301
|
Huang YY, Liu H, Li Y, Pu LJ, Jiang CC, Xu JC, Jiang ZW. Down-regulation of RIP1 by 2-deoxy-D-glucose sensitizes breast cancer cells to TRAIL-induced apoptosis. Eur J Pharmacol 2013; 705:26-34. [PMID: 23499682 DOI: 10.1016/j.ejphar.2013.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 12/25/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) appears to be a promising anticancer agent as it specifically kills a wide variety of cancer cells. However, resistance of subpopulations of cancer cells to TRAIL-induced cell death remains a major obstacle for successful treatment of cancer using TRAIL-based therapy. In this report we show that the hexokinase inhibitor 2-deoxy-d-glucose (2-DG) efficiently enhances TRAIL-induced apoptosis through downregulation of receptor-interacting protein kinase 1 (RIP1) in breast cancer cells. Although 2-DG alone did not kill breast cancer cells, it sensitized the cells to TRAIL-induced cell death. This could be efficiently inhibited by blockage of the caspase cascade, suggesting 2-DG augments TRAIL-mediated apoptotic signaling. Indeed, treatment with 2-DG resulted in upregulation of TRAIL receptor 2 (TRAIL-R2), downregulation of cIAP1 and XIAP, and reduction in RIP1. The latter appeared to play an important role in regulating sensitivity of breast cancer cells to TRAIL, in that knockdown of RIP1 recapitulated, at least in part, the effect of 2-DG on TRAIL-induced apoptosis. Taken together, these results indicate that 2-DG enhances TRAIL-induced apoptosis in breast cancer cells by multiple mechanisms including suppression of RIP1, and highlight the potential therapeutic benefit of combinations of 2-DG and TRAIL in the treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Ying Huang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, PR China
| | | | | | | | | | | | | |
Collapse
|
302
|
Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ, Liu ZX, Kaplowitz N. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 2013; 34:243-53. [PMID: 23453390 DOI: 10.1016/j.tips.2013.01.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
Drugs that cause liver injury often 'stress' mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and nuclear factor erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Owing to adaptation, drugs alone rarely cause liver injury, with acetaminophen (APAP) being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause 'stressed' hepatocytes to become injured, leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as c-Jun N-terminal kinase (JNK) become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI.
Collapse
Affiliation(s)
- Derick Han
- University of Southern California Research Center for Liver Diseases and Southern California Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
304
|
Chang EYC, Tsai SH, Shun CT, Hee SW, Chang YC, Tsai YC, Tsai JS, Chen HJ, Chou JW, Lin SY, Chuang LM. Prostaglandin reductase 2 modulates ROS-mediated cell death and tumor transformation of gastric cancer cells and is associated with higher mortality in gastric cancer patients. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 181:1316-26. [PMID: 22998775 DOI: 10.1016/j.ajpath.2012.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/04/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023]
Abstract
Various prostanoids and peroxisome proliferator-activated receptor γ (PPARγ) ligands play an important role in gastric cancer. Previously, we demonstrated that prostaglandin reductase 2 (PTGR2) catalyzes the reduction of the PPARγ ligand 15-keto-PGE(2) into 13,14-dihydro-15-keto-PGE(2). Here, we present functional data and clinical relevance for the role of PTGR2 in gastric cancer. Using lentiviral technology in AGS and SNU-16 gastric cancer cell lines, we either down-regulated or overexpressed PTGR2. In vitro analysis showed that PTGR2 knockdown resulted in decreased proliferation rate and colony formation, and in vivo xenograft models showed slower growth of tumors. Mechanistically, PTGR2 knockdown induced cell death, altered mitochondrial function, and increased reactive oxygen species production, which led to activation of ERK1/2 and caspase 3, with increased Bcl-2 and suppressed Bax expression. PTGR2 overexpression showed the opposite outcomes. Clinically, immunopathological staining showed strong PTGR2 expression in the gastric tumor portion, relative to nearby nontumor portions, and its expression negatively correlated with survival of patients with intestinal-type gastric cancer. Finally, in contrast to PTGR2-overexpressing cells, PTGR2-knockdown cells were more sensitive to cisplatin and 5-fluorouracil. Taken together, our findings not only provide functional and mechanistic evidence of the involvement of PTGR2 in gastric cancer, but also provide clinical observations affirming the significance of PTGR2 in gastric cancer and suggesting that PTGR2-target based therapy is worth further evaluation.
Collapse
Affiliation(s)
- Emily Yun-Chia Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Li HT, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Zhou XQ. Oxidative stress parameters and anti-apoptotic response to hydroxyl radicals in fish erythrocytes: protective effects of glutamine, alanine, citrulline and proline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:169-179. [PMID: 23220409 DOI: 10.1016/j.aquatox.2012.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
The present study explored the protective effects of glutamine (Gln), alanine (Ala), citrulline (Cit) and proline (Pro) on hydroxyl radical (·OH)-induced apoptosis in isolated carp erythrocytes. Hydroxyl radicals were generated by ferrous ion (Fe(2+))-mediated decomposition of hydrogen peroxide (H(2)O(2)) (Fenton reaction). In order to select an optimal ·OH concentration to induce apoptosis, cultures were treated with different concentrations of FeSO(4)/H(2)O(2) (0 μM/0 μM-50 μM/25 μM). The results showed that exposure to FeSO(4)/H(2)O(2) (0 μM/0 μM-40 μM/20 μM) increased apoptosis in a dose-dependent manner. Moreover, apoptosis was at its highest level at 40 μM FeSO(4)/20 μM H(2)O(2). We then examined the cytoprotective effects of Gln, Ala, Cit, Pro or the combination of Ala, Cit and Pro under conditions of apoptosis. Carp erythrocytes were treated with the substances listed above in the presence of 40 μM FeSO(4)/20 μM H(2)O(2) for 9 h. The controls were grown in Gln, Ala, Cit, Pro-free culture medium. The results showed that Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro effectively protected against annexin binding, decrease of forward scatter and DNA fragmentation in carp erythrocytes induced by ·OH. Furthermore, Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro effectively blocked ·OH-stimulated erythrocyte hemolysis, reduced the increase of superoxide anion and H(2)O(2) concentrations, inhibited the formation of malondialdehyde, protein carbonyls and met-hemoglobin, and prevented the decrease of superoxide dismutase, catalase and glutathione peroxidase activities and glutathione content in carp erythrocytes induced by ·OH. In addition, the results suggest that the combination of Ala, Cit and Pro produces a greater anti-apoptotic and anti-oxidative effect than their individual effects at the same concentrations. Taken together, the results showed that ·OH induces apoptosis and oxidative damage in carp erythrocytes. In addition to inhibiting apoptosis, Gln, Ala, Cit, Pro and the combination of Ala, Cit and Pro protected carp erythrocytes against oxidative damage induced by ·OH, which may be a major factor in the protection of erythrocytes from apoptosis.
