301
|
Guo H, Bai R, Cui J. [Advances in Combination Therapy of Immune Checkpoint Inhibitors for Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:101-110. [PMID: 32093454 PMCID: PMC7049794 DOI: 10.3779/j.issn.1009-3419.2020.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors (ICIs) therapy is the most commonly used immunotherapy regimen at present. It has been approved for clinical treatment of melanoma, kidney cancer, head and neck cancer, bladder cancer and other tumors. It has made a breakthrough in the treatment of lung cancer and become a new pillar of comprehensive treatment of lung cancer. However, ICIs alone is less effective in non-selective patients, and combination therapy has become a hot topic of exploration. This article focuses on the development of combined immune checkpoint inhibitors and describes how immunotherapy can be used to treat early stage cancer.
Collapse
Affiliation(s)
- Hanfei Guo
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Rilan Bai
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
302
|
Gou R, Dong H, Lin B. Application and reflection of genomic scar assays in evaluating the efficacy of platinum salts and PARP inhibitors in cancer therapy. Life Sci 2020; 261:118434. [PMID: 32941897 DOI: 10.1016/j.lfs.2020.118434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Defective DNA repair is one of the most important features of tumors. BRCA1/2 participates in homologous recombination repair as a key tumor suppressor gene. BRCA1/2 mutation is an important biomarker for predicting the sensitivity of platinum salts and Poly (ADP-ribose) polymerase (PARP) inhibitors in breast cancer, ovarian cancer, and other cancers. However, epigenetic modifications and other mutations in homologous recombination repair (HRR) genes can also cause homologous recombination deficiency (HRD). Patients with no BRCA1/2 mutations, but bearing similar molecular phenotypes (BRCAness) can still obtain clinical benefits from treatment with platinum salts or PARP inhibitors. Therefore, an accurate assessment of HRD is essential for the formulation of personalized treatments. However, methods to identify HRD in tumors vary and are controversial. Currently, genomic scar assays have been used in multiple clinical trials to assess patient clinical benefit. This review summarizes the therapeutic effects of platinum salts and PARP inhibitors in breast and ovarian cancer, clarifies the predictive value of genomic scar assays in evaluating the clinical benefit of different patient groups and treatment options, and proposes the limitations and optimization of current HRD scoring methods. Using and optimizing genomic scar assays can help to accurately screen the population with the most benefit, expand the scope of drug application, and make the most suitable clinical decision based on individual differences.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
303
|
Le Saux O, Ray-Coquard I, Labidi-Galy SI. Challenges for immunotherapy for the treatment of platinum resistant ovarian cancer. Semin Cancer Biol 2020; 77:127-143. [DOI: 10.1016/j.semcancer.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
|
304
|
Kurnit KC, Avila M, Hinchcliff EM, Coleman RL, Westin SN. PARP inhibition in the ovarian cancer patient: Current approvals and future directions. Pharmacol Ther 2020; 213:107588. [PMID: 32450190 PMCID: PMC8331065 DOI: 10.1016/j.pharmthera.2020.107588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have transformed the therapeutic management of solid tumors, particularly ovarian cancer. Initially studied in BRCA deficient tumors, the Food and Drug Administration (FDA) indications have expanded to include other homologous recombination deficient tumors as well as biomarker-wildtype tumors. They have also gained momentum not only as a treatment strategy, but as a maintenance strategy as well. While PARP inhibitors were initially ev aluated in the recurrent setting, they have now moved to frontline therapy. This review will discuss the current FDA indications of the clinically available PARP inhibitors for treatment and maintenance therapies. We will then review the recently completed and ongoing clinical trials which may inform future clinical approvals.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, United States
| | - Monica Avila
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily M Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
305
|
Zhou P, Wang J, Mishail D, Wang CY. Recent advancements in PARP inhibitors-based targeted cancer therapy. PRECISION CLINICAL MEDICINE 2020; 3:187-201. [PMID: 32983586 PMCID: PMC7501589 DOI: 10.1093/pcmedi/pbaa030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are a new class of agents with unparalleled clinical achievement for driving synthetic lethality in BRCA-deficient cancers. Recent FDA approval of PARPi has motivated clinical trials centered around the optimization of PARPi-associated therapies in a variety of BRCA-deficient cancers. This review highlights recent advancements in understanding the molecular mechanisms of PARP ‘trapping’ and synthetic lethality. Particular attention is placed on the potential extension of PARPi therapies from BRCA-deficient patients to populations with other homologous recombination-deficient backgrounds, and common characteristics of PARPi and non-homologous end-joining have been elucidated. The synergistic antitumor effect of combining PARPi with various immune checkpoint blockades has been explored to evaluate the potential of combination therapy in attaining greater therapeutic outcome. This has shed light onto the differing classifications of PARPi as well as the factors that result in altered PARPi activity. Lastly, acquired chemoresistance is a crucial issue for clinical application of PARPi. The molecular mechanisms underlying PARPi resistance and potential overcoming strategies are discussed.
Collapse
Affiliation(s)
- Ping Zhou
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Justin Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Mishail
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
306
|
Barretina-Ginesta MP. DNA damaging agents in ovarian cancer. EJC Suppl 2020; 15:67-72. [PMID: 33240444 PMCID: PMC7573464 DOI: 10.1016/j.ejcsup.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is very sensitive to upfront chemotherapy. This condition is attributable to defects in the DNA damage repair system. Agents that damage DNA are the main drugs used for its treatment. Many EOC cells have DNA repair deficiencies that confer susceptibility to these agents. Platinum is the most important agent for first-line and also for relapses, together with other drugs that can be given as monotherapy or along with platinum or other drugs. Lately, the emerging role of PARP inhibitors has changed the landscape of opportunities for patients with EOC. All these strategies will be reviewed in this article.
Collapse
Affiliation(s)
- Maria-Pilar Barretina-Ginesta
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) Girona, Girona Biomedical Research Institute (IDIBGI), Department of Medical Sciences, Medical School University of Girona (UdG), Spain
| |
Collapse
|
307
|
Gong H, Nie D, Li Z. Targeting Six Hallmarks of Cancer in Ovarian Cancer Therapy. Curr Cancer Drug Targets 2020; 20:853-867. [PMID: 32807056 DOI: 10.2174/1568009620999200816130218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Normal cells must overcome multiple protective mechanisms to develop into cancer cells. Their new capabilities include self-sufficiency in growth signals and insensitivity to antigrowth signals, evasion of apoptosis, a limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis; these are also termed the six hallmarks of cancer. A deep understanding of the genetic and protein alterations involved in these processes has enabled the development of targeted therapeutic strategies and clinical trial design in the search for ovarian cancer treatments. Clinically, significantly longer progression-free survival has been observed in the single use of PARP, MEK, VEGF and Chk1/Chk2 inhibitors. However, the clinical efficacy of the targeted agents is still restricted to specific molecular subtypes and no trials illustrate a benefit in overall survival. Exploring novel drug targets or combining current feasible biological agents hold great promise to further improve outcomes in ovarian cancer. In this review, we intend to provide a comprehensive description of the molecular alterations involved in ovarian cancer carcinogenesis and of emerging biological agents and combined strategies that target aberrant pathways, which might shed light on future ovarian cancer treatment.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
308
|
Lampert EJ, Zimmer A, Padget M, Cimino-Mathews A, Nair JR, Liu Y, Swisher EM, Hodge JW, Nixon AB, Nichols E, Bagheri MH, Levy E, Radke MR, Lipkowitz S, Annunziata CM, Taube JM, Steinberg SM, Lee JM. Combination of PARP Inhibitor Olaparib, and PD-L1 Inhibitor Durvalumab, in Recurrent Ovarian Cancer: a Proof-of-Concept Phase II Study. Clin Cancer Res 2020; 26:4268-4279. [PMID: 32398324 PMCID: PMC7442720 DOI: 10.1158/1078-0432.ccr-20-0056] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/06/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Preclinical studies suggest PARP inhibition (PARPi) induces immunostimulatory micromilieu in ovarian cancer thus complementing activity of immune checkpoint blockade. We conducted a phase II trial of PARPi olaparib and anti-PD-L1 durvalumab and collected paired fresh core biopsies and blood samples to test this hypothesis. PATIENTS AND METHODS In a single-center, proof-of-concept phase II study, we enrolled women aged ≥18 with recurrent ovarian cancer. All patients were immune checkpoint inhibitor-naïve and had measurable disease per RECISTv1.1, ECOG performance status 0-2, and adequate organ and marrow function. Patients received olaparib 300 mg twice daily and durvalumab 1,500 mg intravenously every 4 weeks until disease progression, unacceptable toxicity, or withdrawal of consent. Primary endpoint was overall response rate (ORR). Secondary objectives were safety and progression-free survival (PFS). Translational objectives included biomarker evaluation for relationships with clinical response and immunomodulatory effects by treatment. RESULTS Thirty-five patients with ovarian cancer [median, four prior therapies (IQR, 2-5.5), predominantly platinum-resistant (86%), BRCA wild-type (77%)] received at least one full cycle of treatment. ORR was 14% [5/35; 95% confidence interval (CI), 4.8%-30.3%]. Disease control rate (PR+SD) was 71% (25/35; 95% CI, 53.7%-85.4%). Treatment enhanced IFNγ and CXCL9/CXCL10 expression, systemic IFNγ/TNFα production, and tumor-infiltrating lymphocytes, indicating an immunostimulatory environment. Increased IFNγ production was associated with improved PFS [HR, 0.37 (95% CI, 0.16-0.87), P = 0.023], while elevated VEGFR3 levels were associated with worse PFS (HR, 3.22 (95% CI, 1.23-8.40), P = 0.017]. CONCLUSIONS The PARPi and anti-PD-L1 combination showed modest clinical activity in recurrent ovarian cancer. Our correlative study results suggest immunomodulatory effects by olaparib/durvalumab in patients and indicate that VEGF/VEGFR pathway blockade would be necessary for improved efficacy of the combination.
