251
|
Reichman H, Moshkovits I, Itan M, Pasmanik-Chor M, Vogl T, Roth J, Munitz A. Transcriptome profiling of mouse colonic eosinophils reveals a key role for eosinophils in the induction of s100a8 and s100a9 in mucosal healing. Sci Rep 2017; 7:7117. [PMID: 28769105 PMCID: PMC5540981 DOI: 10.1038/s41598-017-07738-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are bone marrow-derived cells that have been largely implicated in Th2-associated diseases. Recent data highlights a key role for eosinophils in mucosal innate immune responses especially in the gastrointestinal (GI) tract, which is one of the largest eosinophil reservoirs in the body. Although eosinophils express and synthesize a plethora of proteins that can mediate their effector activities, the transcriptome signature of eosinophils in mucosal inflammation and subsequent repair has been considerably overlooked. We demonstrate that eosinophils are recruited to the colon in acute inflammatory stages where they promote intestinal inflammation and remain in substantial numbers throughout the mucosal healing process. Microarray analysis of primary colonic eosinophils that were sorted at distinct stages of mucosal inflammation and repair revealed dynamic regulation of colonic eosinophil mRNA expression. The clinically relevant genes s100a8 and s100a9 were strikingly increased in colonic eosinophils (up to 550-fold and 80-fold, respectively). Furthermore, local and systemic expression of s100a8 and s100a9 were nearly diminished in eosinophil-deficient ΔdblGATA mice, and were re-constituted upon adoptive transfer of eosinophils. Taken together, these data may provide new insight into the involvement of eosinophils in colonic inflammation and repair, which may have diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Italy Moshkovits
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 64239, Israel
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
252
|
Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int J Mol Sci 2017; 18:ijms18071352. [PMID: 28672811 PMCID: PMC5535845 DOI: 10.3390/ijms18071352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested the potential involvement of oxidative stress in gastrointestinal cancers. In light of this, research efforts have been focused on the potential of dietary antioxidant intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Rice bran, a by-product of rice milling, has been shown to contain an abundance of phytochemicals, which are dietary antioxidants. To date, a number of studies have shown the antioxidative effect of rice bran intake, and some demonstrated that such an effect may contribute to gastrointestinal cancer prevention, largely through the antioxidative properties of rice bran phytochemicals. In addition, these phytochemicals were shown to provide protection against cancer through mechanisms linked to oxidative stress, including β-catenin-mediated cell proliferation and inflammation. The present article provides an overview of current evidence for the antioxidative properties of rice bran and its phytochemicals, and for the potential of such properties in cancer prevention through the oxidative-stress-linked mechanisms mentioned above. The article also highlights the need for an evaluation of the effectiveness of rice bran dietary interventions among cancer survivors in ameliorating oxidative stress and reducing the level of gastrointestinal cancer biomarkers, thereby establishing the potential of such interventions among these individuals in the prevention of cancer recurrence.
Collapse
|
253
|
Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, Hindryckx P, De Vos M, Laukens D. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. J Transl Med 2017; 97:519-529. [PMID: 28165466 DOI: 10.1038/labinvest.2017.6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023] Open
Abstract
Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNFΔARE/WT mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNFΔARE/WT mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNFΔARE/WT mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.
Collapse
Affiliation(s)
| | - Daniel Borsboom
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sarah Devriese
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Sophie Van Welden
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Tom Holvoet
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Martine De Vos
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Debby Laukens
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
254
|
Effect of luteolin on inflammatory responses in RAW264.7 macrophages activated with LPS and IFN-γ. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
255
|
Fagundes RR, Taylor CT. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J Appl Physiol (1985) 2017; 123:1328-1334. [PMID: 28408694 DOI: 10.1152/japplphysiol.00203.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
The intestinal mucosa is exposed to fluctuations in oxygen levels due to constantly changing rates of oxygen demand and supply and its juxtaposition with the anoxic environment of the intestinal lumen. This frequently results in a state of hypoxia in the healthy mucosa even in the physiologic state. Furthermore, pathophysiologic hypoxia (which is more severe and extensive) is associated with chronic inflammatory diseases including inflammatory bowel disease (IBD). The hypoxia-inducible factor (HIF), a ubiquitously expressed regulator of cellular adaptation to hypoxia, is central to both the adaptive and the inflammatory responses of cells of the intestinal mucosa in IBD patients. In this review, we discuss the microenvironmental factors which influence the level of HIF activity in healthy and inflamed intestinal mucosae and the consequences that increased HIF activity has for tissue function and disease progression.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Graduate School of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
256
|
Roles of Dietary Amino Acids and Their Metabolites in Pathogenesis of Inflammatory Bowel Disease. Mediators Inflamm 2017; 2017:6869259. [PMID: 28392631 PMCID: PMC5368367 DOI: 10.1155/2017/6869259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a kind of chronic inflammation, which has increasing incidence and prevalence in recent years. IBD mainly divides into Crohn's disease (CD) and ulcerative colitis (UC). It is hard to cure IBD completely, and novel therapies are urgently needed. Amino acids (AAs) and their metabolites are regarded as important nutrients for humans and animals and also play an important role in IBD amelioration. In the present study, the potential protective effects of AAs and their metabolites on IBD had been summarized with the objective to provide insights into IBD moderating using dietary AAs and their metabolites as a potential adjuvant therapy.