Collapse
Affiliation(s)
- Hua-Tao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
306
|
Modeling Multiscale Necrotic and Calcified Tissue Biomechanics in Cancer Patients: Application to Ductal Carcinoma In Situ (DCIS). MULTISCALE COMPUTER MODELING IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2013. [DOI: 10.1007/8415_2012_150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
307
|
Dwyer DJ, Winkler JA. Identification and characterization of programmed cell death markers in bacterial models. Methods Mol Biol 2013; 1004:145-159. [PMID: 23733575 DOI: 10.1007/978-1-62703-383-1_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In eukaryotic organisms facing terminal stress, activation of genetically encoded cell death pathways underlies fundamental changes in core cellular processes and functional modification of critical biomolecules. These physiological alterations manifest themselves as phenotypic hallmarks during programmed cell death, and are markers of the particular mode of death initiated. A growing volume of work has illustrated that prokaryotes too are capable of exhibiting hallmarks of programmed cell death, albeit without the multiple, tight regulatory layers which control these events in higher order organisms.This chapter describes how methods and materials which have been used to assay for hallmarks of programmed cell death in eukaryotic models are transferrable to prokaryotic models. In particular, we describe the applicability of these methods to the study of post-antibiotic effects on bacteria, notably the biochemical changes induced by the interaction of drug molecules and targets, including oxidative stress, that accompany and ensure cell death. Specifically we discuss techniques for detecting DNA fragmentation, chromosomal condensation, phosphatidylserine exposure, membrane depolarization, and caspase substrate peptide binding, thereby providing a launchpoint for the study of the evolution of these physiological events in bacteria.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Department of Biomedical Engineering and Center for BioDynamics, Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| | | |
Collapse
|
308
|
Abstract
Necrosis is a form of cell death characterized by cytoplasmic and organelle swelling, compromised -membrane integrity, intracellular acidification, and increased levels of reactive oxygen species (ROS) and cytosolic Ca(2+). In the Drosophila ovary, two distinct forms of cell death occur naturally. In response to starvation, caspase-dependent cell death occurs during mid-oogenesis. Additionally, the nurse cells, which support the developing oocyte, undergo developmental programmed cell death during late oogenesis after they dump their contents into the oocyte. Evidence suggests that necrosis may be playing an important role during developmental programmed cell death of the nurse cells during late oogenesis. Here, we describe several methods to detect events associated with necrosis in the Drosophila ovary. Propidium iodide is used to detect cells with compromised membrane integrity, and H2DCFDA is used as an indicator of ROS levels in a cell. In addition, LysoTracker detects intracellular acidification and X-rhod-1 detects cytosolic Ca(2+). We also describe transgenic methods to detect Ca(2+) levels and expression patterns. These methods performed in the Drosophila ovary, as well as other tissues, may lead to a further understanding of the mechanisms of necrosis as a form of programmed cell death.
Collapse
|
309
|
Abstract
Retinal ischemia is a very useful model to study the impact of various cell death pathways, such as apoptosis and necrosis, in the ischemic retina. However, it is important to note that the retina is formed as an outpouching of the diencephalon and is part of the central nervous system. As such, the cell death pathways initiated in response to ischemic damage in the retina reflect those found in other areas of the central nervous system undergoing similar trauma. The retina is also more accessible than other areas of the central nervous system, thus making it a simpler model to work with and study. By utilizing the retinal model, we can greatly increase our knowledge of the cell death processes initiated by ischemia which lead to degeneration in the central nervous system. This paper examines work that has been done so far to characterize various aspects of cell death in the retinal ischemia model, such as various pathways which are activated, and the role neurotrophic factors, and discusses how these are relevant to the treatment of ischemic damage in both the retina and the greater central nervous system.
Collapse
|
310
|
Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res 2012; 97:393-403. [PMID: 23263330 DOI: 10.1093/cvr/cvs426] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a term used to describe cardiac muscle damage-induced heart failure. Multiple structural and biochemical reasons have been suggested to induce this disorder. The most prominent feature of the diabetic myocardium is attenuated insulin signalling that reduces survival kinases (Akt), potentially switching on protein targets like FoxOs, initiators of cell death. FoxO1, a prominent member of the forkhead box family and subfamily O of transcription factors and produced from the FKHR gene, is involved in regulating metabolism, cell proliferation, oxidative stress response, immune homeostasis, pluripotency in embryonic stem cells, and cell death. In this review we describe distinctive functions of FoxOs, specifically FoxO1 under conditions of nutrient excess, insulin resistance and diabetes, and its manipulation to restore metabolic equilibrium to limit cardiac damage due to cell death. Because FoxO1 helps cardiac tissue to combat a variety of stress stimuli, it could be a major determinant in regulating diabetic cardiomyopathy. In this regard, we highlight studies from our group and others who illustrate how cardiac tissue-specific FoxO1 deletion protects the heart against cardiomyopathy and how its down-regulation in endothelial tissue could prevent against atherosclerotic plaques. In addition, we also describe studies that show FoxO1's beneficial qualities by highlighting their role in inducing anti-oxidant, autophagic, and anti-apoptotic genes under stress conditions of ischaemia-reperfusion and myocardial infarction. Thus, the aforementioned FoxO1 traits could be useful in curbing cardiac tissue-specific impairment of function following diabetes.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
311
|
Beebe SJ, Chen YJ, Sain NM, Schoenbach KH, Xiao S. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS One 2012; 7:e51349. [PMID: 23284682 PMCID: PMC3528752 DOI: 10.1371/journal.pone.0051349] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/05/2012] [Indexed: 01/04/2023] Open
Abstract
It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.
Collapse
Affiliation(s)
- Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America.
| | | | | | | | | |
Collapse
|
312
|
Kim YR, Lee SE, Kang IC, Nam KI, Choy HE, Rhee JH. A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. J Infect Dis 2012; 207:1406-15. [PMID: 23225896 DOI: 10.1093/infdis/jis746] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio vulnificus, a halophilic estuarine bacterium causing fatal septicemia and necrotic wound infection, is highly cytotoxic to eukaryotic cells. We have reported that RtxA1 toxin kills host cells only after they come into contact with bacteria and plays an essential role in the pathogenesis of V. vulnificus. This study was performed to elucidate the mechanism by which the RtxA1 toxin mediates the death of HeLa cells. By using confocal microscopy and immunoblot analysis, we show that the 501-kDa RtxA1 toxin is processed into 2 fragments after its secretion into host cells. The largerN-terminal fragment (RtxA1-N; approximately 370 kDa) remained at the host cell membrane, whereas the smaller C-terminal fragment (RtxA1-C; approximately 130 kDa) was internalized into the host cell cytoplasm. RtxA1-N is believed to polymerize and form pores at the host cell membrane and to induce an increase in necrotic volume related to calcium. The RtxA1 toxin caused an increase in the intracellular Ca(2+) concentration and the subsequent activation of JNK. The cell death mechanism occurred via calcium-dependent mitochondrial pathways, which caused calcium sequestration in the mitochondria, accompanied by irreversible mitochondrial membrane dysfunction and adenosine triphosphate depletion, and was later accompanied by the disruption of the integrity of the plasma membrane.