Collapse
Affiliation(s)
- Erika J Lampert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alexandra Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Padget
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yingmiao Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Erin Nichols
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland
| | - Mohammad H Bagheri
- Department of Radiology and Imaging Sciences, Clinical Center, National Cancer Institute, Bethesda, Maryland
| | - Elliott Levy
- Interventional Radiology, NIH Clinical Center, Bethesda, Maryland
| | - Marc R Radke
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Janis M Taube
- Department of Dermatopathology, The Johns Hopkins Medical Institution, Baltimore, Maryland
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
309
|
Abstract
Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Joseph Cursons
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia.
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria, Australia
| |
Collapse
|
310
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
311
|
Lee EK, Matulonis UA. PARP Inhibitor Resistance Mechanisms and Implications for Post-Progression Combination Therapies. Cancers (Basel) 2020; 12:E2054. [PMID: 32722408 PMCID: PMC7465003 DOI: 10.3390/cancers12082054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The use of PARP inhibitors (PARPi) is growing widely as FDA approvals have shifted its use from the recurrence setting to the frontline setting. In parallel, the population developing PARPi resistance is increasing. Here we review the role of PARP, DNA damage repair, and synthetic lethality. We discuss mechanisms of resistance to PARP inhibition and how this informs on novel combinations to re-sensitize cancer cells to PARPi.
Collapse
Affiliation(s)
- Elizabeth K. Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA;
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA;
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| |
Collapse
|
312
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
313
|
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment. Cells 2020; 9:E1665. [PMID: 32664329 PMCID: PMC7408370 DOI: 10.3390/cells9071665] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA is the source of genetic information, and preserving its integrity is essential in order to sustain life. The genome is continuously threatened by different types of DNA lesions, such as abasic sites, mismatches, interstrand crosslinks, or single-stranded and double-stranded breaks. As a consequence, cells have evolved specialized DNA damage response (DDR) mechanisms to sustain genome integrity. By orchestrating multilayer signaling cascades specific for the type of lesion that occurred, the DDR ensures that genetic information is preserved overtime. In the last decades, DNA repair mechanisms have been thoroughly investigated to untangle these complex networks of pathways and processes. As a result, key factors have been identified that control and coordinate DDR circuits in time and space. In the first part of this review, we describe the critical processes encompassing DNA damage sensing and resolution. In the second part, we illustrate the consequences of partial or complete failure of the DNA repair machinery. Lastly, we will report examples in which this knowledge has been instrumental to develop novel therapies based on genome editing technologies, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Antonio Carusillo
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
314
|
Jiang Y, Zhao J, Zhang L, Tian S, Yang T, Wang L, Zhao M, Yang Q, Wang Y, Yang X. Evaluation of the Efficacy and Safety of PARP Inhibitors in Advanced-Stage Epithelial Ovarian Cancer. Front Oncol 2020; 10:954. [PMID: 32719741 PMCID: PMC7350528 DOI: 10.3389/fonc.2020.00954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose: PARP inhibitors are a novel targeted anti-cancer drug and a large number of clinical studies on PARP inhibitors have been accomplished. This updated meta-analysis was conducted to evaluate the efficacy and safety of PARP inhibitors in advanced-stage epithelial ovarian cancer. Methods: Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials, Web of Science, and Scopus were searched to identify the eligible trials up to April 2020. ClinicalTrials.gov was also screened for additional unpublished trials. Data extraction and risk of bias assessment were performed by two independent investigators, respectively. The hazard ratios (HRs) and its 95% confidence intervals (CI) for time-to-event data of progression-free survival (PFS) and overall survival (OS), and the risk ratios (RRs) with 95% CI for dichotomous data of overall response rate (ORR) and occurrence of adverse events (AEs) were calculated by Review Manager 5.3 and Stata 12.0 software. Results: A total of 12 trials with 5,347 patients were included in this meta-analysis. Compared with the control group, PARP inhibitors significantly improved PFS (HR, 0.51; 95% CI, 0.40–0.65; P < 0.00001) and ORR (RR, 1.26; 95% CI, 1.11–1.43; P = 0.0003). Specifically, PFS was improved regardless of BRCA genes mutations and homologous-recombination status. However, no difference was observed in OS between the PARP inhibitors group and the control group (95% CI, 0.73–1.01; P = 0.06). PARP inhibitors were associated with a statistically significant higher risk of hematologic events and different PARP inhibitors had different toxicities profiles. Conclusion: PARP inhibitors are an effective and well-tolerated treatment for patients with advanced-stage epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sijuan Tian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qing Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaohui Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
315
|
Hastings V, McEachron J, Kanis MJ. Cutaneous metastasis of PD-L1 positive ovarian carcinoma. Gynecol Oncol Rep 2020; 33:100607. [PMID: 32671171 PMCID: PMC7339030 DOI: 10.1016/j.gore.2020.100607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer (OC) metastasizes cutaneous in up to 6% of cases. Cutaneous metastasis to the vulva is rare; with only one prior report in the literature. Resection of cutaneous metastasis offers symptom relief as well as a potential survival benefit. Molecular tumor profiling should be employed to expand therapy options.
Collapse
Affiliation(s)
- Victoria Hastings
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| | - Jennifer McEachron
- Division of Gynecologic Oncology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Marguax J Kanis
- Division of Gynecologic Oncology, New York Presbyterian - Brooklyn Methodist Hospital, Brooklyn, NY, United States
| |
Collapse
|
316
|
Park W, Chen J, Chou JF, Varghese AM, Yu KH, Wong W, Capanu M, Balachandran V, McIntyre CA, El Dika I, Khalil DN, Harding JJ, Ghalehsari N, McKinnell Z, Chalasani SB, Makarov V, Selenica P, Pei X, Lecomte N, Kelsen DP, Abou-Alfa GK, Robson ME, Zhang L, Berger MF, Schultz N, Chan TA, Powell SN, Reis-Filho JS, Iacobuzio-Donahue CA, Riaz N, O'Reilly EM. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clin Cancer Res 2020; 26:3239-3247. [PMID: 32444418 PMCID: PMC7380542 DOI: 10.1158/1078-0432.ccr-20-0418] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Genomic methods can identify homologous recombination deficiency (HRD). Rigorous evaluation of their outcome association to DNA damage response-targeted therapies like platinum in pancreatic ductal adenocarcinoma (PDAC) is essential in maximizing therapeutic outcome. EXPERIMENTAL DESIGN We evaluated progression-free survival (PFS) and overall survival (OS) of patients with advanced-stage PDAC, who had both germline- and somatic-targeted gene sequencing. Homologous recombination gene mutations (HRm) were evaluated: BRCA1, BRCA2, PALB2, ATM, BAP1, BARD1, BLM, BRIP1, CHEK2, FAM175A, FANCA, FANCC, NBN, RAD50, RAD51, RAD51C, and RTEL1 HRm status was grouped as: (i) germline versus somatic; (ii) core (BRCAs and PALB2) versus non-core (other HRm); and (iii) monoallelic versus biallelic. Genomic instability was compared using large-scale state transition, signature 3, and tumor mutation burden. RESULTS Among 262 patients, 50 (19%) had HRD (15% germline and 4% somatic). Both groups were analyzed together due to lack of difference in their genomic instability and outcome. Median [95% confidence interval (CI)] follow-up was 21.9 (1.4-57.0) months. Median OS and PFS were 15.5 (14.6-19) and 7 (6.1-8.1) months, respectively. Patients with HRD had improved PFS compared with no HRD when treated with first-line (1L) platinum [HR, 0.44 (95% CI: 0.29-0.67); P < 0.01], but not with 1L-non-platinum. Multivariate analysis showed HRD patients had improved OS regardless of their first-line treatment, but most had platinum exposure during their course. Biallelic HRm (11%) and core HRm (12%) had higher genomic instability, which translated to improved PFS on first-line platinum (1L-platinum) versus 1L-non-platinum. CONCLUSIONS Pathogenic HRm identifies HRD in patients with PDAC with the best outcome when treated with 1L-platinum. Biallelic HRm and core HRm further enriched benefit from 1L-platinum from HRD.
