by tight junctions, basal ectoplasmic specializations, desmosomes and gap junctions. In order for spermatocytes to gain entry into the adluminal compartment of the seminiferous epithelium for continued development, 'old' junctions present above migrating spermatocytes disassemble, while 'new' junctions assemble simultaneously below these germ cells. In this way, the integrity of the blood-testis barrier and the homeostasis of the seminiferous epithelium can remain intact during spermatogenesis. Previous studies have shown an array of cellular events, including protein internalization and cytoskeletal remodeling, to underline blood-testis barrier restructuring, whereas other studies have reported BTB dysfunction to associate with activation of the p38 mitogen-activated protein kinase pathway. Herein, we discuss the signaling pathways and mechanisms involved in blood-testis barrier restructuring in the mammalian testis.
Collapse
Affiliation(s)
- Pearl P. Y. Lie
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| | - Dolores D. Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
266
|
Su W, Mruk DD, Cheng CY. Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Crit Rev Biochem Mol Biol 2013; 48:153-72. [PMID: 23339542 DOI: 10.3109/10409238.2012.758084] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes are being regulated during spermatogenesis. We also provide a working model based on the latest findings in the field including our laboratory to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | |
Collapse
|
267
|
Xiao X, Mruk DD, Cheng FL, Cheng CY. C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:295-317. [PMID: 23397631 DOI: 10.1007/978-1-4614-4711-5_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Src family kinases (SFKs), in particular c-Src and c-Yes, are nonreceptor protein tyrosine kinases that mediate integrin signaling at focal adhesion complex at the cell-extracellular matrix interface to regulate cell adhesion, cell cycle progression, cell survival, proliferation and differentiation, most notably in cancer cells during tumorigenesis and metastasis. Interestingly, recent studies have shown that these two proto-oncogenes are integrated components of the stem cell niche and the cell-cell actin-based anchoring junction known as ectoplasmic specialization (ES) at the: (1) Sertoli cell-spermatid interface known as apical ES and (2) Sertoli-Sertoli cell interface known as basal ES which together with tight junctions (TJ), gap junctions and desmosomes constitute the blood-testis barrier (BTB). At the stem cell niche, these SFKs regulate spermatogonial stem cell (SSC) renewal to maintain the proper population of SSC/spermatogonia for spermatogenesis. At the apical ES and the BTB, c-Src and c-Yes confer cell adhesion either by maintaining the proper phosphorylation status of integral membrane proteins at the site which in turn regulates protein-protein interactions between integral membrane proteins and their adaptors, or by facilitating androgen action on spermatogenesis via a nongenomic pathway which also modulates cell adhesion in the seminiferous epithelium. Herein, we critically evaluate recent findings in the field regarding the roles of these two unlikely partners of spermatogenesis. We also propose a hypothetical model on the mechanistic functions of c-Src and c-Yes in spermatogenesis so that functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Xiang Xiao
- Center for Biomedical Research, Population Council, New York New York, USA
| | | | | | | |
Collapse
|
268
|
Xiao X, Cheng CY, Mruk DD. Intercellular adhesion molecule-2 is involved in apical ectoplasmic specialization dynamics during spermatogenesis in the rat. J Endocrinol 2013; 216:73-86. [PMID: 23097088 PMCID: PMC3535886 DOI: 10.1530/joe-12-0434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the role of intercellular adhesion molecule-2 (ICAM2) in the testis. ICAM2 is a cell adhesion protein having important roles in cell migration, especially during inflammation when leukocytes cross the endothelium. Herein, we showed ICAM2 to be expressed by germ and Sertoli cells in the rat testis. When a monospecific antibody was used for immunolocalization experiments, ICAM2 was found to surround the heads of elongating/elongated spermatids in all stages of the seminiferous epithelial cycle. To determine whether ICAM2 is a constituent of apical ectoplasmic specialization (ES), co-immunoprecipitation and dual immunofluorescence staining were performed. Interestingly, ICAM2 was found to associate with β1-integrin, nectin-3, afadin, Src, proline-rich tyrosine kinase 2, annexin II, and actin. Following CdCl₂ treatment, ICAM2 was found to be upregulated during restructuring of the seminiferous epithelium, with round spermatids becoming increasingly immunoreactive for ICAM2 by 6-16 h. Interestingly, there was a loss in the binding of ICAM2 to actin during CdCl₂-induced germ cell loss, suggesting that a loss of ICAM2-actin interactions might have facilitated junction restructuring. Taken collectively, these results illustrate that ICAM2 plays an important role in apical ES dynamics during spermatogenesis.
Collapse
|
269
|
Soliman A, Yasin M, El-Awwa A, Osman M, de Sanctis V. Acute effects of blood transfusion on pituitary gonadal axis and sperm parameters in adolescents and young men with thalassemia major: a pilot study. Fertil Steril 2012; 98:638-43. [DOI: 10.1016/j.fertnstert.2012.05.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 01/27/2023]
|
270
|
The protection of selenium on cadmium-induced inhibition of spermatogenesis via activating testosterone synthesis in mice. Food Chem Toxicol 2012; 50:3521-9. [PMID: 22828241 DOI: 10.1016/j.fct.2012.07.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022]
Abstract
Selenium (Se) is an essential trance element in testis. However, the potential protective effects of Se against cadmium (Cd)-induced reproductive toxicity remained to be elucidated. Male ICR mice were orally administered by gavage with Na2SeO3 (0.1, 0.2, 0.4 mg/kg BW) for 1h prior to CdCl2 (5 mg/kg BW) alone or in combination for 15, 25 or 35 days. Cd exposure caused a significant decrease in body weight, sperm concentration and motility as well as plasma testosterone level which was accompanied by decreased antioxidant enzymatic activity of SOD and GSH-Px and by increased lipid peroxidation (as malondialdehyde, MDA). Se pretreatment compensated deficits in the sperm parameters (concentration, motility and morphology) induced by Cd. Se (0.4 mg/kg BW) treatment significantly increased serum testosterone level that was reduced by Cd (on 15th, 25th and 35th day) (P<0.01). Se treatment ameliorated Cd-induced reduction in testicular steroidogenic acute regulatory (StAR) and 17β-hydroxysteroid dehydrogenase (17β-HSD) activities. The present study suggest that the protective potential of Se against Cd-induced reprotoxicity might be due to up-regulation StAR and testosterone synthetic enzyme activity, which could be useful for increasing testosterone synthesis for achieving optimum protection in sperm quality and spermatogenesis.
Collapse
|
271
|
Lucas TF, Pimenta MT, Pisolato R, Lazari MFM, Porto CS. 17β-estradiol signaling and regulation of Sertoli cell function. SPERMATOGENESIS 2011; 1:318-324. [PMID: 22332115 DOI: 10.4161/spmg.1.4.18903] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/23/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023]
Abstract
In this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells. In conclusion, ESRs and GPER can mediate rapid 17β-estradiol signaling in Sertoli cells, and modulate transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development and to direct further studies, which may contribute to better understand the causes of male infertility.
Collapse
Affiliation(s)
- Thaís Fg Lucas
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo, Brazil
| | | | | | | | | |
Collapse
|