Collapse
Affiliation(s)
- Young Ran Kim
- Clinical Vaccine R&D Center, Department of Microbiology, Chonnam National University Medical School, 5 Hak-Dong, Dong-Gu, Gwangju 501–746, Korea
| | | | | | | | | | | |
Collapse
|
313
|
Buss LW, Anderson C, Westerman E, Kritzberger C, Poudyal M, Moreno MA, Lakkis FG. Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolongicarpus. PLoS One 2012; 7:e48914. [PMID: 23145018 PMCID: PMC3493586 DOI: 10.1371/journal.pone.0048914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Transitory fusion is an allorecognition phenotype displayed by the colonial hydroid Hydractinia symbiolongicarpus when interacting colonies share some, but not all, loci within the allorecognition gene complex (ARC). The phenotype is characterized by an initial fusion followed by subsequent cell death resulting in separation of the two incompatible colonies. We here characterize this cell death process using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and continuous in vivo digital microscopy. These techniques reveal widespread autophagy and subsequent necrosis in both colony and grafted polyp assays. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and ultrastructural observations revealed no evidence of apoptosis. Pharmacological inhibition of autophagy using 3-methyladenine (3-MA) completely suppressed transitory fusion in vivo in colony assays. Rapamycin did not have a significant effect in the same assays. These results establish the hydroid allorecognition system as a novel model for the study of cell death.
Collapse
Affiliation(s)
- Leo W Buss
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
314
|
McComb S, Cheung HH, Korneluk RG, Wang S, Krishnan L, Sad S. cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ 2012; 19:1791-801. [PMID: 22576661 PMCID: PMC3469059 DOI: 10.1038/cdd.2012.59] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/06/2012] [Accepted: 03/27/2012] [Indexed: 01/24/2023] Open
Abstract
Cellular inhibitor of apoptosis proteins (cIAPs) have emerged as important anti-cell death mediators, particularly in cancer. Although they are known to be expressed in immune tissue, their specific immune function remains unclear. We observed that degradation of cIAPs with SMAC mimetic (SM) results in death of primary bone-marrow-derived macrophages. SM-induced death of macrophages occurred by programmed necrosis (necroptosis), which was dependent on TNF receptor expression. Consistent with necroptosis, SM-induced death of macrophages was abrogated by inhibition of receptor interacting protein 1 (Rip1) kinase signaling or by receptor interacting protein 3 (Rip3) knockdown. SM-induced necroptosis was also dependent on inhibition of SM-induced apoptosis due to the expression of the endogenous caspase inhibitor, xIAP. We found that cIAPs limit Rip3, and to a lesser extent Rip1, expression via post-transcriptional mechanisms, leading to inhibition of the Rip1-Rip3 death complex (necrosome). Reduced cIAP activity in vivo, via SM treatment or specific knockout of either cIAP, resulted in elevated macrophage cell death and compromised control of an intracellular bacterium, Listeria monocytogenes. These results show that cIAPs have an important role in limiting programmed necrosis of macrophages, which facilitates effective control of a pathogen.
Collapse
Affiliation(s)
- S McComb
- NRC-Institute for Biological Sciences, Ottawa, Ontario, Canada
- Deptartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - H H Cheung
- Deptartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - R G Korneluk
- Deptartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - S Wang
- Department of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - L Krishnan
- NRC-Institute for Biological Sciences, Ottawa, Ontario, Canada
- Deptartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - S Sad
- NRC-Institute for Biological Sciences, Ottawa, Ontario, Canada
- Deptartment of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
315
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
316
|
Cell death features induced in Leishmania major by 1,3,4-thiadiazole derivatives. Exp Parasitol 2012; 132:116-22. [DOI: 10.1016/j.exppara.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 06/06/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
317
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
318
|
Metzig M, Gdynia G, Roth W. [Mechanisms of cell death. Novel insights and implications for tumor pathology]. DER PATHOLOGE 2012; 33 Suppl 2:241-5. [PMID: 23011024 DOI: 10.1007/s00292-012-1678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During tumorigenesis cancer cells acquire certain features allowing for sustained growth and circumvention of programmed cell death. For decades cancer research has been focused on the molecular mechanisms of apoptosis and how to overcome apoptosis resistance in tumor cells. Meanwhile, novel types of programmed cell death have turned out to be important for both physiological and pathological processes. Recent findings imply that induction of alternative forms of programmed cell death, such as necroptosis, might be used as a therapeutic approach to overcome therapy resistance in cancer.
Collapse
Affiliation(s)
- M Metzig
- Klinische Kooperationseinheit Molekulare Tumorpathologie Pathologisches Institut, Universität Heidelberg und Deutsches Krebsforschungszentrum Heidelberg, Heidelberg
| | | | | |
Collapse
|
319
|
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23:1989-2006. [PMID: 22989049 DOI: 10.1021/bc3003309] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death is a critically important biological process. Disruption of homeostasis, either by excessive or deficient cell death, is a hallmark of many pathological conditions. Recent research advances have greatly increased our molecular understanding of cell death and its role in a range of diseases and therapeutic treatments. Central to these ongoing research and clinical efforts is the need for imaging technologies that can locate and identify cell death in a wide array of in vitro and in vivo biomedical samples with varied spatiotemporal requirements. This review article summarizes community efforts over the past five years to identify useful biomarkers for dead and dying cells, and to develop molecular probes that target these biomarkers for optical, radionuclear, or magnetic resonance imaging. Apoptosis biomarkers are classified as either intracellular (caspase enzymes, mitochondrial membrane potential, cytosolic proteins) or extracellular (plasma membrane phospholipids, membrane potential, surface exposed histones). Necrosis, autophagy, and senescence biomarkers are described, as well as unexplored cell death biomarkers. The article discusses possible chemotherapeutic and theranostic strategies, and concludes with a summary of current challenges and expected eventual rewards of clinical cell death imaging.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, Notre Dame Integrated Imaging Facility, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
320
|
Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:139-74. [PMID: 22449489 DOI: 10.1016/b978-0-12-394306-4.00010-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality for cancer treatment; however, a more detailed understanding is needed to improve the clinical use of this therapy. PDT induces cancer cell death by apoptosis, necrosis, and autophagy, and these mechanisms can be concurrently occurred. PDT destroys cancer cells by inducing apoptosis through diverse signaling pathways coupled with Bcl-2 family members, caspases, and apopotosis-inducing factor. When the apoptotic pathway is unavailable, PDT can cause cancer cell death through induction of a necrotic or autophagic mechanism. Autophagy is occurred in a Bax-independent manner and can be stimulated in parallel with apoptosis. PDT directly destroys cancer cells by inducing either apoptotic or necrotic death. PDT also can induce autophagy as a death or a survival mechanism. These mechanisms are dependent on a variety of parameters including the nature of the photosensitizer, PDT dose, and cell genotype. Understanding the complex cross talk between these pathways may improve the effectiveness of PDT. Here, we discuss the interplay between these mechanisms based on recent evidence and suggest prospects with regard to advances in PDT.