Collapse
Affiliation(s)
- Wungki Park
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Jiapeng Chen
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F Chou
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, New York
| | - Anna M Varghese
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Winston Wong
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Weill Cornell Medical College, New York, New York
| | - Vinod Balachandran
- Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Surgery, Hepatopancreaticobiliary Surgery, Weill Cornell Medical College, New York, New York
| | - Caitlin A McIntyre
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Hepatopancreaticobiliary Surgery, Weill Cornell Medical College, New York, New York
| | - Imane El Dika
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
| | - Danny N Khalil
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - James J Harding
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
| | | | - Zoe McKinnell
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sree B Chalasani
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
| | - Vladimir Makarov
- Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Xin Pei
- Memorial Sloan Kettering Cancer Center, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicolas Lecomte
- Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - David P Kelsen
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Clinical Genetics Service, Weill Cornell Medical College, New York, New York
| | - Liying Zhang
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Michael F Berger
- Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
| | - Jorge S Reis-Filho
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Christine A Iacobuzio-Donahue
- Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Gastrointestinal Oncology Service, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
317
|
Zhang J, Shih DJH, Lin SY. Role of DNA repair defects in predicting immunotherapy response. Biomark Res 2020; 8:23. [PMID: 32612833 PMCID: PMC7325270 DOI: 10.1186/s40364-020-00202-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 12/31/2022] Open
Abstract
Defect in DNA damage response (DDR) is a common feature of cancer cells, which regulates tumor growth and therapeutic response. Recently, the approval of immune checkpoint blockade (ICB) for tumors with defective mismatch repair has paved the way for investigating the role of other DDR defects in sensitizing cancer to ICB therapy. Despite great progress in understanding DDR pathways, the mechanisms that link DDR defects and ICB response remain incompletely understood. Further, the clinical activity of ICB in patients with DDR defective tumors has not been well described. Here, we discuss recent studies demonstrating that biomarkers in DDR pathways may serve as potential predictors to guide the selection of patients for ICB therapy. A better understanding of the relationship between deficiency in DDR and response to ICB would facilitate efforts in optimizing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - David J H Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
318
|
Palaia I, Tomao F, Sassu CM, Musacchio L, Benedetti Panici P. Immunotherapy For Ovarian Cancer: Recent Advances And Combination Therapeutic Approaches. Onco Targets Ther 2020; 13:6109-6129. [PMID: 32617007 PMCID: PMC7326187 DOI: 10.2147/ott.s205950] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer. Although many advances have been made in therapeutic strategies, the global standard of care still remains radical surgery plus chemotherapy, but new scenarios need to be explored to improve survival. The role of immunotherapy in EOC treatment is controversial. Results obtained from studies evaluating immunotherapy are contradictory: in particular data on survival are not as good as expected when immunotherapy was administered alone, and other data are still immature. Thus, significant efforts must be devoted to finding new strategies for the use of immunotherapy. The aim of this paper is to review the most recent findings of the use of immunotherapy in ovarian cancer, with a particular focus on combination approaches.
Collapse
Affiliation(s)
- Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome00161, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome00161, Italy
| | - Carolina Maria Sassu
- Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome00161, Italy
| | - Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome00161, Italy
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome, Policlinico Umberto I, Rome00161, Italy
| |
Collapse
|
319
|
Lee EK, Matulonis UA. Emerging drugs for the treatment of ovarian cancer: a focused review of PARP inhibitors. Expert Opin Emerg Drugs 2020; 25:165-188. [PMID: 32569489 DOI: 10.1080/14728214.2020.1773791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated significant anticancer activity in cancers harboring homologous recombination deficiency (HRD), exemplified by high grade serous ovarian cancer (HGSC). PARP inhibitors (PARPi) are being used in women with newly diagnosed ovarian cancer as well as in the recurrent setting. PARPi combination therapies are in development. AREAS COVERED This review discusses the treatment of ovarian cancer, key PARPi clinical trials, mechanisms of action of PARPi, and novel PARPi combination regimens under investigation. PubMed and ClinicalTrials.gov were searched for PARPi trials. Active development was confirmed via PharmaProjects. EXPERT OPINION PARPi have shown to improve progression-free survival (PFS) for women with HGSC as monotherapy in both frontline and recurrent maintenance settings and as monotherapy as treatment for recurrence. These benefits are greatest in HGSC with underlying HRD, in particular for those with deleterious BRCA mutations, and with the least benefit in cancers that are HR proficient (HRP) and BRCA wild-type (wt). Thus far, an improvement in overall survival has only been demonstrated in patients with BRCA mutated EOC treated with olaparib maintenance in the platinum sensitive recurrence setting. Novel combinations of PARPi are undergoing testing in an effort to increase PARPi efficacy in HRP or PARPi-resistant cancers.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA, USA.,Division of Gynecologic Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| |
Collapse
|
320
|
Cleary JM, Aguirre AJ, Shapiro GI, D'Andrea AD. Biomarker-Guided Development of DNA Repair Inhibitors. Mol Cell 2020; 78:1070-1085. [PMID: 32459988 PMCID: PMC7316088 DOI: 10.1016/j.molcel.2020.04.035] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Anti-cancer drugs targeting the DNA damage response (DDR) exploit genetic or functional defects in this pathway through synthetic lethal mechanisms. For example, defects in homologous recombination (HR) repair arise in cancer cells through inherited or acquired mutations in BRCA1, BRCA2, or other genes in the Fanconi anemia/BRCA pathway, and these tumors have been shown to be particularly sensitive to inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP). Recent work has identified additional genomic and functional assays of DNA repair that provide new predictive and pharmacodynamic biomarkers for these targeted therapies. Here, we examine the development of selective agents targeting DNA repair, including PARP inhibitors; inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM); and inhibitors of classical non-homologous end joining (cNHEJ) and alternative end joining (Alt EJ). We also review the biomarkers that guide the use of these agents and current clinical trials with these therapies.
Collapse
Affiliation(s)
- James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
321
|
Liu YL, Selenica P, Zhou Q, Iasonos A, Callahan M, Feit NZ, Boland J, Vazquez-Garcia I, Mandelker D, Zehir A, Burger RA, Powell DJ, Friedman C, Cadoo K, Grisham R, Konner JA, O'Cearbhaill RE, Aghajanian C, Reis-Filho JS, Weigelt B, Zamarin D. BRCA Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precis Oncol 2020; 4:2000069. [PMID: 32923884 DOI: 10.1200/po.20.00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Homologous DNA repair-deficient (HRD) ovarian cancers (OCs), including those with BRCA1/2 mutations, have higher levels of genetic instability, potentially resulting in higher immunogenicity, and have been suggested to respond better to immune checkpoint inhibitors (ICIs) than homologous DNA repair-proficient OCs. However, clinical evidence is lacking. The study aimed to evaluate the associations between BRCA1/2 mutations, HRD, and other genomic parameters and response to ICIs and survival in OC. METHODS This is a single-institution retrospective analysis of women with recurrent OC treated with ICIs. BRCA1/2 mutation status and clinicopathologic variables were abstracted from the medical records. Targeted and whole-exome sequencing data available for a subset of patients were used to assess tumor mutational burden (TMB), HRD, and fraction of genome altered (FGA). ICI response was defined as lack of disease progression for ≥ 24 weeks. Associations of BRCA1/2 status and genomic alterations with progression-free survival (PFS) and overall survival (OS) were determined using Cox proportional hazards models. RESULTS Of the 143 women treated with ICIs, 134 had known BRCA1/2 mutation status. Deleterious germline or somatic BRCA1/2 mutations were present in 31 women (24%). There was no association between presence of BRCA1/2 mutations and response (P = .796) or survival. Genomic analysis in 73 women found no association between TMB (P = .344) or HRD (P = .222) and response, PFS, or OS. There were also no significant differences in somatic genetic alterations between responders and nonresponders. High FGA was associated with an improvement in PFS (P = .014) and OS (P = .01). CONCLUSION TMB, BRCA1/2 mutations, and HRD are not associated with response or survival, cautioning against their use as selection criteria for ICI in recurrent OC. FGA should be investigated further as a biomarker of response to immunotherapy in OC.