Collapse
|
257
|
Morinda citrifolia (Noni) Fruit Juice Reduces Inflammatory Cytokines Expression and Contributes to the Maintenance of Intestinal Mucosal Integrity in DSS Experimental Colitis. Mediators Inflamm 2017; 2017:6567432. [PMID: 28194046 PMCID: PMC5282445 DOI: 10.1155/2017/6567432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Morinda citrifolia L. (noni) has been shown to treat different disorders. However, data concerning its role in the treatment of intestinal inflammation still require clarification. In the current study, we investigated the effects of noni fruit juice (NFJ) in the treatment of C57BL/6 mice, which were continuously exposed to dextran sulfate sodium (DSS) for 9 consecutive days. NFJ consumption had no impact on the reduction of the clinical signs of the disease or on weight loss. Nonetheless, when a dilution of 1 : 10 was used, the intestinal architecture of the mice was preserved, accompanied by a reduction in the inflammatory infiltrate. Regardless of the concentration of NFJ, a decrease in both the activity of myeloperoxidase and the key inflammatory cytokines, TNF-α and IFN-γ, was also observed in the intestine. Furthermore, when NFJ was diluted 1 : 10 and 1 : 100, a reduction in the production of nitric oxide and IL-17 was detected in gut homogenates. Overall, the treatment with NFJ was effective in different aspects associated with disease progression and worsening. These results may point to noni fruit as an important source of anti-inflammatory molecules with a great potential to inhibit the progression of inflammatory diseases, such as inflammatory bowel disease.
Collapse
|
258
|
Tenorio-Rodriguez PA, Murillo-Álvarez JI, Campa-Cordova ÁI, Angulo C. Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. Journal of Food Science and Technology 2017; 54:422-429. [PMID: 28242941 DOI: 10.1007/s13197-016-2478-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Abstract
The Baja California Peninsula in México has about 670 species of macroalgae along its coast. Species richness increases the probability of finding native macroalgae with potential as sources of bioactive compounds suitable for health, pharmacological, and cosmetic ingredients. To understand the biotechnological value of macroalgae from the peninsula, ethanol extracts from 17 macroalgae (four Chlorophyta, six Rhodophyta, seven Ochrophyta) were screened for antioxidant potential. To determine the antioxidant capacity of macroalgal extracts, 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power, and nitric oxide radical scavenging as well as total phenolic content (TPC) were measured. Extracts of the brown macroalgae were most active. Among these, Eisenia arborea, Padina concrecens, and Cystoseira osmundacea had the highest TPC and exhibited the strongest radical scavenging activities. Correlations were found between TPC macroalgal and scavenging capacity, indicating an important role of polyphenols as antioxidants. This suggests that some brown macroalgae from Baja California Peninsula may be a good source of natural bioactive compounds.
Collapse
Affiliation(s)
- Paola A Tenorio-Rodriguez
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| | - Jesús I Murillo-Álvarez
- Centro Interdisciplinario de Ciencias Marinas-IPN (CICIMAR), Avenida IPN s/n, 23096 La Paz, B.C.S. Mexico
| | - Ángel I Campa-Cordova
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Calle IPN 195, 23096 La Paz, B.C.S. Mexico
| |
Collapse
|
259
|
Biswas S, Das R, Ray Banerjee E. Role of free radicals in human inflammatory diseases. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.596] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|