Collapse
Affiliation(s)
- Je-Ok Yoo
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
321
|
Handke W, Krause E, Brune W. Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus. Med Microbiol Immunol 2012; 201:475-86. [PMID: 22965170 DOI: 10.1007/s00430-012-0264-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Abstract
Cytomegaloviruses (CMVs) are large double-stranded DNA viruses that replicate slowly and cause life-long persisting infections in their hosts. To achieve this, the CMVs had to evolve numerous countermeasures against innate and adaptive immune responses. Induction of programmed cell death is one important host defense mechanism against intracellular pathogens such as viruses. For a multicellular organism, it is advantageous to let infected cells die in order to thwart viral replication and dissemination. For a virus, by contrast, it is better to inhibit cell death and keep infected cells alive until the viral replication cycle has been completed. As a matter of fact, the CMVs encode a number of proteins devoted to interfering with different forms of programmed cell death: apoptosis and necroptosis. In this review, we summarize the known functions of the four best characterized cell death inhibitors of murine cytomegalovirus (MCMV), which are encoded by open reading frames, M36, m38.5, m41.1, and M45. The viral proteins interact with key molecules within different cell death pathways, namely caspase-8, Bax, Bak, and RIP1/RIP3. In addition, we discuss which events during MCMV infection might trigger apoptosis or necrosis and how MCMV's countermeasures compare to those of other herpesviruses. Since both, MCMV and its natural host, are amenable to genetic manipulation, the mouse model for CMV infection provides a particularly suitable system to study mechanisms of cell death induction and inhibition.
Collapse
Affiliation(s)
- Wiebke Handke
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | | | | |
Collapse
|
322
|
Peña FJ, Ferrusola CO, Tapia JA, Aparicio IM. How Stallion Sperm Age In Vitro? Scenario for Preservation Technologies. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2012.05.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
323
|
Park J, Park E, Ahn BH, Kim HJ, Park JH, Koo SY, Kwak HS, Park HS, Kim DW, Song M, Yim HJ, Seo DO, Kim SH. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats. Toxicol Appl Pharmacol 2012; 263:1-6. [DOI: 10.1016/j.taap.2012.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
324
|
Evidence for multiple cell death pathways during development of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression: apoptosis, necroptosis, and pyroptosis. J Virol 2012; 86:10961-78. [PMID: 22837196 DOI: 10.1128/jvi.01275-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus (HCMV) retinitis remains a major ophthalmologic problem worldwide. Although this sight-threatening disease is well characterized clinically, many pathogenic issues remain unresolved, among them a basic understanding of the relative roles of cell death pathways during development of retinal tissue destruction. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS), we initially investigated MCMV-infected eyes for evidence of apoptosis-associated molecules in mice with MAIDS of 4 weeks' (MAIDS-4) and 10 weeks' (MAIDS-10) duration, which were resistant and susceptible to retinal disease, respectively, but which harbored equivalent amounts of infectious MCMV. Whereas MCMV-infected eyes of MAIDS-4 mice showed little evidence of apoptosis-associated molecules, MCMV-infected eyes of MAIDS-10 mice showed significant amounts of tumor necrosis factor alpha (TNF-α), TNF receptors 1 and 2, active caspase 8, active caspase 3, TNF-related apoptosis-inducing ligand (TRAIL), TRAIL-R(DR5), Fas, and Fas ligand mRNAs and/or proteins, all detected at peak amounts prior to development of most severe retinal disease. Immunohistochemical staining showed macrophages, granulocytes (neutrophils), Müller cells, and microglial cells as TNF-α sources. Remarkably, quantification of apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay suggested that apoptosis contributed minimally to retinal disease in MCMV-infected eyes of MAIDS-10 mice. Subsequent studies demonstrated that MCMV-infected eyes of MAIDS-10 mice, but not MAIDS-4 mice, showed evidence of significant increases in molecules associated with two additional cell death pathways, necroptosis (receptor-interacting protein 1 [RIP1] and RIP3 mRNAs) and pyroptosis (caspase 1, interleukin 1β [IL-1β], and IL-18 mRNAs). We conclude that apoptosis, necroptosis, and pyroptosis participate simultaneously during MAIDS-related MCMV retinitis, and all may play a role during AIDS-related HCMV retinitis.
Collapse
|
325
|
Abstract
Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient.
Collapse
Affiliation(s)
- Guanghu Wang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University
| |
Collapse
|
326
|
Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, Samson M, Dimanche-Boitrel MT. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 2012; 19:2003-14. [PMID: 22814620 DOI: 10.1038/cdd.2012.90] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand) is a well-known apoptosis inducer, we have previously demonstrated that acidic extracellular pH (pHe) switches TRAIL-induced apoptosis to regulated necrosis (or necroptosis) in human HT29 colon and HepG2 liver cancer cells. Here, we investigated the role of RIPK1 (receptor interacting protein kinase 1), RIPK3 and PARP-1 (poly (ADP-ribose) polymerase-1) in TRAIL-induced necroptosis in vitro and in concanavalin A (Con A)-induced murine hepatitis. Pretreatment of HT29 or HepG2 with pharmacological inhibitors of RIPK1 or PARP-1 (Nec-1 or PJ-34, respectively), or transient transfection with siRNAs against RIPK1 or RIPK3, inhibited both TRAIL-induced necroptosis and PARP-1-dependent intracellular ATP depletion demonstrating that RIPK1 and RIPK3 were involved upstream of PARP-1 activation and ATP depletion. In the mouse model of Con A-induced hepatitis, where death of mouse hepatocytes is dependent on TRAIL and NKT (Natural Killer T) cells, PARP-1 activity was positively correlated with liver injury and hepatitis was prevented both by Nec-1 or PJ-34. These data provide new insights into TRAIL-induced necroptosis with PARP-1 being active effector downstream of RIPK1/RIPK3 initiators and suggest that pharmacological inhibitors of RIPKs and PARP-1 could be new treatment options for immune-mediated hepatitis.
Collapse
Affiliation(s)
- S Jouan-Lanhouet
- Université de Rennes 1, Institut de Recherche Santé Environnement et Travail (IRSET), Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Abstract
Cell death is regulated by a myriad of intracellular molecular pathways, with many involving protein phosphorylation and dephosphorylation. In this review, we will focus on Ser/Thr phosphatases-mediated regulation in cell apoptosis as well as on their potential roles in cell necrosis. The emerging functional importance of Ser/Thr protein phosphatases in cell death regulation adds new dimension to the signaling mechanisms of cellular function, physiology, and diseases.