Collapse
Affiliation(s)
- Ying L Liu
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Qin Zhou
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexia Iasonos
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret Callahan
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Noah Z Feit
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julia Boland
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Diana Mandelker
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert A Burger
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Powell
- Department of Pathology, University of Pennsylvania, Philadelphia, PA
| | - Claire Friedman
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Karen Cadoo
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Rachel Grisham
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jason A Konner
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Roisin E O'Cearbhaill
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Carol Aghajanian
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
322
|
Santangelo G, Caruso G, Palaia I, Tomao F, Perniola G, Di Donato V, Fischetti M, Muzii L, Benedetti Panici P. The emerging role of precision medicine in the treatment of ovarian cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1777854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Giusi Santangelo
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Giuseppe Caruso
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Margherita Fischetti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
323
|
Yum S, Li M, Chen ZJ. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res 2020; 30:639-648. [PMID: 32541866 PMCID: PMC7395767 DOI: 10.1038/s41422-020-0346-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The discovery of cancer immune surveillance and immunotherapy has opened up a new era of cancer treatment. Immunotherapies modulate a patient’s immune system to specifically eliminate cancer cells; thus, it is considered a very different approach from classic cancer therapies that usually induce DNA damage to cause cell death in a cell-intrinsic manner. However, recent studies have revealed that classic cancer therapies such as radiotherapy and chemotherapy also elicit antitumor immunity, which plays an essential role in their therapeutic efficacy. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the downstream effector Stimulator of Interferon Genes (STING) have been determined to be critical for this interplay. Here, we review the antitumor roles of the cGAS-STING pathway during tumorigenesis, cancer immune surveillance, and cancer therapies. We also highlight classic cancer therapies that elicit antitumor immune responses through cGAS activation.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhijian J Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
324
|
Peyraud F, Italiano A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers (Basel) 2020; 12:E1502. [PMID: 32526888 PMCID: PMC7352466 DOI: 10.3390/cancers12061502] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a hallmark of cancer related to DNA damage response (DDR) deficiencies, offering vulnerabilities for targeted treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) interfere with the efficient repair of DNA damage, particularly in tumors with existing defects in DNA repair, and induce synthetic lethality. PARPi are active across a range of tumor types harboring BRCA mutations and also BRCA-negative cancers, such as ovarian, breast or prostate cancers with homologous recombination deficiencies (HRD). Depending on immune contexture, immune checkpoint inhibitors (ICIs), such as anti-PD1/PD-L1 and anti-CTLA-4, elicit potent antitumor effects and have been approved in various cancers types. Although major breakthroughs have been performed with either PARPi or ICIs alone in multiple cancers, primary or acquired resistance often leads to tumor escape. PARPi-mediated unrepaired DNA damages modulate the tumor immune microenvironment by a range of molecular and cellular mechanisms, such as increasing genomic instability, immune pathway activation, and PD-L1 expression on cancer cells, which might promote responsiveness to ICIs. In this context, PARPi and ICIs represent a rational combination. In this review, we summarize the basic and translational biology supporting the combined strategy. We also detail preclinical results and early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. Moreover, we discuss the limitations and the future direction of the combination.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
- University of Bordeaux, 33076 Bordeaux, France
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
- University of Bordeaux, 33076 Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
325
|
Bogani G, Lopez S, Mantiero M, Ducceschi M, Bosio S, Ruisi S, Sarpietro G, Guerrisi R, Brusadelli C, Dell'Acqua A, Di Donato V, Raspagliesi F. Immunotherapy for platinum-resistant ovarian cancer. Gynecol Oncol 2020; 158:484-488. [PMID: 32518015 DOI: 10.1016/j.ygyno.2020.05.681] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is characterized by a high mortality on incidence ratio. Although the majority of patients achieve complete response after primary treatment, approximately 65-80% of patients recur with the first 5 years. Platinum-free interval is one of the main prognostic factors. Patients recurring with 6 months within the end of platinum-based chemotherapy are characterized by poor prognosis. To date no effective treatment modality are identified for those patients. The mainstay of treatment for platinum-resistant ovarian cancer is single agent chemotherapy. Other treatment modalities have tested in this setting with discouraging results. Growing evidence suggested that immunotherapy would improve outcomes of patients with various types of solid tumors including melanoma, non-small cell lung cancer as well as uterine malignancies. Here, we reviewed current evidence on the adoption of immunotherapy in platinum-resistant ovarian cancer. To date no mature evidence supports the routine adoption of immunotherapy in ovarian cancer patients. Further strategies have to be explored.
Collapse
Affiliation(s)
- Giorgio Bogani
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Salvatore Lopez
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Mara Mantiero
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy.
| | | | - Sara Bosio
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy
| | - Simona Ruisi
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy
| | - Giuseppe Sarpietro
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of General Surgery and Medical Surgical Specialties, Gynecological Clinic University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Rocco Guerrisi
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Obstetrics and Gynecology Department of the University of Insubria, Varese, Italy
| | - Claudia Brusadelli
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Obstetrics and Gynecology Department of the University of Insubria, Varese, Italy
| | - Andrea Dell'Acqua
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
326
|
Takahashi N, Surolia I, Thomas A. Targeting DNA Repair to Drive Immune Responses: It's Time to Reconsider the Strategy for Clinical Translation. Clin Cancer Res 2020; 26:2452-2456. [PMID: 32066627 PMCID: PMC8283908 DOI: 10.1158/1078-0432.ccr-19-3841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/05/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
PARP inhibition induces robust local and systemic antitumor immune responses and curative responses when combined with immune checkpoint blockade in many preclinical studies. However, the combination has not markedly improved antitumor effect compared with individual agents in clinical trials to date. We propose that the data from these trials indicate a lack of synergistic interaction of PARP inhibition and immune checkpoint blockade, with implications for reexamining our current strategies for clinical translation. As current mouse models do not recapitulate the genomic heterogeneity or tumor microenvironment of human cancers, better models are urgently needed. Tumor-extrinsic factors modulate immune checkpoint blockade response and they may be better assessed in early-phase clinical trials with frequent tissue and blood sampling. Further work is also needed to uncover the dose and schedule dependency of DNA repair modulation on the immune system. In homologous recombination repair-deficient tumors, randomized trials should be prioritized to address whether the benefit is superior to that of PARP inhibitor monotherapy. In tumors that are not homologous recombination repair deficient, research biopsies should be integrated to early-phase clinical trials to discover biomarkers that can predict clinical benefit. These considerations are relevant to the variety of adjunctive therapeutics being combined with immune checkpoint blockade to improve probability, duration, and potency of antitumor activity.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Ira Surolia
- Division of Hematology-Oncology, Columbia University Irving Medical Center, New York, New York
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
327
|
Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020; 147:2658-2668. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Defects in DNA repair machinery play a critical role in the pathogenesis and progression of human cancer. When they occur, the tumor cells activate error-prone mechanisms which lead to genomic instability and high mutation rate. These defects represent, therefore, a cancer Achilles'heel which could be therapeutically exploited by the use of DNA damage response inhibitors. Moreover, experimental and clinical evidence indicates that DNA repair deregulation has a pivotal role also in promoting immune recognition and immune destruction of cancer cells. Indeed, immune checkpoint inhibitors have received regulatory approval in tumors characterized by high genomic instability, such as melanomas and lung cancer. Here, we discuss how deregulation of DNA repair, through activation of error-prone mechanisms, increases immune activation against cancer. Finally, we address the potential strategies to use DNA repair components as biomarkers and/or therapeutic targets to empower immune-oncology treatment of human cancer.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
328
|
Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev 2020; 86:102019. [PMID: 32251926 PMCID: PMC7272286 DOI: 10.1016/j.ctrv.2020.102019] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
In recent years, biotechnological breakthroughs have led to identification of complex and unique biologic features associated with carcinogenesis. Tumor and cell-free DNA profiling, immune markers, and proteomic and RNA analyses are used to identify these characteristics for optimization of anticancer therapy in individual patients. Consequently, clinical trials have evolved, shifting from tumor type-centered to gene-directed, histology-agnostic, with innovative adaptive design tailored to biomarker profiling with the goal to improve treatment outcomes. A plethora of precision medicine trials have been conducted. The majority of these trials demonstrated that matched therapy is associated with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To improve the implementation of precision medicine, this approach should be used early in the course of the disease, and patients should have complete tumor profiling and access to effective matched therapy. To overcome the complexity of tumor biology, clinical trials with combinations of gene-targeted therapy with immune-targeted approaches (e.g., checkpoint blockade, personalized vaccines and/or chimeric antigen receptor T-cells), hormonal therapy, chemotherapy and/or novel agents should be considered. These studies should target dynamic changes in tumor biologic abnormalities, eliminating minimal residual disease, and eradicating significant subclones that confer resistance to treatment. Mining and expansion of real-world data, facilitated by the use of advanced computer data processing capabilities, may contribute to validation of information to predict new applications for medicines. In this review, we summarize the clinical trials and discuss challenges and opportunities to accelerate the implementation of precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX.