Collapse
Affiliation(s)
- Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | |
Collapse
|
328
|
Tulha J, Faria-Oliveira F, Lucas C, Ferreira C. Programmed cell death in Saccharomyces cerevisiae is hampered by the deletion of GUP1 gene. BMC Microbiol 2012; 12:80. [PMID: 22617017 PMCID: PMC3444424 DOI: 10.1186/1471-2180-12-80] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/27/2012] [Indexed: 12/28/2022] Open
Abstract
Background During the past years, yeast has been successfully established as a model to study mechanisms of programmed cell death regulation. Saccharomyces cerevisiae commits to cell death showing typical hallmarks of metazoan apoptosis, in response to different stimuli. Gup1p, an O-acyltransferase, is required for several cellular processes that are related to apoptosis development, such as rafts integrity and stability, lipid metabolism including GPI anchor correct remodeling, proper mitochondrial and vacuole function, bud site selection and actin dynamics. Therefore, we hypothesize that apoptotic process would be affected by GUP1 deletion. Results In the present work we used two known apoptosis inducing conditions, chronological aging and acetic acid, to assess several apoptotic markers in gup1∆ mutant strain. We found that this mutant presents a significantly reduced chronological lifespan as compared to Wt and it is also highly sensitive to acetic acid treatment. In addition, it presents extremely high levels of ROS. There were notorious differences on apoptotic markers between Wt and gup1∆ mutant strains, namely on the maintenance of plasma membrane integrity, on the phosphatidylserine externalization, on the depolarization of mitochondrial membrane and on the chromatin condensation. Those suggested that the mutant, under either condition, probably dies of necrosis and not from apoptosis. Conclusions To Gup1p has been assigned an important function on lipid rafts assembly/integrity, lipid metabolism and GPI anchor remodeling. Our results provide, for the first time, the connection of the integrity of yeast lipid rafts and apoptosis induction and/or signaling, giving new insights into the molecular mechanisms underlying this process in yeast.
Collapse
Affiliation(s)
- Joana Tulha
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
329
|
Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 2012; 219:192-203. [PMID: 22579794 DOI: 10.1016/j.neuroscience.2012.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Receptor interacting protein (RIP)-1 kinase activity mediates a novel pathway that signals for regulated necrosis, a form of cell death prominent in traumatic and ischemic brain injury. Recently, we showed that an allosteric inhibitor of RIP-1 kinase activity, necrostatin-1 (Nec-1), provides neuroprotection in the forebrain following neonatal hypoxia-ischemia (HI). Because Nec-1 also prevents early oxidative injury, we hypothesized that mechanisms involved in this neuroprotection may involve preservation of mitochondrial function and prevention of secondary energy failure. Therefore, our objective was to determine if Nec-1 treatment following neonatal HI attenuates oxidative stress and mitochondrial injury. Postnatal day (p) 7 mice exposed to HI were injected intracerebroventricularly with 0.1 μL (80 μmol) of Nec-1 or vehicle. Nec-1 treatment prevented nitric oxide (NO•), inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine increase, and attenuated glutathione oxidation that was found in vehicle-treated mice at 3h following HI. Similarly, Nec-1 following HI prevented: (i) up-regulation of hypoxia inducible factor-1 alpha (HIF-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) expression, (ii) decline in mitochondrial complex-I activity, (iii) decrease in ATP levels, and (iv) mitochondrial structural pathology in astrocytes and in neurons. Up-regulation of glial fibrillary acidic protein (GFAP) following HI was also prevented by Nec-1 treatment. No differences by gender were observed. We conclude that Nec-1 immediately after HI, is strongly mitoprotective and prevents secondary energy failure by blocking early NO• accumulation, glutathione oxidation and attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- R Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
330
|
Moderate traumatic brain injury triggers rapid necrotic death of immature neurons in the hippocampus. J Neuropathol Exp Neurol 2012; 71:348-59. [PMID: 22437344 DOI: 10.1097/nen.0b013e31824ea078] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes cell death predominantly in the cerebral cortex, but there is additional secondary cell death in the hippocampus. We previously found that most of the dying cells in the mouse hippocampus are newborn immature granular neurons in a mouse model of lateral controlled cortical impact (CCI) injury with a moderate level of impact. It is not known how long this selective cell death in the hippocampal dentate gyrus lasts, and how it is induced. Using Fluoro-Jade B and immunohistochemistry, we show that most of the neuron death in the hippocampus occurs within 24 hours after TBI and that cell death continues at low level for at least another 2 weeks in this lateral CCI model. Most of the dying immature granular neurons did not exhibit morphologic characteristics of apoptosis, and only a small subpopulation of the dying cells was positive for apoptotic markers. In contrast, most of the dying cells coexpressed the receptor-interacting protein 1, a marker of necrosis, suggesting that immature neurons mainly died of necrosis. These results indicate that moderate TBI mainly triggers rapid necrotic death of immature neurons in the hippocampus in a mouse CCI model.
Collapse
|
331
|
Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis. Toxicol Appl Pharmacol 2012; 262:156-66. [PMID: 22575170 DOI: 10.1016/j.taap.2012.04.030] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/09/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K(3)) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis.
Collapse
|
332
|
De Meyer I, Martinet W, Schrijvers DM, Timmermans JP, Bult H, De Meyer GRY. Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques. Basic Res Cardiol 2012; 107:269. [PMID: 22543675 DOI: 10.1007/s00395-012-0269-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/13/2012] [Indexed: 11/27/2022]
Abstract
Atherosclerotic plaques tend to rupture as a consequence of a weakened fibrous cap, particularly in the shoulder regions where most macrophages reside. Macrophages express Toll-like receptors to recognize pathogens and eliminate intracellular pathogens by inducing autophagy. Because Toll-like receptor 7 (TLR7) is thought to be expressed in macrophages but not in smooth muscle cells (SMCs), we investigated whether induction of macrophage autophagic death by TLR7 ligand imiquimod can affect the composition of atherosclerotic plaques in favor of their stability. Immunohistochemical staining of human carotid plaques as well as Western blotting of cultured macrophages and SMCs confirmed that TLR7 was expressed in macrophages, but not in SMCs. In vitro experiments showed that only TLR7 expressing cells underwent imiquimod-induced cell death, which was characterized by autophagosome formation. Imiquimod-treated macrophages activated nuclear factor-κB (NF-κB) and released pro-inflammatory cytokines and chemokines. This effect was inhibited by the glucocorticoid dexamethasone. Imiquimod-induced cytokine release was significantly decreased in autophagy-deficient macrophages because these cells died by necrosis at an accelerated pace. Local in vivo administration of imiquimod to established atherosclerotic lesions in rabbit carotid arteries induced macrophage autophagy without induction of cell death, and triggered cytokine production, upregulation of vascular adhesion molecule-1, infiltration of T-lymphocytes, accumulation of macrophages and enlargement of plaque area. Treatment with dexamethasone suppressed these pro-inflammatory effects in vivo. SMCs and endothelial cells in imiquimod-treated plaques were not affected. In conclusion, imiquimod induces macrophage autophagy in atherosclerotic plaques, but stimulates plaque progression through cytokine release and enhanced infiltration of inflammatory cells.