| | - Elena Fountzilas
- Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|
329
|
Lee JM, Minasian L, Kohn EC. New strategies in ovarian cancer treatment. Cancer 2020; 125 Suppl 24:4623-4629. [PMID: 31967682 DOI: 10.1002/cncr.32544] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
Insights from basic science dissecting carcinogenesis in the fallopian tube and ovary have led to a deeper understanding of the origin, molecular characteristics, and types of ovarian cancers. This logically then has led to the development of novel approaches to treat ovarian cancer. Increasingly, novel agents are being developed to target the different growth pathways. The identification of molecular markers associated with different histopathologies has resulted in newer clinical trial designs to capture both clinical and translational endpoints. Unique molecular characteristics in DNA damage and repair pathways and unique cell surface markers have driven new drug development, yielding promise for both patients with platinum-sensitive and platinum-resistant ovarian cancers. Specific examples described include the histology-selective mutations, such as ARID1A in clear cell and endometrioid ovarian cancers; the rationale for using cell cycle checkpoint inhibitors when there already is a p53-mediated loss of cell cycle checkpoint regulation or combinations of agents that will both induce neoantigen formation and unleash immune modulators; and techniques to enhance the therapeutic delivery of known agents. A systematic and thoughtful approach to combining agents in clinical trials is needed so that irrespective of the trial outcomes, the results inform both clinical and translational endpoints.
Collapse
Affiliation(s)
- Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lori Minasian
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Elise C Kohn
- Gynecologic Cancer Therapeutics, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
330
|
Dai D, Chen B, Feng Y, Wang W, Jiang Y, Huang H, Liu J. Prognostic value of prostaglandin I2 synthase and its correlation with tumor-infiltrating immune cells in lung cancer, ovarian cancer, and gastric cancer. Aging (Albany NY) 2020; 12:9658-9685. [PMID: 32463792 PMCID: PMC7288932 DOI: 10.18632/aging.103235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostaglandin I2 synthase (PTGIS) is a crucial gene for the synthesis of prostaglandin I2, which has multiple roles in inflammation and immune modulation. However, studies on the prognostic value of PTGIS and its correlation with tumor-infiltrating immune cells in multiple cancers are still rare. RESULTS Multiple datasets of the Oncomine database showed that PTGIS was expressed at low levels in lung cancer and ovarian cancer compared to the levels in normal tissues. Kaplan-Meier plotter showed that high PTGIS was associated with poor overall survival and progression-free survival in lung, ovarian, and gastric cancers. Moreover, PTGIS expression was significantly positively correlated with infiltrating levels of macrophages and was strongly associated with a variety of immune markers, especially tumor-associated macrophages (TAMs) and T-regulatory cells (Tregs). CONCLUSIONS High expression of PTGIS could promote the infiltration of TAMs and Tregs in the tumor microenvironment and deteriorate outcomes of patients with lung, ovarian, and gastric cancers. These findings suggest that PTGIS could be taken as a potential biomarker of prognosis and tumor-infiltrating immune cells. METHODS PTGIS expression was investigated in different datasets of the Oncomine database, and its expression levels in various tumors and corresponding normal tissues were analyzed by the Tumor Immune Estimation Resource (TIMER). Then, the clinical prognostic value of PTGIS was assessed with online public databases. In addition, we initially explored the correlation between PTGIS and tumor-infiltrating immune cells by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA).
Collapse
Affiliation(s)
- Danian Dai
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Yanling Feng
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Weizhong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yanhui Jiang
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - He Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jihong Liu
- Department of Gynecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| |
Collapse
|
331
|
Gonçalves A, Bertucci A, Bertucci F. PARP Inhibitors in the Treatment of Early Breast Cancer: The Step Beyond? Cancers (Basel) 2020; 12:cancers12061378. [PMID: 32471249 PMCID: PMC7352970 DOI: 10.3390/cancers12061378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Exquisitely exploiting defects in homologous recombination process, poly(ADP-ribose) polymerase (PARP) inhibitors have recently emerged as a promising class of therapeutics in human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer with germline breast cancer 1 (BRCA1) or breast cancer 2 (BRCA2) mutations (gBRCA1/2m). In this setting, PARP inhibitors, either as single agent or in combination with platinum-based chemotherapy, significantly increased progression-free survival, as compared to conventional chemotherapy. Accordingly, further therapeutic advances are expected at an earlier stage of the disease. In the neoadjuvant setting, veliparib failed to increase the pathological complete response rate when added to a carboplatin-based regimen, in unselected triple-negative breast cancer patients. Similarly, when administered before anthracycline-cyclophosphamide, the neoadjuvant olaparib-paclitaxel combination was not superior to carboplatin–paclitaxel, in patients with HER2-negative breast cancer and BRCA1/2 mutation, or homologous recombination defect. Yet, neoadjuvant talazoparib, administered as a single-agent in patients with HER2-negative breast cancer and germline BRCA1/2 mutation, achieved an impressive pathological complete response rate of nearly 50%. In the adjuvant setting, the results from the OlympiA phase III study, evaluating adjuvant olaparib in HER2-negative early breast cancer and germline BRCA1/2 mutations, are eagerly awaited. Ongoing trials should clarify whether PARP inhibitors might improve outcome when administered in the adjuvant or neoadjuvant setting in early breast cancer patients with BRCA1/2 mutation or homologous recombination defect.
Collapse
Affiliation(s)
- Anthony Gonçalves
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France
- Correspondence: ; Tel.: +33-4-91-22-37-89; Fax: +33-4-91-22-36-70
| | - Alexandre Bertucci
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
| | - François Bertucci
- Medical Oncology Department, Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France; (A.B.); (F.B.)
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Aix-Marseille University, 13009 Marseille, France
| |
Collapse
|
332
|
Post CCB, Westermann AM, Bosse T, Creutzberg CL, Kroep JR. PARP and PD-1/PD-L1 checkpoint inhibition in recurrent or metastatic endometrial cancer. Crit Rev Oncol Hematol 2020; 152:102973. [PMID: 32497971 DOI: 10.1016/j.critrevonc.2020.102973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
The prognosis of recurrent or metastatic endometrial cancer is poor, with five-year survival of only 10-20 %. First-line therapy consists of either platinum-based chemotherapy or hormonal therapy. No standard subsequent-line therapy has been identified. In recent years, significant progress has been made in the knowledge on underlying molecular biology of endometrial cancer and potential targets for therapy have been identified. Targeted therapies as poly (ADP-ribose) polymerase (PARP) inhibitors and immunotherapy as PD-1/PD-L1 checkpoint inhibitors have the potential to be effective against specific subtypes of endometrial cancer. Preclinical studies have shown that combining these agents may result in a synergistic effect. In this review, we focus on the molecular basis of checkpoint inhibition and targeted therapy as PARP inhibition in endometrial cancer and summarize available clinical data, and ongoing and planned clinical trials that investigate these agents as mono- or combination therapies in endometrial cancer and where relevant, other gynecological cancers.
Collapse
Affiliation(s)
- Cathalijne C B Post
- Departments of Medical Oncology, Leiden, the Netherlands; Departments of Radiation Oncology Leiden, the Netherlands.
| | - Anneke M Westermann
- Departments of Medical Oncology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Tjalling Bosse
- Departments of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Judith R Kroep
- Departments of Medical Oncology, Leiden, the Netherlands
| |
Collapse
|
333
|
Bouberhan S, Philp L, Hill S, Al-Alem LF, Rueda B. Exploiting the Prevalence of Homologous Recombination Deficiencies in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:E1206. [PMID: 32403357 PMCID: PMC7281458 DOI: 10.3390/cancers12051206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecologic cancer in the United States. Genomic analysis revealed roughly half of HGSOC display homologous repair deficiencies. An improved understanding of the genomic and somatic mutations that influence DNA repair led to the development of poly(ADP-ribose) polymerase inhibitors for the treatment of ovarian cancer. In this review, we explore the preclinical and clinical studies that led to the development of FDA approved drugs that take advantage of the synthetic lethality concept, the implementation of the early phase trials, the development of companion diagnostics and proposed mechanisms of resistance.