Collapse
Affiliation(s)
- Inge De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
333
|
Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED, Johansson SL, Singh PK, Ganti AK, Batra SK. Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett 2012; 323:29-40. [PMID: 22475682 DOI: 10.1016/j.canlet.2012.03.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/25/2012] [Accepted: 03/26/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic tumors are resistant to conventional chemotherapies. The present study was aimed at evaluating the potential of a novel plant-derived product as a therapeutic agent for pancreatic cancer (PC). The effects of an extract from the tropical tree Annona Muricata, commonly known as Graviola, was evaluated for cytotoxicity, cell metabolism, cancer-associated protein/gene expression, tumorigenicity, and metastatic properties of PC cells. Our experiments revealed that Graviola induced necrosis of PC cells by inhibiting cellular metabolism. The expression of molecules related to hypoxia and glycolysis in PC cells (i.e. HIF-1α, NF-κB, GLUT1, GLUT4, HKII, and LDHA) were downregulated in the presence of the extract. In vitro functional assays further confirmed the inhibition of tumorigenic properties of PC cells. Overall, the compounds that are naturally present in a Graviola extract inhibited multiple signaling pathways that regulate metabolism, cell cycle, survival, and metastatic properties in PC cells. Collectively, alterations in these parameters led to a decrease in tumorigenicity and metastasis of orthotopically implanted pancreatic tumors, indicating promising characteristics of the natural product against this lethal disease.
Collapse
Affiliation(s)
- María P Torres
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | | | - Vinee Purohit
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | - Poomy Pandey
- Department of Environmental, Agricultural & Occupational Health, Omaha, NE 68198-5870, USA
| | - Suhasini Joshi
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA
| | - Erik D Moore
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA
| | - Sonny L Johansson
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, Omaha, NE 68198-5870, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Internal Medicine VA Nebraska-Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-5870, USA; Department of Pathology and Microbiology, Omaha, NE 68198-5870, USA.
| |
Collapse
|
334
|
Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 2012; 109:5322-7. [PMID: 22421439 DOI: 10.1073/pnas.1200012109] [Citation(s) in RCA: 799] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor (TNF) is an important inflammatory cytokine and induces many cellular responses, including inflammation, cell proliferation, apoptosis, and necrosis. It is known that receptor interacting protein (RIP) kinases, RIP1 and RIP3, are key effectors of TNF-induced necrosis, but little is known about how these two RIP kinases mediate this process, although reactive oxygen species (ROS) generation and JNK activation have been suggested to be two downstream events of RIP kinases. Here we report the identification of mixed lineage kinase domain-like, MLKL, as a key RIP3 downstream component of TNF-induced necrosis. Through screening a kinase/phosphatase shRNA library in human colon adenocarcinoma HT-29 cells, we found that knockdown of MLKL blocked TNF-induced necrosis. Our data suggest that MLKL functions downstream of RIP1 and RIP3 and is recruited to the necrosome through its interaction with RIP3. Finally, we found that MLKL is required for the generation of ROS and the late-phase activation of JNK during TNF-induced necrosis. However, because these two events are not involved in TNF-induced necrosis in HT-29 cells, the target of MLKL during TNF-induced necrosis remains elusive. Taken together, our study suggests that MLKL is a key RIP3 downstream component of TNF-induced necrotic cell death.
Collapse
|
335
|
Coustry F, Posey KL, Liu P, Alcorn JL, Hecht JT. D469del-COMP retention in chondrocytes stimulates caspase-independent necroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:738-48. [PMID: 22154936 PMCID: PMC3349870 DOI: 10.1016/j.ajpath.2011.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 12/31/2022]
Abstract
Mutations in the cartilage oligomeric matrix protein gene (COMP) cause pseudoachondroplasia (PSACH). This dysplasia results from the intracellular retention of mutant COMP protein and premature death of growth-plate chondrocytes. Toward better understanding of these underlying mechanisms, we examined D469del-COMP activation of the unfolded protein response and cell death pathways in rat chondrosarcoma cells. Using an inducible expression system, we examined the effects of D469del-COMP retention after 4 days of mRNA expression and then 5 days without inducing agent. Retention of D469del-COMP stimulated Chop (Ddit3) and Gadd34 (Ppp1r15a) and triggered reactivation of protein translation that exacerbated intracellular retention. High levels of Nox4 and endoplasmic reticulum receptor stress-inducible Ero1β generated reactive oxygen species, causing oxidative stress. Increased expression of Gadd genes and presence of γH2AX indicated that DNA damage was occurring. The presence of cleaved apoptosis inducing factor (tAIF) and the absence of activated caspases indicated that retention of D469del-COMP triggers cell death in chondrocytes by necroptosis, a caspase-independent programmed necrosis. Loss of growth-plate chondrocytes by necroptosis was also found in our pseudoachondroplasia mouse model. These results suggest a model in which D469del-COMP expression induces persistent endoplasmic reticulum stress, oxidative stress, and DNA damage, thus priming chondrocytes for necroptosis. We define for the first time the precise mechanisms underlying D469del-COMP pathology in pseudoachondroplasia and suggest that oxidative stress and AIF may be promising therapeutic targets.
Collapse
Affiliation(s)
- Françoise Coustry
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Karen L. Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Peiman Liu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L. Alcorn
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas
- Shriners Hospital for Children, Houston, Texas
| |
Collapse
|
336
|
Li X, Li PCH. Strategies for the real-time detection of Ca2+ channel events of single cells: recent advances and new possibilities. Expert Rev Clin Pharmacol 2012; 3:267-80. [PMID: 22111609 DOI: 10.1586/ecp.10.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) ion channels play key roles in cell physiology and they are important drug targets. The Ca(2+) channel events are mainly measurable by fluorescent and patch clamp methods. This review summarizes the recent advances of these techniques for the detection of Ca(2+) channel events and the prospect of their new directions in the near future. Conventional bulk fluorescent methods are amenable to high-throughput applications, but they are not real-time single-cell measurements, which provide kinetic data on individual cells and offer unparalleled sensitive data for rare cells. Recent advances on real-time single-cell fluorescent measurements are conducted on microfluidic chips with scalable cell-retention sites, integrated with electrical stimulation and fluorescent measuring features. Patch clamp techniques are real-time measurements conducted on single cells, but the measurements are of low throughput. Recent advances are conducted on microfluidic patch clamp chips for high-throughput applications. Future real-time single-cell Ca(2+) channel event measurements will be conducted in a multiparametric manner in an integrated and automated microfluidic chip.