Collapse
Affiliation(s)
- Sara Bouberhan
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Hematology/Medical Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Philp
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Hill
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Linah F. Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Rueda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
334
|
Kim M, Suh DH, Lee KH, Eom KY, Lee JY, Lee YY, Hansen HF, Mirza MR, Kim JW. Major clinical research advances in gynecologic cancer in 2019. J Gynecol Oncol 2020; 31:e48. [PMID: 32319232 PMCID: PMC7189081 DOI: 10.3802/jgo.2020.31.e48] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
In 2019, 12 topics were selected as the major research advances in gynecologic oncology. Herein, we first opted to introduce the significant clinical activity of pembrolizumab in women with advanced cervical cancer based on the results of the phase 2 KEYNOTE-158 trial. Thereafter, we reviewed 5 topics, including systemic lymphadenectomy in the advanced stage with no gross residual tumor, secondary cytoreductive surgery in recurrent ovarian cancer according to the results of Gynecologic Oncology Group-213 trial, dose-dense weekly paclitaxel scheduling as first-line chemotherapy, the utility of intraperitoneal therapy in the advanced stage, and an update on poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Additionally, we conducted a thorough review of emerging data from several clinical trials on PARP inhibitors according to drug, target population, and combined usage. For uterine corpus cancer, we reviewed adjuvant therapy for high-risk disease and chemotherapy in advanced/recurrent disease. For the field of radiation oncology, we discussed the utility of neoadjuvant chemotherapy added to chemoradiotherapy and the treatment of radiation-induced cystitis using hyperbaric oxygen. Finally, we discussed the use of individualized therapy with humanized monoclonal antibodies (trastuzumab emtansine and sacituzumab govitecan-hziy) and combination therapy (fulvestrant plus alpesilib, fulvestrant plus anastrozole, and ribociclib plus endocrine therapy) for women with advanced breast cancer.
Collapse
Affiliation(s)
- Miseon Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyung Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Keun Yong Eom
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hanne Falk Hansen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jae Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
335
|
Färkkilä A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B, Maliga Z, Yapp C, Chen YA, Schapiro D, Zhou Y, Graham JR, Dezube BJ, Munster P, Santagata S, Garcia E, Rodig S, Lako A, Chowdhury D, Shapiro GI, Matulonis UA, Park PJ, Hautaniemi S, Sorger PK, Swisher EM, D'Andrea AD, Konstantinopoulos PA. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun 2020; 11:1459. [PMID: 32193378 PMCID: PMC7081234 DOI: 10.1038/s41467-020-15315-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
Combined PARP and immune checkpoint inhibition has yielded encouraging results in ovarian cancer, but predictive biomarkers are lacking. We performed immunogenomic profiling and highly multiplexed single-cell imaging on tumor samples from patients enrolled in a Phase I/II trial of niraparib and pembrolizumab in ovarian cancer (NCT02657889). We identify two determinants of response; mutational signature 3 reflecting defective homologous recombination DNA repair, and positive immune score as a surrogate of interferon-primed exhausted CD8 + T-cells in the tumor microenvironment. Presence of one or both features associates with an improved outcome while concurrent absence yields no responses. Single-cell spatial analysis reveals prominent interactions of exhausted CD8 + T-cells and PD-L1 + macrophages and PD-L1 + tumor cells as mechanistic determinants of response. Furthermore, spatial analysis of two extreme responders shows differential clustering of exhausted CD8 + T-cells with PD-L1 + macrophages in the first, and exhausted CD8 + T-cells with cancer cells harboring genomic PD-L1 and PD-L2 amplification in the second.
Collapse
Affiliation(s)
- Anniina Färkkilä
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.,Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.,Research Program in Systems Oncology, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Doga C Gulhan
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Connor A Jacobson
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Huy Nguyen
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Bose Kochupurakkal
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Zoltan Maliga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Denis Schapiro
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | - Yinghui Zhou
- TESARO: A GSK company, 1000 Winter Street, Waltham, MA, 02451, USA
| | - Julie R Graham
- TESARO: A GSK company, 1000 Winter Street, Waltham, MA, 02451, USA
| | - Bruce J Dezube
- TESARO: A GSK company, 1000 Winter Street, Waltham, MA, 02451, USA
| | - Pamela Munster
- Helen Diller Family Comprehensive Cancer Center, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Sandro Santagata
- Brigham and Women's Hospital, Laboratory for Systems Pharmacology, 75 Francis Street, Boston, MA, 02115, USA
| | - Elizabeth Garcia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ana Lako
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Dipanjan Chowdhury
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Geoffrey I Shapiro
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Ursula A Matulonis
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, 200 Longwood Avenue, MA, 02115, USA
| | | | - Alan D D'Andrea
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | | |
Collapse
|
336
|
Immune Checkpoint Inhibitors in Epithelial Ovarian Cancer: An Overview on Efficacy and Future Perspectives. Diagnostics (Basel) 2020; 10:diagnostics10030146. [PMID: 32156035 PMCID: PMC7151145 DOI: 10.3390/diagnostics10030146] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological cancers. Despite improvements in medical treatments, the prognosis for EOC remains poor, and there is an urgent need for new therapeutic strategies. Immune checkpoint inhibitors (CPIs) have dramatically improved survival of several cancers and are under evaluation in OC. Unfortunately, CPIs have shown globally unsatisfactory results. The aim of this manuscript is to critically review the results from early-phase trials with CPIs in terms of safety and activity, discuss the possible reasons for disappointing results and the new therapeutic approaches to improve patient outcomes.
Collapse
|
337
|
Pearson ADJ, Rossig C, Lesa G, Diede SJ, Weiner S, Anderson J, Gray J, Geoerger B, Minard-Colin V, Marshall LV, Smith M, Sondel P, Bajars M, Baldazzi C, Barry E, Blackman S, Blanc P, Capdeville R, Caron H, Cole PD, Jiménez JC, Demolis P, Donoghue M, Elgadi M, Gajewski T, Galluzzo S, Ilaria R, Jenkner A, Karres D, Kieran M, Ligas F, Lowy I, Meyers M, Oprea C, Peddareddigari VGR, Sterba J, Stockman PK, Suenaert P, Tabori U, van Tilburg C, Yancey T, Weigel B, Norga K, Reaman G, Vassal G. ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur J Cancer 2020; 127:52-66. [PMID: 31986450 DOI: 10.1016/j.ejca.2019.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
The third multistakeholder Paediatric Strategy Forum organised by ACCELERATE and the European Medicines Agency focused on immune checkpoint inhibitors for use in combination therapy in children and adolescents. As immune checkpoint inhibitors, both as monotherapy and in combinations have shown impressive success in some adult malignancies and early phase trials in children of single agent checkpoint inhibitors have now been completed, it seemed an appropriate time to consider opportunities for paediatric studies of checkpoint inhibitors used in combination. Among paediatric patients, early clinical studies of checkpoint inhibitors used as monotherapy have demonstrated a high rate of activity, including complete responses, in Hodgkin lymphoma and hypermutant paediatric tumours. Activity has been very limited, however, in more common malignancies of childhood and adolescence. Furthermore, apart from tumour mutational burden, no other predictive biomarker for monotherapy activity in paediatric tumours has been identified. Based on these observations, there is collective agreement that there is no scientific rationale for children to be enrolled in new monotherapy trials of additional checkpoint inhibitors with the same mechanism of action of agents already studied (e.g. anti-PD1, anti-PDL1 anti-CTLA-4) unless additional scientific knowledge supporting a different approach becomes available. This shared perspective, based on scientific evidence and supported by paediatric oncology cooperative groups, should inform companies on whether a paediatric development plan is justified. This could then be proposed to regulators through the available regulatory tools. Generally, an academic-industry consensus on the scientific merits of a proposal before submission of a paediatric investigational plan would be of great benefit to determine which studies have the highest probability of generating new insights. There is already a rationale for the evaluation of combinations of checkpoint inhibitors with other agents in paediatric Hodgkin lymphoma and hypermutated tumours in view of the activity shown as single agents. In paediatric tumours where no single agent activity has been observed in multiple clinical trials of anti-PD1, anti-PDL1 and anti-CTLA-4 agents as monotherapy, combinations of checkpoint inhibitors with other treatment modalities should be explored when a scientific rationale indicates that they could be efficacious in paediatric cancers and not because these combinations are being evaluated in adults. Immunotherapy in the form of engineered proteins (e.g. monoclonal antibodies and T cell engaging agents) and cellular products (e.g. CAR T cells) has great therapeutic potential for benefit in paediatric cancer. The major challenge for developing checkpoint inhibitors for paediatric cancers is the lack of neoantigens (based on mutations) and corresponding antigen-specific T cells. Progress critically depends on understanding the immune macroenvironment and microenvironment and the ability of the adaptive immune system to recognise paediatric cancers in the absence of high neoantigen burden. Future clinical studies of checkpoint inhibitors in children need to build upon strong biological hypotheses that take into account the distinctive immunobiology of childhood cancers in comparison to that of checkpoint inhibitor responsive adult cancers.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children´s Hospital Muenster, Pediatric Hematology and Oncology, Germany
| | - Giovanni Lesa
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | - John Anderson
- UCL Great Ormond Street Institute of Child Health, UK
| | | | | | | | | | | | - Paul Sondel
- The University of Wisconsin, Madison WI, USA
| | | | | | | | | | | | | | | | | | - Jorge Camarero Jiménez
- Agencia Espanola de Medicamentos y Productos Sanitarios and European Medicines Agency, Committee for Medicinal Products for Human Use, Amsterdam, the Netherlands
| | - Pierre Demolis
- Agence Nationale de Sécurité du Médicament et des Produits de Santé and European Medicines Agency, Scientific Advice Working Party and Oncology Working Party, Amsterdam, the Netherlands
| | | | | | | | - Sara Galluzzo
- Agenzia Italiana del Farmaco and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | - Alessandro Jenkner
- Ospedale Pediatrico Bambino Gesù and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | - Dominik Karres
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | - Franca Ligas
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, Amsterdam, the Netherlands
| | | | | | | | | | - Jaroslav Sterba
- University Hospital Brno and European Medicines Agency, Paediatric Committee, Amsterdam, the Netherlands
| | | | | | - Uri Tabori
- Hospital for Sick Children, Toronto, Canada
| | - Cornelis van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
338
|
Lin J, Yang X, Zhao H. BRCA Mutations and Homologous Recombination Repair Deficiency in Treatment With Niraparib Combined With Pembrolizumab. JAMA Oncol 2020; 6:440-441. [PMID: 31876918 DOI: 10.1001/jamaoncol.2019.4595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
339
|
Konstantinopoulos PA, Vinayak S. BRCA Mutations and Homologous Recombination Repair Deficiency in Treatment With Niraparib Combined With Pembrolizumab-Reply. JAMA Oncol 2020; 6:441. [PMID: 31876893 DOI: 10.1001/jamaoncol.2019.4601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Division of Gynecologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Shaveta Vinayak
- Fred Hutchinson Cancer Research Center, Division of Oncology, University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle
| |
Collapse
|
340
|
Rossi G, Zullo L, Cerbone L, Coco S, Longo L, Tagliamento M, Dal Bello MG, Boccardo S, Alama A, Genova C. ADP ribose polymerase inhibitors for treating non-small cell lung cancer: new additions to the pharmacotherapeutic armamentarium. Expert Opin Pharmacother 2020; 21:679-686. [PMID: 32073315 DOI: 10.1080/14656566.2020.1724283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Poly (ADP-ribose) polymerase inhibitors (PARPi) are already part of the armamentarium of drugs available against ovarian and breast cancer. There is less data available on the efficacy of these drugs in the treatment of non-small cell lung cancer (NSCLC). AREAS COVERED The authors have analyzed the preclinical studies that justified the use of PARPi in NSCLC. They then evaluate the in vivo efficacy of the combination of these drugs with chemotherapy, radiotherapy, and immunotherapy. EXPERT OPINION Data from clinical trials available to date have discouraged the use of PARPi in association with chemotherapy or radiotherapy in NSCLC. The knowledge available to date opens the door to the use of PARPi in association with immunotherapy. In fact, the activity of these drugs would not be based only on direct cytotoxic action, but also on the modification of the intra-tumor microenvironment, in particular by increasing the expression of PD-L1 on tumor cells. This action might potentially enhance available treatments with a modest increase in toxicity.
Collapse
Affiliation(s)
- Giovanni Rossi
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Medical, Surgical and Experimental Sciences, University of Sassari , Italy
| | - Lodovica Zullo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Luigi Cerbone
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Luca Longo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | | | - Simona Boccardo
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Angela Alama
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| |
Collapse
|
341
|
Lightfoot M, Montemorano L, Bixel K. PARP Inhibitors in Gynecologic Cancers: What Is the Next Big Development? Curr Oncol Rep 2020; 22:29. [PMID: 32067102 DOI: 10.1007/s11912-020-0873-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Conventional and novel applications of Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi) are reviewed in the context of recently published clinical trials and preclinical data supporting rapidly expanding uses of this class of chemotherapy. RECENT FINDINGS PARPi block a pathway of DNA repair and target defects in homologous recombination repair (HRR), a pathway responsible for high-fidelity repair of double-strand breaks in DNA. BRCA1/2 proteins are essential to this pathway. Approximately 15-30% of women with ovarian cancer will have a germline or somatic BRCA mutation, and PARPi have shown promise in this population in a variety of settings. With growing understanding of the HRR pathway and its role in gynecologic malignancies, the potential applications of PARPi continue to expand. While the role of PARPi in gynecologic malignancies is most established in ovarian cancer, there are also promising applications in uterine and cervical cancer. We review current indications for PARPi use and promising applications of these medications in gynecologic malignancies.
Collapse
Affiliation(s)
- Michelle Lightfoot
- Ohio State Wexner Medical Center, M210 Starling Loving Hall, 320 West 10th Avenue, Columbus, OH-43210, USA
| | - Lauren Montemorano
- Ohio State Wexner Medical Center, M210 Starling Loving Hall, 320 West 10th Avenue, Columbus, OH-43210, USA
| | - Kristin Bixel
- Ohio State Wexner Medical Center, M210 Starling Loving Hall, 320 West 10th Avenue, Columbus, OH-43210, USA.
| |
Collapse
|
342
|
Combination Therapy with Radiation and PARP Inhibition Enhances Responsiveness to Anti-PD-1 Therapy in Colorectal Tumor Models. Int J Radiat Oncol Biol Phys 2020; 108:81-92. [PMID: 32036006 DOI: 10.1016/j.ijrobp.2020.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The majority of colorectal cancers are resistant to cancer immune checkpoint inhibitors. Ionizing radiation (IR) and several radiosensitizers, including PARP inhibitors, can enhance responsiveness to immune checkpoint inhibitors by potentially complementary mechanisms of action. We assessed the ability of radiation and PARP inhibition to induce proimmunogenic changes in tumor cells and enhance their in vivo responsiveness to anti-PD-1 antibodies. METHODS AND MATERIALS We performed a candidate drug screen and used flow cytometry to assess effects of the PARP inhibitor veliparib on IR-mediated changes in MHC-1 antigen presentation and surface localization of immune-modulating proteins including PD-L1 and calreticulin in colorectal cancer tumor models. Reverse transcription polymerase chain reaction was used to assess the effects of veliparib and radiation on the expression of proinflammatory and immunosuppressive cytokines. The ability of concurrent PARP inhibition and subablative doses of radiation therapy to enhance in vivo responsiveness to anti-PD-1 antibodies was assessed using unilateral flank-tumor models with or without T-cell depletion. RESULTS Veliparib was a potent radiosensitizer in both cell lines. Radiation increased surface localization of MHC-1 and PD-L1 in a dose-dependent manner, and veliparib pretreatment significantly enhanced these effects with high (8 Gy) but not with lower radiation doses. Enhancement of MHC-1 and PD-L1 surface localization by IR and IR+ veliparib remained significant 1, 3, and 7 days after treatment. IR significantly increased delayed tumoral expression of proinflammatory cytokines interferon-Ƴ and CXCL10 but had no significant effect on the expression of IL-6 or TGF-β. Concurrent administration of veliparib and subablative radiation therapy (8 Gy × 2) significantly prolonged anti-PD-1-mediated in vivo tumor growth delay and survival in both tumor models. Moreover, these effects were more pronounced in the microsatellite instability-mutated MC38 tumor model. Enhancement of anti-PD-1 mediated tumor growth delay with veliparib and IR was attenuated by CD8+ T-cell depletion. CONCLUSIONS We provide preclinical evidence for a novel therapeutic strategy to enhance responsiveness of colorectal tumors to immune checkpoint inhibitors.