Collapse
Affiliation(s)
- XiuJun Li
- University of California at Berkeley, CA 94720, USA
| | | |
Collapse
|
337
|
Abstract
Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of ‘programmed necrosis’. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions.
Collapse
Affiliation(s)
- Christopher C T Smith
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | | |
Collapse
|
338
|
Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 2012; 19:75-86. [PMID: 22075985 PMCID: PMC3252835 DOI: 10.1038/cdd.2011.164] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022] Open
Abstract
The lab of Jürg Tschopp was the first to report on the crucial role of receptor-interacting protein kinase 1 (RIPK1) in caspase-independent cell death. Because of this pioneer finding, regulated necrosis and in particular RIPK1/RIPK3 kinase-mediated necrosis, referred to as necroptosis, has become an intensively studied form of regulated cell death. Although necrosis was identified initially as a backup cell death program when apoptosis is blocked, it is now recognized as a cellular defense mechanism against viral infections and as being critically involved in ischemia-reperfusion damage. The observation that RIPK3 ablation rescues embryonic lethality in mice deficient in caspase-8 or Fas-associated-protein-via-a-death-domain demonstrates the crucial role of this apoptotic platform in the negative control of necroptosis during development. Here, we review and discuss commonalities and differences of the increasing list of inducers of regulated necrosis ranging from cytokines, pathogen-associated molecular patterns, to several forms of physicochemical cellular stress. Since the discovery of the crucial role of RIPK1 and RIPK3 in necroptosis, these kinases have become potential therapeutic targets. The availability of new pharmacological inhibitors and transgenic models will allow us to further document the important role of this form of cell death in degenerative, inflammatory and infectious diseases.
Collapse
Affiliation(s)
- N Vanlangenakker
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - T Vanden Berghe
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - P Vandenabeele
- Department for Molecular Biomedical Research, VIB, Zwijnaarde-Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| |
Collapse
|
339
|
Chang CP, Yang MC, Lei HY. Concanavalin A/IFN-gamma triggers autophagy-related necrotic hepatocyte death through IRGM1-mediated lysosomal membrane disruption. PLoS One 2011; 6:e28323. [PMID: 22163006 PMCID: PMC3230628 DOI: 10.1371/journal.pone.0028323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022] Open
Abstract
Interferon-gamma (IFN-γ), a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A) can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-γ is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-γ can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP) is observed in Con A-treated hepatoma cells in the presence of IFN-γ. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-γ induces immunity related GTPase family M member 1(IRGM1) translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-γ/Con A-induced LMP change and cell death. Furthermore, IFN-γ−/− mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-γ enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes.
Collapse
Affiliation(s)
- Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chen Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
340
|
Yoo JO, Lim YC, Kim YM, Ha KS. Differential cytotoxic responses to low- and high-dose photodynamic therapy in human gastric and bladder cancer cells. J Cell Biochem 2011; 112:3061-71. [DOI: 10.1002/jcb.23231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
341
|
Kamčeva T, Flemmig J, Damnjanović B, Arnhold J, Mijatović A, Petković M. Inhibitory effect of platinum and ruthenium bipyridyl complexes on porcine pancreatic phospholipase A2. Metallomics 2011; 3:1056-63. [PMID: 21909579 DOI: 10.1039/c1mt00088h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pancreatic phospholipase A(2) (PLA(2)) plays an important role in cellular homeostasis as well as in the process of carcinogenesis. Effects of metallo-drugs used as chemotherapeutics on the activity of this enzyme are unknown. In this work, the interaction between porcine pancreatic PLA(2) and two selected transition metal complexes--tetrachloro(bipyridine) platinum(IV) ([PtCl(4)(bipy)]) and dichloro (bipyridine) ruthenium(III)chloride ([RuCl(2)(bipy)(2)]Cl)--was studied. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and fluorescence spectroscopy have been used to analyse the enzyme activity in the absence and presence of metal complexes and to verify potential binding of these drugs to the enzyme. The tested metal complexes decreased the activity of phospholipase A(2) in an uncompetitive inhibition mode. A binding of the ruthenium complex near the active site of the enzyme could be evidenced and possible modes of interaction are discussed.
Collapse
Affiliation(s)
- Tina Kamčeva
- Laboratory of Physical Chemistry, Institute of Nuclear Sciences Vinča, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
342
|
Freire-Aradas A, Fondevila M, Kriegel AK, Phillips C, Gill P, Prieto L, Schneider PM, Carracedo A, Lareu MV. A new SNP assay for identification of highly degraded human DNA. Forensic Sci Int Genet 2011; 6:341-9. [PMID: 21908243 DOI: 10.1016/j.fsigen.2011.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/28/2022]
Abstract
There is growing evidence that the histone-DNA complexes found in nucleosomes offer protection from DNA degradation processes, including apoptotic events in addition to bacterial and environmental degradation. We sought to locate human nucleosome regions and build a catalogue of SNPs sited near the middle of these genomic segments that could be combined into a single PCR multiplex specifically for use with extremely degraded human genomic DNA samples. Using recently optimized bio-informatics tools for the reliable identification of nucleosome sites based on sequence motifs and their positions relative to known promoters, 1395 candidate loci were collected to construct an 18-plex single base extension assay. Genotyping performance of the nucleosome SNPs was tested using artificially degraded DNA and 24 casework samples where the likely state of degradation of DNA was established by comparison to profile completeness in four other forensic assays: a standard 15-plex STR identification test, a miniaturized STR multiplex and two autosomal SNP multiplexes. The nucleosome SNP assay gave genotyping success rates 6% higher than the best existing forensic SNP assay: the SNPforID Auto-2 29-plex and significantly higher than the mini-STR assay. The nucleosome SNPs we located and combined therefore provide a new type of marker set that can be used to supplement existing approaches when the analysed DNA is likely to be extremely degraded and may fail to give sufficient STR genotypes for a reliable identification.
Collapse
Affiliation(s)
- A Freire-Aradas
- Forensic Genetics Unit, Institute of Legal Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Bozym RA, Patel K, White C, Cheung KH, Bergelson JM, Morosky SA, Coyne CB. Calcium signals and calpain-dependent necrosis are essential for release of coxsackievirus B from polarized intestinal epithelial cells. Mol Biol Cell 2011; 22:3010-21. [PMID: 21737691 PMCID: PMC3164450 DOI: 10.1091/mbc.e11-02-0094] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus B (CVB), a member of the enterovirus family, targets the polarized epithelial cells lining the intestinal tract early in infection. Although the polarized epithelium functions as a protective barrier, this barrier is likely exploited by CVB to promote viral entry and subsequent egress. Here we show that, in contrast to nonpolarized cells, CVB-infected polarized intestinal Caco-2 cells undergo nonapoptotic necrotic cell death triggered by inositol 1,4,5-trisphosphate receptor-dependent calcium release. We further show that CVB-induced cellular necrosis depends on the Ca(2+)-activated protease calpain-2 and that this protease is involved in CVB-induced disruption of the junctional complex and rearrangements of the actin cytoskeleton. Our study illustrates the cell signaling pathways hijacked by CVB, and perhaps other viral pathogens, to promote their replication and spread in polarized cell types.