Collapse
|
343
|
Abstract
PURPOSE OF REVIEW This review will provide an update on the most recent clinical developments in immuno-oncology in advanced gynecologic cancers and will also highlight ongoing studies in this field. RECENT FINDINGS Although immune checkpoint blockade (ICB) therapy is rapidly altering the treatment landscape in a myriad of solid tumors, the efficacy of ICB therapy with antibodies directed against CTLA-4, PD-1, and PD-L1 in advanced gynecologic cancers has been limited. The exception has been the PD-1 inhibitor pembrolizumab in microsatellite instability high (MSI-H) or mismatch repair-deficient (dMMR) advanced endometrial cancers, highlighted by the recent conditional approval of pembrolizumab in recurrent/metastatic PD-L1-positive cervical cancers and the accelerated approval of pembrolizumab and lenvatinib in microsatellite stable (MSS) or mismatch repair-proficient (pMMR) advanced endometrial cancer. The discovery of novel, rational ICB combinatorial approaches in advanced gynecologic cancers is highly warranted. SUMMARY Recent advances in the genomic characterization of gynecologic malignancies have informed clinical trial design. However, improved molecular and immunophenotypic biomarkers to more accurately identify patients who will most benefit from immunotherapeutic approaches are urgently needed. This is especially critical as we attempt to integrate immune-oncology agents, chemotherapy, targeted therapy, and radiation therapy in the management of gynecologic cancers.
Collapse
|
344
|
How J, Patel A, Jazaeri A. Immuno-oncology for Gynecologic Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:149-182. [PMID: 32301014 DOI: 10.1007/978-3-030-41008-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with advanced and/or recurrent gynecologic cancers derive limited benefit from currently available cytotoxic and targeted therapies. Successes of immunotherapy in other difficult-to-treat malignancies such as metastatic melanoma and advanced lung cancer have led to intense interest in clinical testing of these treatments in patients with gynecologic cancers. Currently, in the realm of gynecologic oncology, the FDA-approved use of immune checkpoint inhibitors is limited to microsatellite instable cancers and PD-L1-positive cervical cancer. However, there has been an exponential growth of clinical trials testing immunotherapy approaches, both alone and in combination with chemotherapy and/or targeted agents, in patients with gynecologic cancers. This chapter reviews some of the major reported and ongoing immunotherapy clinical trials in patients with endometrial, cervical, and epithelial ovarian cancer.
Collapse
Affiliation(s)
- Jeffrey How
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ami Patel
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
345
|
Pazzaglia S, Pioli C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019; 9:cells9010041. [PMID: 31877876 PMCID: PMC7017201 DOI: 10.3390/cells9010041] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1), mainly known for its protective role in DNA repair, also regulates inflammatory processes. Notably, defects in DNA repair and chronic inflammation may both predispose to cancer development. On the other hand, inhibition of DNA repair and inflammatory responses can be beneficial in cancer therapy and PARP inhibitors are currently used for their lethal effects on tumor cells. Furthermore, excess of PARP-1 activity has been associated with many tumors and inflammation-related clinical conditions, including asthma, sepsis, arthritis, atherosclerosis, and neurodegenerative diseases, to name a few. Activation and inhibition of PARP represent, therefore, a double-edged sword that can be exploited for therapeutic purposes. In our review, we will discuss recent findings highlighting the composite multifaceted role of PARP-1 in cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| | - Claudio Pioli
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| |
Collapse
|
346
|
Ajina R, Zahavi DJ, Zhang YW, Weiner LM. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies. Semin Cancer Biol 2019; 65:28-37. [PMID: 31866479 DOI: 10.1016/j.semcancer.2019.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
Abstract
Traditional cancer treatment approaches have focused on surgery, radiation therapy, and cytotoxic chemotherapy. However, with rare exceptions, metastatic cancers were considered to be incurable by traditional therapy. Over the past 20 years a fourth modality - immunotherapy - has emerged as a potentially curative approach for patients with advanced metastatic cancer. However, in many patients cancer "finds a way" to evade the anti-tumor effects of immunotherapy. Immunotherapy resistance mechanisms can be employed by both cancer cells and the non-cancer elements of tumor microenvironment. This review focuses on the resistance mechanisms that are specifically mediated by cancer cells. In order to extend the impact of immunotherapy to more patients and across all cancer types, and to inhibit the development of acquired resistance, the underlying biology driving immune escape needs to be better understood. Elucidating mechanisms of immune escape may shed light on new therapeutic targets, and lead to successful combination therapeutic strategies.
Collapse
Affiliation(s)
- Reham Ajina
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - David J Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Yong-Wei Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, United States.
| |
Collapse
|
347
|
Gupta M, Iyer R, Fountzilas C. Poly(ADP-Ribose) Polymerase Inhibitors in Pancreatic Cancer: A New Treatment Paradigms and Future Implications. Cancers (Basel) 2019; 11:E1980. [PMID: 31835379 PMCID: PMC6966572 DOI: 10.3390/cancers11121980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy. Most of the patients of PDAC present at later stages of disease and have a five-year survival rate of less than 10%. About 5-10% PDAC cases are hereditary in nature and have DNA damage repair (DDR) mutations such as BRCA 1 and 2. Besides having implications on screening and prevention strategies, these mutations can confer sensitivity to platinum-based therapies and determine eligibility for poly(ADP-ribose) polymerase inhibitors (PARPi). In the presence of DDR mutations and PARPi, the cells are unable to utilize the error-free process of homologous recombination repair, leading to accumulation of double stranded DNA breaks and cell death eventually. Various PARPi are in clinical development in PDAC in different subgroup of patients as monotherapies and in combination with other therapeutics. This review would focus on the mechanism of action of PARPi, history of development in PDAC, resistance mechanisms and future directions.
Collapse
Affiliation(s)
- Medhavi Gupta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Renuka Iyer
- Department of Medicine/Division of GI Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Christos Fountzilas
- Department of Medicine/Division of GI Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
348
|
González‐Martín A, Sánchez‐Lorenzo L. Immunotherapy with checkpoint inhibitors in patients with ovarian cancer: Still promising? Cancer 2019; 125 Suppl 24:4616-4622. [DOI: 10.1002/cncr.32520] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022]
|
349
|
Tymon-Rosario J, Zeybek B, Han C, Santin AD. Synergistic clinical efficacy of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S308. [PMID: 32016027 PMCID: PMC6976388 DOI: 10.21037/atm.2019.10.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 03/29/2024]
Affiliation(s)
- Joan Tymon-Rosario
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Co-Chief Gynecologic Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Burak Zeybek
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Co-Chief Gynecologic Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Co-Chief Gynecologic Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Co-Chief Gynecologic Oncology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
350
|
Zhou B, Guo L, Zhang B, Liu S, Zhang K, Yan J, Zhang W, Yu M, Chen Z, Xu Y, Xiao Y, Zhou J, Fan J, Li H, Ye Q. Disulfiram combined with copper induces immunosuppression via PD-L1 stabilization in hepatocellular carcinoma. Am J Cancer Res 2019; 9:2442-2455. [PMID: 31815045 PMCID: PMC6895448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023] Open
Abstract
As a potential antitumor drug and chemotherapeutic sensitizer, disulfiram combined with Copper (DSF/Cu2+) does not exert considerable antitumor effects on an immunocompetent hepatocellular carcinoma (HCC) model. In this article, we will explore the mechanism underlying the resistance to DSF in HCC. We analyzed the antitumor effect of DSF/Cu2+ in vivo studies. Tumor and immune cells collected from mice were analyzed by flow cytometry. Then, we analyzed the transcriptional changes in liver cancer cells after DSF/Cu2+ treatment by transcriptional expression profiling. The expression of PD-L1 was detected by real-time PCR, Western blotting and flow cytometry. The expression of PARP1 and GSK3β was knocked down by small interfering RNAs (siRNAs). A subcutaneous Hepa1-6 tumor model was used for single-drug or combined-drug studies. Tissue chips (268 samples of liver cancer tissue) were used to analyze the relationship among PARP1, p-GSK3β and PD-L1. We found that DSF/Cu2+ failed to inhibit HCC tumor growth in C57BL/6 mice. DSF/Cu2+ upregulated PD-L1 expression by inhibiting PARP1 activity and enhancing GSK3β phosphorylation at Ser9 and ultimately inhibited T cell infiltration. The combination of DSF/Cu2+ and an anti-PD-1 antibody produced an additive effect that slowed HCC growth in mice. In addition, we observed negative associations between PARP1 and p-GSK3β (Ser9) or PD-L1 expression in tumor tissue samples from HCC patients. Through in vitro and in vivo studies, we found that DSF/Cu2+ could restrain GSK3β activity by inhibiting PARP1, leading to the upregulation of PD-L1 expression. Combination therapy with DSF/Cu2+ and an anti-PD-1 antibody showed much better antitumor efficacy than monotherapy.
Collapse
Affiliation(s)
- Binghai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Shuang Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan UniversityShanghai, People’s Republic of China
| | - Kewei Zhang
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, People’s Republic of China
| | - Jiuliang Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Wentao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Zheng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| |
Collapse
|