Collapse
Affiliation(s)
- Rebecca A. Bozym
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| | - Kunal Patel
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Carl White
- Department of Physiology & Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - King-Ho Cheung
- Department of Physiology, University of Hong Kong, Hong Kong
| | - Jeffrey M. Bergelson
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Stefanie A. Morosky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
344
|
BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 2011; 19:245-56. [PMID: 21738214 DOI: 10.1038/cdd.2011.91] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alkylating DNA-damage agents such as N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG) trigger necroptosis, a newly defined form of programmed cell death (PCD) managed by receptor interacting protein kinases. This caspase-independent mode of cell death involves the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, BAX and AIF, which redistributes from mitochondria to the nucleus to promote chromatinolysis. We have previously demonstrated that the BAX-mediated mitochondrial release of AIF is a critical step in MNNG-mediated necroptosis. However, the mechanism regulating BAX activation in this PCD is poorly understood. Employing mouse embryonic knockout cells, we reveal that BID controls BAX activation in AIF-mediated necroptosis. Indeed, BID is a link between calpains and BAX in this mode of cell death. Therefore, even if PARP-1 and calpains are activated after MNNG treatment, BID genetic ablation abolishes both BAX activation and necroptosis. These PCD defects are reversed by reintroducing the BID-wt cDNA into the BID(-/-) cells. We also demonstrate that, after MNNG treatment, BID is directly processed into tBID by calpains. In this way, calpain non-cleavable BID proteins (BID-G70A or BID-Δ68-71) are unable to promote BAX activation and necroptosis. Once processed, tBID localizes in the mitochondria of MNNG-treated cells, where it can facilitate BAX activation and PCD. Altogether, our data reveal that, as in caspase-dependent apoptosis, BH3-only proteins are key regulators of caspase-independent necroptosis.
Collapse
|
345
|
Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011; 69:743-58. [PMID: 21520238 DOI: 10.1002/ana.22419] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of mortality and morbidity in infants and young children. Therapeutic opportunities are very limited for neonatal and pediatric HIE. Specific neural systems and populations of cells are selectively vulnerable in HIE; however, the mechanisms of degeneration are unresolved. These mechanisms involve oxidative stress, excitotoxicity, inflammation, and the activation of several different cell death pathways. Decades ago the structural and mechanistic basis of the cellular degeneration in HIE was thought to be necrosis. Subsequently, largely due to advances in cell biology and to experimental animal studies, emphasis has been switched to apoptosis or autophagy mediated by programmed cell death (PCD) mechanisms as important forms of degeneration in HIE. We have conceptualized based on morphological and biochemical data that this degeneration is better classified according to an apoptosis-necrosis cell death continuum and that programmed cell necrosis has prominent contribution in the neurodegeneration of HIE in animal models. It is likely that neonatal HIE evolves through many cell death chreodes influenced by the dynamic injury landscape. The relevant injury mechanisms remain to be determined in human neonatal HIE, though preliminary work suggests a complexity in the cell death mechanisms greater than that anticipated from experimental animal models. The accurate identification of the various cell death chreodes and their mechanisms unfolding within the immature brain matrix could provide fresh insight for developing meaningful therapies for neonatal and pediatric HIE.
Collapse
Affiliation(s)
- Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
346
|
Rodriguez-Rocha H, Aracely-Garcia-Garcia, Panayiotidis MI, Franco R. DNA damage and autophagy. Mutat Res 2011; 711:158-66. [PMID: 21419786 PMCID: PMC3105359 DOI: 10.1016/j.mrfmmm.2011.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/04/2011] [Accepted: 03/11/2011] [Indexed: 12/15/2022]
Abstract
Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.
Collapse
Affiliation(s)
- Humberto Rodriguez-Rocha
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| | - Aracely-Garcia-Garcia
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| | | | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| |
Collapse
|
347
|
Necrotic cell death in atherosclerosis. Basic Res Cardiol 2011; 106:749-60. [DOI: 10.1007/s00395-011-0192-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/06/2023]
|
348
|
Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 2011; 50:222-33. [PMID: 21601280 DOI: 10.1016/j.ceca.2011.04.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 12/25/2022]
Abstract
A variety of stimuli utilize an increase of cytosolic free Ca(2+) concentration as a second messenger to transmit signals, through Ca(2+) release from the endoplasmic reticulum or opening of plasma membrane Ca(2+) channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca(2+), thus shaping the return of cytosolic Ca(2+) to resting levels. The rise of mitochondrial matrix free Ca(2+) concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca(2+) increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca(2+) release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca(2+), termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca(2+) concentration, their interplay with Ca(2+) signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy.
| | | |
Collapse
|
349
|
Luke CJ, Silverman GA. Necrotic cell death: harnessing the Dark side of the Force in mammary gland involution. Nat Cell Biol 2011; 13:197-9. [PMID: 21364568 DOI: 10.1038/ncb0311-197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In response to major cellular insults, a massive increase in lysosomal membrane permeability (LMP) leads to necrosis. Data now reveal that this potent lysosomal-mediated necrotic cell-death machinery can also be harnessed for complex physiological processes, such as post-lactation mammary gland involution.
Collapse
|
350
|
Machado MV, Cortez-Pinto H. Cell death and nonalcoholic steatohepatitis: where is ballooning relevant? Expert Rev Gastroenterol Hepatol 2011; 5:213-22. [PMID: 21476916 DOI: 10.1586/egh.11.16] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the Western world. Progression to more aggressive forms of liver injury, such as nonalcoholic steatohepatitis (NASH) and cirrhosis, occurs in less than a third of affected subjects. Human data and both in vivo and in vitro models demonstrate that cell death, particularly apoptosis, is increased in NAFLD and NASH patients, suggesting that it is crucial in disease progression. Indeed, fatty acids - more specifically, saturated fatty acids - strongly induce hepatocyte apoptosis. In addition, hepatic steatosis renders hepatocytes more susceptible to apoptotic injury. Ballooned hepatocytes and Mallory-Denk bodies are important hallmarks of NASH and correlate with disease progression. There are complex correlations between ballooning, Mallory-Denk bodies and apoptosis through keratin metabolism and depletion, as well as through the endoplasmic reticulum stress response. Whether apoptosis may promote hepatocellular ballooning, or vice versa, will be discussed in this article.
Collapse
|